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Abstract- A new technique for solving a system of
fractional Fredholm integro-differential equations (IDEs)
is introduced in this manuscript. Furthermore, we present
a review for the derivation of the residual power series
method (RPSM) to solve fractional Fredholm IDEs in the
paper done by Syam, as well as, corrections to the ex-
amples mentioned in that paper. The numerical results
demonstrated the new technique’s applicability, efficacy,
and high accuracy in dealing with these systems. On the
other hand, a comparison has been done between the two
schemes using the two corrected examples in addition to
a problem that had been solved in many previous studies,
and the results of these studies were compared with the
new technique and RPSM. The comparison demonstrated
clear superiority of our method over the RPSM for solv-
ing this class of equations. Moreover, they dispel the mis-
conception that the RPSM works effectively on fractional
Fredholm IDEs as mentioned in the paper done by Syam,
whereas two problems solved by the RPSM produced an
unaccepted error. Also, the comparison with the previ-
ous studies indicates the importance of the new method
in dealing with the fractional Fredholm IDEs despite its
simplicity, ease of use, and negligible computational time.

Keywords- Caputo derivative, residual power series
method, fractional power series, fractional Fredholm
integro-differentional equations.

I INTRODUCTION

During the last century, the fractional calculus was used to
model many natural phenomena in different fields including
natural sciences, engineering, and numerical analysis such
as electric-circuit analysis [1], earthquake [2], fluid-dynamic
traffic [3], measurement of viscoelastic material properties
[4], control theory [5], solid mechanics models [6] and others.

The fractional integro-differential equations (FIDEs) have
a fundamental role in modeling many phenomena in some of
the above-mentioned disciplines such as presenting the con-
trol process and the dynamics of different systems, Electric
circuit analysis, the activity of synaptically coupled networks

of excitatory and inhibitory neurons, and viscoelastic mate-
rial dynamics [7, 8, 9]. Many techniques were applied to find
approximate solutions for FIDEs since the majority of them
do not have exact solution, or it is difficult to calculate.

A lot of methods have been developed to find approximate
solutions for single fractional Fredholm integro-differential
equations (IDEs). In the lines that follow, some of these ap-
proaches will be discussed. For instance, Saeedi, Moghadam,
Mollahasani and Chuev [10] utilized a new approach to solve
nonlinear fractional Fredholm IDEs that relied on the Sine
and Cosine wavelets. In [11] Samimi and Saeedi introduced a
new technique, based on the Homotopy Perturbation method,
to approximate the solution for a class of nonlinear Fredholm
IDEs of fractional order. Saeedi used Block Pulse functions
and Haar wavelets to solve a nonlinear fractional Fredholm
IDEs in [12]. Amit Setia, Yucheng Liu and Vatsala [13] find
approximate solutions for linear Fredholm FIDEs by using
the Chebyshev wavelets method. Darweesh, Alquran and
Aghzawi [14] developed a new algorithm, based on Haar
wavelets, to find approximate solutions for a class of two-
dimensional fractional Fredholm IDEs, and they introduced a
modification to that method by employing the Laplace trans-
form.

In the last fifteen years, a lot of attention has been paid to
develop new techniques that solve systems of fractional IDEs
due to their repeated appearance in many disciplines such as
engineering and chemistry [15, 16]. Some of these techniques
will be listed in the lines that follow. For instance, Qaralleh
and Momani [17] used the Adomian decomposition approach
to approximate the solutions for linear and nonlinear cou-
pled systems of fractional IDEs. Sweilam and Khader [18]
utilized a new approach, based on the Chebyshev pseudo-
spectral method, to find approximate solutions for a coupled
system of linear and nonlinear fractional Volterra IDEs in
one-dimensional space. Khan and Khalil [19] proposed oper-
ational matrices based on the shifted Legendre polynomials to
generate approximate solutions for a coupled system of one-
dimensional linear fractional Fredholm IDEs. Wang, Xu, Wei
and Xie [20] used a new technique that relies on Bernoulli
wavelets to approximate the solution of coupled systems of
nonlinear fractional IDEs of Volterra type. Mahdy [21] in-
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troduced a new technique with the aid of the least squares
method and Hermite method to produce approximate solu-
tions for a coupled system of one-dimensional linear Fred-
holm FIDEs. Mohammed and Malik [22] utilized a modified
computational algorithm to solve a coupled system of one-
dimensional linear fractional Volterra IDEs. Xie, Wang, Ren,
Zhang and Quan[23] employed the Haar wavelets method
to find approximate solutions for a coupled system of one-
dimensional fractional IDEs of Volterra type.

In our framework, we are concerned with studying a sys-
tem of fractional Fredholm IDEs of the following form:

Dα1u1(x) = f1(x)+
∫ 1

0
(u1(t)K1,1(x, t)+

u2(t)K1,2(x, t)+ . . .+un(t)K1,n(x, t))dt

Dα2u2(x) = f2(x)+
∫ 1

0
(u1(t)K2,1(x, t)+

u2(t)K2,2(x, t)+ . . .+un(t)K2,n(x, t))dt
...

Dαnun(x) = fn(x)+
∫ 1

0
(u1(t)Kn,1(x, t)+

u2(t)Kn,2(x, t)+ . . .+un(t)Kn,n(x, t))dt,

(1)

with

αi ∈ (0,1] ∀ i = 1,2,3, ..,n, and x, t ∈ [0,a],

subject to the initial conditions

ui(0) = ci,0 ∀i = 1,2,3, · · · ,n,

where the fractional derivatives are in the Caputo sense,
Ki, j(x, t) are arbitrary continuous kernels over [0,a] ∀ i, j =
1,2,3, ..,n, ui(x) are analytic unknown functions to be calcu-
lated with a > 0 ∀ i = 1,2,3, ..,n, a is the convergent radius,
and fi(x) are smooth functions ∀ i = 1,2,3, ...,n.

Our primary objectives of this work are to first find an
analytic-numeric solution for system (1) using a modified
scheme that is similar to the residual power series method
(RPSM). Second, we review paper [24], which employed the
RPSM to solve the single form of system 1, and correct the
findings presented in that paper. Finally, we compare the pro-
posed technique with the RPSM.

