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    Abstract—This paper involves problems of estimating 

parameters of sinusoids from white noisy data by using Gibbs 

sampling (GS) in a Bayesian framework. Modifications of its 

algorithm is tested on data generated from synthetic signals 

and its  performance  is compared with  conventional 

estimators such as Maximum Likelihood(ML) and Discrete 

Fourier Transform (DFT) under a variety of signal to noise 

ratio (SNR) and different length of data sampling (N), 

regarding to Cramér-Rao lower bound (CRLB). All simulation 

results show its effectiveness in frequency and amplitude 

estimation of sinusoids. 

           Keywords—Bayesian inference; parameter estimation; 

Gibbs sampling; Cramér-Rao lower bound; power spectral 

density.   

I. INTRODUCTION 

The sinusoidal frequency model embedded in noise is  
extensively important because of its wide applicability in 
many areas of science and engineering such as, modeling 
and manipulation of time-series from speech, audio to radar, 
seismology, nuclear magnetic resonance, communication 
problems and underwater acoustics[1].  

  We therefore address here a problem of estimating 
parameters of noisy sinusoids  within a Bayesian inferential 
framework that provides a rigorous mathematical foundation 
for making inferences about them and a basis for 
quantifying uncertainties in their estimates. Under an 
assumption that a number of sinusoids is known a priori, 
several algorithms have already been applied to spectral 
analysis and parameter estimation problems, such as least-
square fitting [2], maksimum likelihood(ML)[3], discrete 
Fourier transform(DFT) [4,5], and a periodogram [6]. After 
Jayness’ work [7], researchers in different fields of science 
have given much attention to the relationship between 
Bayesian inference and parameter estimation. Bretthorst and 
the others [8-16] have done excellent works in this area for 
the last sixteen years.  

In this paper, we consider analysis of Gibbs 
sampling[11, 12] for recovering sinusoids from noisy data 
and compare its performance with classical estimators, 
regarding to Cramér-Rao lower bound(CRLB), that is a 
limit on the best possible performance achievable by an 

unbiased estimator given a dataset[17]. For this purpose, a 
series of simulation studies with a variation in levels of 
noise and length of data sampling for a single sinusoid is set 
up. 

  
II. HARMONIC SIGNAL MODEL 

     In many experiments, a discrete data set 

1 2{ , ,..., }T
Nd d d=D  denoted as an output of a physical 

system that we want to be modeled is sampled from an 
unknown function ( )y t  at discrete times 1{ ,...., }T

Nt t : 

( )

( ; ) , ( 1,..., ),
i i

i i

d y t

f t e i Nθ

=

= + =
                 (1)                                                                                 

where θ  is a vector containing parameters that characterize 
behavior of physical system ( ; )f t θ  and that are usually 

unknown. The term ie  is assumed to be drawn from a 

known random process. The choice of the model 
function ( , )f t θ  depends on the specific application, but we 

will consider here a superposition of k  sinusoids: 

1

( , ) cos( ) sin( )
j j

k

c j s j

j

f t a t a tω ω
=

= +∑θ .          (2)                                          

where { } 2,
j j

k
c sa a ∈ℝ and ( )0,jω π∈ are  amplitudes and 

angular frequencies, respectively.  Hence, Equation (1) can 
be written in the matrix-vector form:  

= +D Ga e ,                                (3)                                        

where D  is ( 1)N ×  matrix of data points and e  is ( 1)N ×  

matrix of independent identically distributed Gaussian noise 
samples. G  is ( 2 )N k×  matrix whose each column is a 

basis function evaluated at each point of time series. The 
linear coefficient  a  is a (2 1)k × matrix whose components 

are arranged in order of coefficients of cosine and sine
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terms{ }
1 1
, ,..., ,

k kc s c sa a a a .  Then, the goal of data analysis is 

usually to infer 1{( , , )}
j j

k
c s j ja a ω ==θ

 
from D .  

II. BAYESIAN DATA ANALYSIS 
By using Bayes’ rule [18,19,25], the context of the 

current problem can be expressed as follows: 

( ) ( | , )
( | , ) ,

( )

p p I
p I

p

θ D θ
θ D

D
=               (4)                                     

where ( )p θ  is the prior probability density function (PDF) 

of the parameter vector θ that encapsulates our state of 
knowledge of the parameters before observing D ; 

( )| ,p ID θ  is called the likelihood function when 

considered as a function of θ , but it is known as the 
sampling distribution when considered as a function of 

D . ( )p D  is denoted as an evidence or the marginal 

likelihood and ( ),p Iθ D  is the posterior PDF of the 

parameters θ  of interest, which summarizes the last 
information about it:  

( ) ( ) ( ), | , .p I p p I∝θ D θ D θ          (5)                               

To proceed further in the specification of the posterior PDF, 
we now need to assign functional forms for ( )p θ  

and ( | , )p ID θ . After computing ( ),p Iθ D , the problem 

turns out to search a vector θ  that satisfies 

( ){ }ˆ arg max ,p I
∈

=
θ Θ

θ θ D ,           (6) 

where Θ is a parameter space.  

IV. GIBBS SAMPLING 

Let us first suppose that 2σ  is known and there is no any 

specific information about { }, ,c sω a a  prior to the 

observation D , then Equation (5) turns out to be the 
following form:  

2 2( , , , , ) ( , , , , )c s c sp I p Iσ σ∝ω a a D D ω a a , (7)                                     

where ( ), ,c sp constant∝ω a a as an uninformative uniform 

prior PDF for{ }, ,c sω a a . Secondly, in some cases the 

variance 2σ  is unknown so that the joint posterior PDF of 

{ }, ,c sω a a  and 2σ  becomes 

( ) ( ) ( )2 2 2, , , , , , ,c s c sp I p pσ σ σ∝ωa a D Dω a a     (8)                             

Thus, by using Jeffreys prior 2
2

1
( )p σ

σ
=   and integrating 

this joint posterior PDF in (8) with respect to 2σ , it turns 
into the Student’s t distribution [11, 12].  Therefore, GS can 
give us an alternative way to find the marginal PDF for each 
parameter in Bayesian computation by dealing with it at 
each sampling step.   

Suppose that 
jca is the only unknown parameter among the 

others{ }, ,
jc s−

a a ω where { }1 1 1
,..., , ,...,

j j j kc c c c ca a a a
− − +

=a . 

Under the assumption of known distribution of the noise, the 
conditional PDF of 

jca  given that , , ,
jc s−

a a ω D and 2σ  have 

already been known is a univariate Gaussian distribution: 
 

( )2 2 1ˆ( , , , , ) , ( )
j j j c cj j

T
c c s c a ap a aσ σ

−

−∝ Νa a ω D X X ,   (9)                            

where 

              

              

(1) 1cos( )ˆ
ˆ ,

cos( )

c j

j c j

c j

j
a

c aT
a

j N

t

a

t

ω

ω

 
 

= =