The residual power series method was introduced and uti-
lized by Abu Arqub in [25] for solving fuzzy differential
equations. The RPSM was applied to solve first-order ini-
tial value problems in [26] by Al-Smadi. Also, some papers
solved several kinds of partial differential equations with frac-
tional order depending on the use of RPSM [27, 28, 29]. Ko-
mashynska, Al-Smadi, Ateiwi, and Al-Obaidy [30] used the
RPSM to find approximate solutions for a system of Fredholm
integral equations. Moreover, the RPSM was utilized to solve
several types of fractional IDEs, we mention some of them
in the lines that follow. Alshammari, Al-Smadi, Hashim, and
Alias [31] solved Volterra IDEs with fractional order using
the RPSM, and they solved fractional mixed IDEs using the
same method in [32].

The rest of this article is composed as follows; In section
II, two background topics are revised concerning fractional

derivative and power series generalization to fractional power
series (FPS). In section III, we present the modified scheme
that deals with the system (1). The performance of the scheme
is illustrated and investigated in section IV, with two numeri-
cal examples to prove its efficiency. In section V, we correct
the work done, in employing the RPSM to find the recursive
formula for the coefficients of the unknown function, in pa-
per [24]. Moreover, we correct the first two examples written
in that paper and solve them by the two methods with a brief
comparison between the two methods in solving the single
equation form of the system (1). In section VI, we comment
and discuss the most salient points that resulted from subsec-
tion V.B. Moreover, we mention the features of the proposed
scheme in section III and its limitations. Finally, we conclude
this article with brief observations and conclusions in section
VII.

II PRELIMINARIES AND BASIC DEFINITIONS

II.A Fractional Derivative
Throughout this section, we review the Caputo fractional

derivative definition and some basic results about it. In this
framework, we use the fractional derivatives described in Ca-
puto’s definition from a variety of fractional derivative defini-
tions.

Definition 2.1.1 [33]
(

Caputo fractional derivative
)

.
Suppose that α > 0,x > 0, α,x ∈ R. The operator of frac-
tional calculus:

Dα
x f (x) =


1

Γ(n−α)

∫ x

0
f (n)(ξ )(x−ξ )n−α−1dξ , i f

n−1 < α < n ∈ N,
dn

dxn f (x), α = n ∈ N.

is called the Caputo fractional derivative or Caputo differen-
tial operator of fractional calculus of order α .

Theorem 2.1.2 [33]. Let n−1 < α < n, n ∈ N, α,β ∈R,
and λ ,z ∈C. Let f (x) and g(x) be such that both Dα

x f (x) and
Dα

x g(x) exist. Then
1) Linearity: Dα

x (λ f (x)+g(x)) = λDα
x f (x)+Dα

x g(x).
2) Dα

x c = 0 for any constant c ∈ R.
3)

Dα
x xp =


Γ(p+1)

Γ(p−α +1)
xp−α , i f

n−1 < α < n, p > n−1, p ∈ R,
0, i f n−1 < α < n, p≤ n−1, p ∈ N0.

4) The Caputo fractional derivative of the exponential
function has the following form:

Dα
x eλx =

∞

∑
k=0

λ k+nxk+n−α

Γ(k+1+n−α)
= λ

nxn−α E1,n−α+1(λx).

where

Eα,β (z) =
∞

∑
k=0

zk

Γ(kα +β )

where α, β > 0, α, β ∈ R, z ∈ C. is generalized Mittag-
Leffler function.
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II.B Fractional Power Series
In this section, we recall some fundamental definitions

and theorems concerning power series generalization to frac-
tional power series (FPS) [34].

Definition 2.2.1 [34]. A power series representation of the
form

∞

∑
n=0

cn(x−a)nα = c0 + c1(x−a)α + c2(x−a)2α + · · · (2)

where 0 ≤ m− 1 < α ≤ m and x ≥ a is called a fractional
power series about a, where x is a variable and cn’s are the
constants called the coefficients of the series.

Theorem 2.2.2 [34]. Suppose that f has a FPS represen-
tation at a of the form:

f (x) =
∞

∑
n=0

cn(x−a)nα , 0≤ m−1 < α ≤ m, a≤ x < a+R

(3)
If f (x) ∈ C[a,a + R) and Dnα f (x) ∈ C(a,a + R) for n =
0,1,2, · · · , then the coefficients cn in equation (3) will take the
form cn =

Dnα f (a)
Γ(nα+1) , where Dnα = Dα ·Dα · · ·Dα (n− times).

III THE METHODOLOGY OF THE PROPOSED METHOD

The purpose of this section is to obtain an analytic-
numeric solution based on the fractional power series expan-
sion for a system of Fredholm fractional IDEs subject to cer-
tain initial conditions in the form of (1).
We expand the solution to the system (1) as fractional power
series about x = 0

u1(x) =
∞

∑
j=0

c1, j
x jα1

Γ( jα1 +1)
= u1(x,k)+R1(x,k+1)

u2(x) =
∞

∑
j=0

c2, j
x jα2

Γ( jα2 +1)
= u2(x,k)+R2(x,k+1)

...

un(x) =
∞

∑
j=0

cn, j
x jαn

Γ( jαn +1)
= un(x,k)+Rn(x,k+1).

(4)

Where ui(x,k) =
k
∑
j=0

ci, j
x jαi

Γ( jαi+1) is the k-th truncated series of

ui(x), and Ri(x,m) =
∞

∑
j=m

ci, j
x jαi

Γ( jαi+1) . We require that Ri(x,m)

as small as negligible for m ≥ k+1 on the interval x ∈ (0,1)
for all i = 1,2, · · · ,n. Accordingly, we replace each ui(x) by
the k− th truncated series ui(x,k) for all i = 1,2, · · · ,n in
(1). Now, we aim to find the k− th approximation labeled
as ui(x,k) for all i = 1,2, · · · ,n to the system (1), which can
be summarized in the following steps:
Step 1: Consider system (1) after replacing each ui(x) by the
k−th truncated series ui(x,k) for all i= 1,2, · · · ,n, we obtain:

Dα1u1(x,k) = f1(x)+
∫ 1

0
(u1(t,k)K1,1(x, t)

+u2(t,k)K1,2(x, t)+ . . .+un(t,k)K1,n(x, t))dt

Dα2u2(x,k) = f2(x)+
∫ 1

0
(u1(t,k)K2,1(x, t)

+u2(t,k)K2,2(x, t)+ . . .+un(t,k)K2,n(x, t))dt
...

Dαnun(x,k) = fn(x)+
∫ 1

0
(u1(t,k)Kn,1(x, t)

+u2(t,k)Kn,2(x, t)+ . . .+un(t,k)Kn,n(x, t))dt,
(5)

Step 2: For all m = 1,2, · · · ,k, we apply D(m−1)αi |x=0 for
all i = 1,2, · · · ,n on both sides of the equations of the system
(5) as follows:

Dmα1u1(x,k)|x=0 = D(m−1)α1 f1(0)+∫ 1

0
u1(t,k)D(m−1)α1K1,1(0, t)dt

+
∫ 1

0
u2(t,k)D(m−1)α1K1,2(0, t)dt+

. . .+
∫ 1

0
un(t,k)D(m−1)α1K1,n(0, t)dt

Dmα2u2(x,k)|x=0 = D(m−1)α2 f2(0)+∫ 1

0
u1(t,k)D(m−1)α2K2,1(0, t)dt

+
∫ 1

0
u2(t,k)D(m−1)α2K2,2(0, t)dt+

. . .+
∫ 1

0
un(t,k)D(m−1)α2K2,n(0, t)dt

...

Dmαn un(x,k)|x=0 = D(m−1)αn fn(0)+∫ 1

0
u1(t,k)D(m−1)αnKn,1(0, t)dt+∫ 1

0
u2(t,k)D(m−1)αnKn,2(0, t)dt+

. . .+
∫ 1

0
un(t,k)D(m−1)αnKn,n(0, t)dt,

f or all m = 1,2, · · · ,k.

where Dmα = Dα ·Dα · · ·Dα (m− times).

Step 3: The previous step yields k× n equations. More-
over, we use the initial conditions given in (1) to find the val-
ues of ci,0, ∀ i = 1,2, · · · ,n by substituting 0 in each equation
of the system (4) . Finally, we solve the previous k×n equa-
tions for ci, j for all i= 1,2, · · · ,n, j = 1,2, · · · ,k to obtain our
approximate solution to the system (1):
u(x)≈

(
u1(x,k),u2(x,k), · · · ,un(x,k)

)
.

IV NUMERICAL EXAMPLES

Two numerical examples are provided in this section, to
demonstrate the efficiency of the proposed scheme.
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Example 1: Consider the following system of linear frac-
tional Fredholm IDEs:

D
1
2 u1(x) = f1(x)+

∫ 1

0
xu2(t)dt

D
1
2 u2(x) = f2(x)+

∫ 1

0
(tu1(t)+

√
xu2(t))dt,

(6)

subject to the initial condition u1(0) = 0 and u2(0) = 1, where

f1(x) =
√

x
∞

∑
j=0

(2ix) j(1+(−1) j)

Γ( j+ 3
2 )

− 1
4

xsin(4)

f2(x) = 2i
√

x
∞

∑
j=0

(4ix) j(1− (−1) j)

Γ( j+ 3
2 )

+
1
4
(2cos(2)− sin(2)−

√
xsin(4)),

the exact solution is u1(x) = sin(2x), u2(x) = cos(4x), and
i =
√
−1.

We expand the solution to the system (6) as fractional power
series representation about x = 0 of the form

u1(x) =
∞

∑
j=0

c j
x

j
2

Γ(( j
2 )+1)

u2(x) =
∞

∑
j=0

b j
x

j
2

Γ(( j
2 )+1)

.

(7)

Now, we apply the steps mentioned in section III by first re-
placing each ul(x) by the k− th truncated series ul(x,k) in
system (6) for all l = 1,2. Accordingly, we have

D
1
2 u1(x,k) = f1(x)+

∫ 1

0
xu2(t,k)dt

D
1
2 u2(x,k) = f2(x)+

∫ 1

0
(tu1(t,k)+

√
xu2(t,k))dt.

Here, we write down some calculations needed for step 2:

1)

D
1
2 (n) f1(x) =

∞

∑
j=βn

(2i) j(1+(−1) j)x j− n−1
2

Γ( j− n−3
2 )

, ∀n≥ 3.

Where

βn =

{
n
2 if n = 2m,m = 2,3,4 · · ·
n−1

2 if n = 2m−1,m = 2,3,4 · · ·

2) From note number one, we conclude that:

D
1
2 (n) f1(0) =


0 if n = 2m,m = 2,3,4 · · ·
0 if n = 2m−1,m = 2,4,6 · · ·
2

n+1
2 × i

n−1
2 if n = 2m−1,m = 3,5,7 · · ·

3)

D
1
2 (n) f2(x) =

∞

∑
j=βn

(2)2 j+1i j+1(1− (−1) j)x j− n−1
2

Γ( j− n−3
2 )

,

∀n≥ 2. Where

βn =

{
n
2 if n = 2m,m = 1,2,3,4 · · ·
n−1

2 if n = 2m−1,m = 2,3,4 · · ·

4) From note number three, we conclude that:

D
1
2 (n) f2(0) =


0 if n = 2m,m = 1,2,3,4 · · ·
0 if n = 2m−1,m = 3,5,7 · · ·
2n+1× i

n+1
2 if n = 2m−1,m = 2,4,6 · · ·

5)

D
1
2 (n)

(∫ 1

0
xu2(t,k)dt

)
|x=0 = 0, ∀n≥ 3.

6)

D
1
2 (n)

(∫ 1

0
(tu1(t,k)+

√
xu2(t,k))dt

)
|x=0 = 0,∀n≥ 2.

Using the initial conditions given in this example by sub-
stituting 0 in (7), we find that c0 = 0 and b0 = 1. Now we
write the k× 2 equations as mentioned in step 2 of section 3
as follows:
For m = 1, we have:

c1 = 0

b1−
1
4
(2cos(2)− sin(2))−

k

∑
j=0

c j
2+ j

2Γ( j
2 +3)

= 0.
(8)

For m = 2, we have:

c2 = 2

b2 +

√
π sin(4)

8
−

k

∑
j=0

√
πb j

2Γ( j
2 +2)

= 0.
(9)

For m = 3, we have:

c3 +
sin(4)

4
−

k

∑
j=0

b j

Γ( j
2 +2)

= 0

b3 = 0.

(10)

Continuing in this process and using the calculations men-
tioned from 1 to 6 above we conclude the following:

cn+1 =


0 if n = 2m,m = 2,3,4 · · ·
0 if n = 2m−1,m = 2,4,6 · · ·
2

n+1
2 × i

n−1
2 if n = 2m−1,m = 3,5,7 · · ·

bn+1 =


0 if n = 2m,m = 1,2,3,4 · · ·
0 if n = 2m−1,m = 3,5,7 · · ·
2n+1× i

n+1
2 if n = 2m−1,m = 2,4,6 · · ·

(11)

Now, we sum up the work done above. The unknown co-
efficients are b1,b2, and c3. We can easily determine the value
of these unknown coefficients, by solving the above equa-
tions for them, once we choose the level of approximation
(the value of k) we want. As k gets larger, the approximation
gets better.

If we choose k = 100. Then we find the values of b1,b2,
and c3 by solving (8,9,10,11) for them. We conclude that
c3 ≈ −1.19409× 10−38, b1 ≈ −2.56646× 10−39, and b2 ≈
1.05824×10−38.
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TABLE I. Comparison between the exact solution u1(x) and the ap-
proximate solution u1(x,100) together with the absolute errors at
some points in [0,1] for Example 1.

x u1(x) [Exact] u1(x,100) [Approximate]
∣∣u1(x)−u1(x,100)

∣∣
0.0 0.0 0.0 0.0
0.1 1.986693308×10−1 1.986693308×10−1 2.77556×10−17

0.2 3.894183423×10−1 3.894183423×10−1 5.55112×10−17

0.3 5.646424734×10−1 5.646424734×10−1 0.0
0.4 7.173560909×10−1 7.173560909×10−1 1.11022×10−16

0.5 8.414709848×10−1 8.414709848×10−1 0.0
0.6 9.32039086×10−1 9.32039086×10−1 1.11022×10−16

0.7 9.8544973×10−1 9.8544973×10−1 0.0
0.8 9.99573603×10−1 9.99573603×10−1 0.0
0.9 9.738476309×10−1 9.738476309×10−1 0.0
1.0 9.092974268×10−1 9.092974268×10−1 0.0

TABLE II. Comparison between the exact solution u2(x) and the
approximate solution u2(x,100) together with the absolute errors at
some points in [0,1] for Example 1.

x u2(x) [Exact] u2(x,100) [Approximate]
∣∣u2(x)−u2(x,100)

∣∣
0.0 1.0 1 0.0
0.1 9.21060994×10−1 9.21060994×10−1 1.11022×10−16

0.2 6.967067093×10−1 6.967067093×10−1 0.0
0.3 3.623577545×10−1 3.623577545×10−1 5.55112×10−17

0.4 −2.91995223×10−2 −2.91995223×10−2 4.51028×10−17

0.5 −4.161468365×10−1 −4.161468365×10−1 5.55112×10−17

0.6 −7.373937155×10−1 −7.373937155×10−1 2.22045×10−16

0.7 −9.422223407×10−1 −9.422223407×10−1 1.11022×10−16

0.8 −9.982947758×10−1 −9.982947758×10−1 7.77156×10−16

0.9 −8.967584163×10−1 −8.967584163×10−1 2.22045×10−16

1.0 −6.536436209×10−1 −6.536436209×10−1 5.55112×10−16

((a)) The graph of u1(x,100) with the exact
solution u1(x).

((b)) Graph of the Absolute error
|u1(x,100)−u1(x)|.

Fig. 1. Behavior of the approximate solution u1(x,100) together
with exact solution u1(x) and the Absolute error for Example 1.

((a)) The graph of u2(x,100) with the exact
solution u2(x).

((b)) Graph of the Absolute error
|u2(x,100)−u2(x)|.

Fig. 2. Behavior of the approximate solution u2(x,100) together
with exact solution u2(x) and the Absolute error for Example 1.

The previous tables show that the approximate solution
was in excellent agreement with the exact solution at some
selected points. Moreover, figures 1 and 2 demonstrate that
the accuracy is not limited to these points, but is consistent
over the interval [0,1].

Example 2: Consider the following system of linear frac-
tional Fredholm IDEs:

D
1
2 u1(x) = f1(x)+

∫ 1

0
xu2(t)dt

D
1
2 u2(x) = f2(x)+

∫ 1

0
(txu1(t)+ x2u3(t))dt

D
1
2 u2(x) = f2(x)+

∫ 1

0
(u1(t)+ xu3(t))dt,

(12)

subject to the initial condition u1(0) = 1, u2(0) = 0, and
u3(0) = 1, where

f1(x) =
√

xE1, 3
2
(x)− 4x

3
.

f2(x) =−x− 1
3
(e3−1)x2 +

3π +32x
3
2

6
√

π

f3(x) = 3
√

xE1, 3
2
(3x)+1− e− 1

3
(e3−1)x,

the exact solution is u1(x) = ex, u2(x) = 2x2 +
√

x, and
u3(x) = e3x.
We expand the solution to the system (12) as fractional power
series representation about x = 0 of the form

u1(x) =
∞

∑
j=0

c j
x

j
2

Γ(( j
2 )+1)

u2(x) =
∞

∑
j=0

b j
x

j
2

Γ(( j
2 )+1)

u3(x) =
∞

∑
j=0

p j
x

j
2

Γ(( j
2 )+1)

.

(13)
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Now, we apply the steps mentioned in section III by first re-
placing each ul(x) by the k− th truncated series ul(x,k) in
system (12) for all l = 1,2,3. Accordingly, we have

D
1
2 u1(x,k) = f1(x)+

∫ 1

0
xu2(t,k)dt

D
1
2 u2(x,k) = f2(x)+

∫ 1

0
(txu1(t,k)+ x2u3(t,k))dt

D
1
2 u2(x,k) = f2(x)+

∫ 1

0
(u1(t,k)+ xu3(t,k))dt.

Here, we write down some calculations needed for step 2:

1)

D
1
2 (n) f1(x) =

∞

∑
j=βn

x j− n−1
2

Γ( j− n−3
2 )

, ∀n≥ 3. Where

βn =

{
n
2 if n = 2m,m = 2,3,4 · · ·
n−1

2 if n = 2m−1,m = 2,3,4 · · ·

2) From note number one, we conclude that:

D
1
2 (n) f1(0) =

{
0 if n = 2m,m = 2,3,4 · · ·
1 if n = 2m−1,m = 2,3,4 · · ·

3)

D
1
2 (n) f2(0) = 0, ∀n≥ 5

4)

D
1
2 (n) f3(x) =

∞

∑
j=βn

(3) j+1x j− n−1
2

Γ( j− n−3
2 )

, ∀n≥ 3. Where

βn =

{
n
2 if n = 2m,m = 2,3,4 · · ·
n−1

2 if n = 2m−1,m = 2,3,4 · · ·

5) From note number three, we conclude that:

D
1
2 (n) f3(0) =

{
0 if n = 2m,m = 2,3,4 · · ·
3

n+1
2 if n = 2m−1,m = 2,3,4 · · ·

6)

D
1
2 (n)

(∫ 1

0
xu2(t,k)dt

)
|x=0 = 0, ∀n≥ 3.

7)

D
1
2 (n)

(∫ 1

0
(xtu1(t,k)+ x2u3(t,k))dt

)
|x=0 = 0, ∀n≥ 5.

8)

D
1
2 (n)

(∫ 1

0
(u1(t,k)+ xu3(t,k))dt

)
|x=0 = 0, ∀n≥ 3.

Using the initial conditions given in this example by substi-
tuting 0 in (13), we find that c0 = 1, b0 = 0, and p0 = 1. Now
we write the k×3 equations as mentioned in step 2 of section
III as follows:

For m = 1, we have:

c1 = 0, b1 =

√
π

2
,

p1−1+ e−
k

∑
j=0

c j

Γ( j
2 +2)

= 0.
(14)

For m = 2, we have:

c2 = 1, b2 = 0, p2 = 3. (15)

For m = 3, we have:

c3 +
4
3
−

k

∑
j=0

b j

Γ( j
2 +2)

= 0

b3 +1−
k

∑
j=0

(2+ j)c j

2Γ(3+ j
2 )

= 0

p3 +
1
3
(e3−1)−

k

∑
j=0

pm

Γ(2+ j
2 )

= 0.

(16)

For m = 4, we have:

c4 = 1, b4 = 4, p4 = 9. (17)

For m = 5, we have:

c5 = 0, p5 = 0,

b5 +
2
3
(e3−1)−

k

∑
j=0

2p j

Γ( j
2 +2)

= 0.
(18)

Continuing in this process and using the calculations men-
tioned from 1 to 8 above we conclude the following:

cn+1 =

{
0 if n = 2m,m = 2,3,4 · · ·
1 if n = 2m−1,m = 2,4,6 · · ·

bn = 0, ∀n≥ 6

pn+1 =

{
3

n+1
2 if n = 2m−1,m = 2,3,4 · · ·

0 if n = 2m,m = 2,3,4 · · ·

(19)

Now, we sum up the work done above. The unknown co-
efficients are p1, c3, b3, p3, and b5. We can easily determine
the value of these unknown coefficients, by solving the above
equations for them, once we chose the level of approximation
(the value of k) we want. As k gets larger, the approximation
gets better.

If we choose k = 100. Then we find the values of
p1,c3,b3, p3, and b5 by solving (14,15,16,17,18,19) for them.
We conclude that c3 =−7.91311×10−45, b3 =−1.70076×
10−45, b5 =−8.60904×10−44, p1 =−2.38106×10−45, and
p3 =−4.30452×10−44.
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((a)) The graph of u1(x,100) with the exact
solution u1(x).

((b)) Graph of the Absolute error
|u1(x,100)−u1(x)|.

Fig. 3. Behavior of the approximate solution u1(x,100) together
with exact solution u1(x) and the Absolute error for Example 2.

((a)) The graph of u2(x,100) with the exact
solution u2(x).

((b)) Graph of the Absolute error
|u2(x,100)−u2(x)|.

Fig. 4. Behavior of the approximate solution u2(x,100) together
with exact solution u2(x) and the Absolute error for Example 2.

((a)) The graph of u3(x,100) with the exact
solution u3(x).

((b)) Graph of the Absolute error
|u3(x,100)−u3(x)|.

Fig. 5. Behavior of the approximate solution u3(x,100) together
with exact solution u3(x) and the Absolute error for Example 2.

V RESIDUAL POWER SERIES METHOD(RPSM) TO
SOLVE FRACTIONAL FREDHOLM IDES

We divide this section into two parts. In the first part, we
review and correct the main ideas mentioned in paper [24]
which employed the residual power series method to solve a
class of fractional Fredholm IDEs, which is the single equa-
tion form of the system (1). In the second part, we compare
the presented scheme in section III with the RPSM and we
correct the examples in paper [24] which put the reader under
misapprehension that the RPSM works effectively on frac-
tional Fredholm IDEs which is not the case as we are going
to clarify that. Finally, we solve a fractional Fredholm IDE,
that has been investigated in a number of previous studies,
and compare our results with the previous studies ones.

V.A Review on applying the RPSM in the paper [24]
In the paper [24], Syam applied the RPSM to solve the

following class of fractional Fredholm IDEs:

Dα u(x) = f (x)+λ

∫ b

a
u(t)K(x, t)dt,

0 < α ≤ 1, x ∈ R, a≤ t ≤ b
(20)

subject to the initial condition u(a) = a0. where the frac-
tional derivative is in the Caputo sense, a and b are constants,
λ is a parameter, K(x, t) is arbitrary continuous kernel over
[a,b]2, u(x) is analytic unknown function to be calculated, and
f (x) is a smooth function. The residual power series method
[1] expands the solution to (1) as fractional power series about
x = a of the following form:

u(x) =
∞

∑
j=0

c j
(x−a) jα

Γ( jα +1)
(21)

Then, we approximate u(x) by the k-th truncated series
u(x,k) of the form:

u(x,k) =
k

∑
j=0

c j
(x−a) jα

Γ( jα +1)
(22)
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using the initial condition u(a) = a0 = c0, we rewrite u(x,k)
as:

u(x,k) = a0 +
k

∑
j=1

c j
(x−a) jα

Γ( jα +1)

Now, the residual functions to (20) can be defined as:

Resu(x) = Dα u(x)− f (x)−λ

∫ b

a
u(t)K(x, t)dt

and the the k-th residual function as:

Resu,k(x) = Dα u(x,k)− f (x)−λ

∫ b

a
u(t,k)K(x, t)dt

The fundamental properties of RPSM related to the residual
functions as in [31, 35, 36] are

1) limk→∞ Resu,k(x) = Resu(x) = 0, for each x > 0.

2) D(m−1)α
x Resu,m(0) = D(m−1)α

x Resu(0) = 0,

for m = 1,2,3, · · · .

To find the coefficients cm for m = 1,2,3, · · · ,k, we solve the
following algebraic fractional differential equations for m =
1,2,3, · · · ,k,

D(m−1)α Resu,m(a) = 0, (23)

where Dmα = Dα ·Dα · · ·Dα (m− times).
The author in paper [24] made some mistakes in obtaining
the analytic-numeric solution uk(x) for (20) using the RPSM.
Specifically equations (31,32) in his paper [24] are not cor-
rect. Thus, here we derive the right recursive formula for gen-
erating the coefficients cn resulted from applying the RPSM
as follows.
The process of finding the coefficient cm requires finding
the coefficients c1,c2, · · · ,cm−1 recursively. Thus, for any
n = 1,2,3, · · · ,k, we first find c1,c2, · · · ,cn−1 through solv-
ing algebraic fractional differential equation (23) for m =
1,2,3, · · · ,n−1. Then, we solve (23) for m = n as follows:

D(n−1)Resu,n(a) = Dnα u(a,n)−D(n−1)α f (a)

−λ

∫ b

a
u(t,n)D(n−1)α k(a, t)dt

= cn− cnλ

∫ b

a

(t−a)nα D(n−1)α k(a, t)
Γ(1+nα)

dt

−D(n−1)α f (a)

−λ

n−1

∑
j=0

c j

∫ b

a

(t−a) jα D(n−1)α k(a, t)
Γ(1+ jα)

= 0

Therefore, for any n = 1,2,3, · · · ,k, we have

cn =

D(n−1)α f (a)+λ
n−1
∑
j=0

c j
∫ b

a
(t−a) jα D(n−1)α k(a,t)

Γ(1+ jα) dt

1−λ
∫ b

a
(t−a)nα D(n−1)α k(a,t)

Γ(1+nα) dt
, (24)

accordingly, the k-th RPS approximation is

u(x,k) = a0 +
k

∑
n=1

(D(n−1)α f (a)

+λ

n−1

∑
j=0

c j

∫ b

a

(t−a) jα D(n−1)α k(a, t)
Γ(1+ jα)

dt
)
/

(
1−λ

∫ b

a

(t−a)nα D(n−1)α k(a, t)
Γ(1+nα)

dt
)∗ (x−a)nα

Γ(nα +1)
.

V.B comparison between the RPSM and the proposed
scheme

The numerical examples presented in paper [24], to show
the efficiency of the RPSM in solving (20), are not correct.
The right-hand side of the three fractional Fredholm IDEs
(33,38,45) does not equal the left-hand side of each one. In
this section, we correct two of the three examples written
in the paper [24] by fixing u(x), k(x, t), and changing f (x)
for each equation that satisfies it, in addition to solving and
comparing a problem addressed by many previous studies.

Example 3:[17]. Consider the following Fredholm FIDE:

D
1
2 u(x) =

32
3
√

π
x1.5 +

16√
π

x2.5−2x

+
∫ 1

0
xtu(t)dt,

(25)

Subject to the initial condition u(0) = 0, and exact solution
u(x) = 4x2 +5x3.
We expand the solution to the equation (25) as a fractional
power series representation about x = 0 in the form

u(x) =
∞

∑
n=0

cn
x

n
2

Γ( n
2 +1)

. (26)

Using the initial conditions given in this example by substitut-
ing 0 in (26), we find that c0 = 0. Then we apply the recursive
formula in (24) to find that: c1 = c2 = c5 = 0,

c3 =
−42
√

π

−8+21
√

π
, c4 = 8, c6 = 30,

since D(n−1)α
x f (0) = D(n−1)α

x k(0, t) = 0,

∀n≥ 7. Thus, cn = 0, ∀n≥ 7. Therefor, we find the residual
power series approximation

uR(x,k) =
56

8−21
√

π
x1.5 +4x2 +5x3, ∀k ≥ 6

Now, we solve this example using the proposed scheme in
section III by following the steps outlined there.
We first replace each u(x) by the k−th truncated series u(x,k)
in (25). Accordingly, we have:

D
1
2 u(x,k) = f (x)+

∫ 1

0
xtu(t,k)dt,

where f (x) = 32x1.5

3
√

π
+ 16√

π
x2.5−2x. Here, we write down some

calculations needed for step 2:8
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1)

D
1
2 (n) f (x) = 0, ∀n≥ 6

2)

D
1
2 (n)

∫ 1

0
xtu(t,k)dt = 0, ∀n≥ 3.

Now, as stated in step 2 of section III, we write the k× 1
equations as follows:
For m = 1, we have:

c1 = 0. (27)

For m = 2, we have:

c2 = 0. (28)

For m = 3, we have:

c3 +2−
k

∑
j=0

2c j

(4+ j)Γ( j
2 +1)

= 0 (29)

Continuing in this process and using the calculations men-
tioned from 1 to 2 above, we conclude the following:

cn = D
1
2 (n−1) f (0)+D

1
2 (n−1)

(∫ 1

0
xtu(t,k)dt

)
|x=0 = 0,

∀n≥ 7.
(30)

Now, we sum up the work done above. The unknown co-
efficient is c3 which can be easily determined by solving the
above equations for it. The value of k in this example does
not really matter, because cn = 0, ∀n≥ 7, as long as k ≥ 6.

If we choose k ≥ 6. Then we find the value of c3 by solv-
ing (27,28,29,30) for them. We conclude that c3 = 0.

((a)) The graph of uR(x,6) with the exact
solution u(x).

((b)) Graph of the Absolute error
|uR(x,6)−u(x)|.

Fig. 6. Behavior of the RPSM approximate solution uR(x,6) to-
gether with exact solution u(x) and the Absolute error for Example
3.

Using the proposed method in section III, we were able
to obtain the exact solution for this example. whereas, the
approximate solution in the RPSM is not suitable, according
to the Absolute error graph in figure 6, which is bounded be-
tween 0 and 1.92.
Example 4:[17]. Consider the following Fredholm FIDE:

D
1
4 u(x) = f (x)+

∫ 1

0
x2tu(t)dt, (31)

subject to the initial condition u(0) = 1, where

f (x) =
1
2

x
3
4 E1, 7

4

(
x
2

)
+2(
√

e−2)x2,

and exact solution u(x) = e
x
2 .

We expand the solution to the equation (31) as a fractional
power series representation about x = 0 in the form

u(x) =
∞

∑
n=0

cn
x

n
4

Γ( n
4 +1)

. (32)

Using the initial conditions given in this example by substitut-
ing 0 in (32), we find that c0 = 1. Then we apply the recursive
formula in (24) to find that:

c1 = c2 = c3 = c5 = c6 = c7 = 0,

c4 =
1
2
, c8 =

1
4
, c9 ≈−1.13828×10−2,

cn+1 =


1

2
n+1

4
if n = 2m−1,m = 6,8,10 · · ·

0 if n = 2m−1,m = 5,7,9 · · ·
0 if n = 2m,m = 5,6,7 · · ·

(33)

Therefore, we find the residual power series approximation
uR(x,100) = u(x,100).
Now, we solve this example using the proposed scheme in
section III by applying the steps mentioned there.
We first replace each u(x) by the k−th truncated series u(x,k)
in (31). Accordingly, we have

D
1
4 u(x,k) = f (x)+

∫ 1

0
x2tu(t)dt.

Here, we write down some calculations needed for step 2:

1)

D
1
4 (n)k(0, t) = 0, ∀n≥ 9

2)

D
1
4 (n)

1
2

x
3
4 E1, 7

4

(
x
2

)
=

∞

∑
j=βn

x j+ 3−n
4

2 j+1Γ( j+ 7−n
4 )

, where

βn =


n
4 if n = 2m,m = 2,4,6 · · ·
n−2

4 if n = 2m,m = 1,3,5 · · ·
n−3

4 if n = 2m−1,m = 2,4,6 · · ·
n−1

4 if n = 2m−1,m = 1,3,5 · · ·
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3) Using the previous note, we find that

D
1
4 (n) f (0) =


1

2
n+1

4
if n = 2m−1,m = 6,8,10..

0 if n = 2m−1,m = 5,7,9..
0 if n = 2m,m = 5,6,7 · · ·

Using the initial conditions given in this example by substi-
tuting 0 in (32), we find that c0 = 1. Now we write the k×1
equations as mentioned in step 2 of section III as follows:
For m = 1,2, · · · ,8, we find that:

c1 = c2 = c3 = c5 = c6 = c7 = 0, c4 =
1
2
, c8 =

1
4
,

c9 = 4(
√

e−2)+
k

∑
j=0

8c j

( j+8)Γ(1+ j
4 )
.

(34)

Continuing in this process and using the calculations men-
tioned from 1 to 3 above, we conclude the following for n≥ 9:

cn+1 =


1

2
n+1

4
if n = 2m−1,m = 6,8,10 · · ·

0 if n = 2m−1,m = 5,7,9 · · ·
0 if n = 2m,m = 5,6,7 · · ·

(35)

Now, we sum up the work done above. The unknown coef-
ficient is c9 which can be easily determined by solving the
above equations for it once we chose the level of approxi-
mation (the value of k) we want. As k gets larger, the ap-
proximation gets better. If we choose k = 100. Then we find
the value of c9 by solving (34,35) for it. We conclude that
c9 =−3.29558×10−36.

((a)) The graph of uR(x,100) with the exact
solution u(x).

((b)) Graph of the Absolute error
|uR(x,100)−u(x)|.

Fig. 7. Behavior of the RPSM approximate solution uR(x,100) to-
gether with exact solution u(x) and the Absolute error for Example
4.

((a)) The graph of u(x,100) with the exact
solution u(x).

((b)) Graph of the Absolute error
|u(x,100)−u(x)|.

Fig. 8. Behavior of the approximate solution u(x,100) using our
approach together with exact solution u(x) and the Absolute error
for Example 4.

The proposed method in section III yields a high-accuracy
approximate solution with Absolute error bounded between 0
and 7×10−16 ∀ x ∈ [0,1] as the graph shows in figure 8. The
RPSM, on the other hand, provides a good approximation,
with an Absolute error range of 0 to 4.5× 10−3 as shown
in figure 7. However, according to the figures, the proposed
scheme’s approximation is much better than the RPS approx-
imation in this example.
Example 5: Consider the following Fredholm FIDE:

D
1
2 u(x) = f (x)+

∫ 1

0
xtu(t)dt, (36)

subject to the initial condition u(0) = 0, where

f (x) =
8
3 x

3
2 −2x

1
2

√
π

+
x

12
,

and exact solution u(x) = x2− x.
We expand the solution to the equation (36) as a fractional
power series representation about x = 0 in the form

u(x) =
∞

∑
n=0

cn
x

n
2

Γ( n
2 +1)

. (37)

Using the initial conditions given in this example by substitut-
ing 0 in (37), we find that c0 = 0. Then we apply the recursive
formula in (24) to find that:

c1 = 0, c2 =−1, c3 =
−1

4(1− 8
21
√

π
)
, c4 = 2

cn = 0, ∀n≥ 5.

(38)

Therefore, we find the residual power series approximation

uR(x,4) =−x− x
3
2

3(
√

π− 8
21 )

+ x2.

Now, we solve this example using the proposed scheme in

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES 
DOI: 10.46300/9101.2021.15.13 Volume 15, 2021

E-ISSN: 1998-0140 100



section III by applying the steps mentioned there.
We first replace each u(x) by the k−th truncated series u(x,k)
in (36). Accordingly, we have

D
1
2 u(x,k) = f (x)+

∫ 1

0
xtu(t,k)dt,

Here, we write down some calculations needed for step 2:

1)

D
1
2 (n) f (0) = 0, ∀n≥ 4

2)

D
1
2 (n)

(∫ 1

0
xtu(t,k)dt

)
|x=0 = 0 = 0, ∀n≥ 3.

Now we write the k× 1 equations as mentioned in step 2 of
section III as follows:
For m = 1,2, · · · ,k, we find that:

c1 = 0, c2 =−1, c4 = 2, c3 =
1

12
+

k

∑
j=0

2c j

( j+4)Γ(1+ j
2 )
,

cn = D
1
2 (n−1) f (0)+D

1
2 (n−1)

(∫ 1

0
xtu(t,k)dt

)
|x=0 = 0, ∀n≥ 5.

(39)

Now, we sum up the work done above. The unknown coef-
ficient is c3 which can be easily determined by solving the
above equations for it. The value of k in this example does
not really matter, because cn = 0, ∀n≥ 5, as long as k ≥ 4.

If we choose k ≥ 4. Then we find the value of c3 by solv-
ing (39) for it. We conclude that c3 = 0 and thus u(x,4) =
x2− x which is the exact solution.

((a)) The graph of uR(x,4) with the exact
solution u(x).

((b)) Graph of the Absolute error
|uR(x,4)−u(x)|.

Fig. 9. Behavior of the RPSM approximate solution uR(x,4) to-
gether with exact solution u(x) and the Absolute error for Example
5.

VI DISCUSSION AND RESULTS

This section presents and discusses the most prominent
points that emerged from the comparison in the previous sub-
section V.B. Furthermore, we discuss the characteristics of the
proposed scheme in section III and justify why do we think
that it is superior to the RPSM.

1) From looking at figure 6 part a, we can see that as x
gets larger the residual approximation becomes inaccu-
rate and its graph gradually moves away from the graph
of the exact solution, and unaccepted approximation at
the large portion of the interval. This effect can be also
seen in part b of the same figure which shows that as
x gets larger the error increases more. which indicates
a big variation between the absolute error at different
points in the interval [0,1] as part b of that figure shows.
On the other hand, we obtained the exact solution using
the method in section III. Moreover, we will be able to
obtain the exact solution, using the approach in section
III, whenever the unknown function can be written as a
finite FPS (That includes polynomials) and its highest
degree is known so that we can choose the suitable level
of approximation k that enable us to find all the coeffi-
cients.
The same results can be addressed to Example 5, which
produced unaccepted approximate solution according to
Figure 9 using the RPSM and exact solution using the
technique in section III.

2) From looking at figure 7 and figure 8, we can see that
both methods were able to obtain a good approximation
with a better one using the approach in section III ac-
cording to the b parts of each figure. Moreover, the vari-
ation in the absolute error graph of figure 8 is relatively
small comparing to the RPSM ones in part b of figure
7. which guarantees more stability and accuracy at each
point in the interval [0,1] of the approximate solution.
This feature can also be seen in the figures and the tables
of the first and second examples.

3) Approximate solutions had been found to the problem in
example 5 using several techniques [37, 38, 39, 40, 41].
For instance, the problem was solved [37] using the
Least Squares Method (LSM) and Shifted Chebyshev
Polynomial by Mohammed and using the LSM and
shifted Chebyshev polynomials of the third kind by
Mahdy et al. [38]. Also, Mahdy et al. [39] utilized the
LSM and shifted Laguerre polynomials pseudo-spectral
method to solve that problem. They obtained approxi-
mate solutions to the problem in example 5 and graphed
it with the exact solution as the only indicator to see how
well it agreed with the exact solution, without presenting
the numerical results of the errors in the problem. That
is not accurate to conclude that they obtained an exact or
excellent agreement with the exact solution.
Khongnual et al. in [40] found an approximate
solution u(x) = −x + x2 − 1.57083 × 10−16(−x +
x2) using a method based on hybrid of block-
pulse functions and Taylor polynomials with ab-
solute error bounded between 0 and 4 × 10−17.
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Also, Oyedepo et al. found an approximate
solution u3(x) = 0.00010800322060.9998062943x +
0.999757556x2 + 0.000013067x3 and a table at some
grade points that presents the absolute error bounded
above by 3.5524×10−5 of standard LSM and 1.4367×
10−4 of perturbed LSM Absolute error.
If we overlook some of the negatives in presenting the
approximate solutions in some of the previous papers
and agree on their compatibility with the exact solu-
tion, however, we have obtained the exact solution in
our method. Which gives a clear indication of the impor-
tance of our method in dealing with the fractional Fred-
holm IDEs despite its simplicity, ease of use, and negli-
gible computational time, unlike the numerical methods
which require a major time comparing to the analytical
methods.

4) We point out that the comparison between the technique
in section III and the RPSM was done at the same level
of approximation (k).

5) The limitation of using the approach in section III is clar-
ified in the restrictions written on system 1 in section I
in addition to that each fi(x) can be written as a FPS of
powers nαi.

6) The proposed technique may be extended and tested to
solve other classes of linear or nonlinear IDEs.

VII CONCLUSION

In this article, a new technique has been utilized to find
an analytic-numeric solution for a system of fractional Fred-
holhm IDEs. Two examples were solved using the technique
illustrated in section III where the obtained solutions were
in excellent agreement with the exact solution, and better re-
sults can be obtained as k gets bigger. Moreover, the main
ideas in the paper [24] were reviewed. In particular, correct-
ing the derivation of the recursive formula, which generates
the unknown coefficients cn of the FPS, was done. Further-
more, the first two examples in the paper [24] were corrected
and solved using the RPSM and the proposed technique in
section III. The Absolute error figures for these two exam-
ples show high accuracy and stability in the obtained solution
using the proposed method. The comparison in the figures
shows a clear superiority of our method over the RPSM for
solving this class of equations as explained in detail in the
previous section. Also, a fractional Fredholm IDE, which was
investigated in a number of previous studies, has been solved
in subsection VI and compared the obtained solution in our
approach with the previous studies ones where the obtained
solution in our approach was the exact one and was the best
solution between all the mentioned studies.
The reason for comparing our method with RPSM is due to
the similarity of the two schemes. That is, the two schemes
follow the same steps outlined in section III except that the
RPSM replace each m by k in step 2 and replace the system
5 by the system of residual functions. But still applying the
D(k−1)αi |x=0 for all i = 1,2, · · · ,n on both sides of the equa-
tions of the system (5) result the same as applying it on the
system of the residual functions ∀ k = 1,2, · · · ,k.
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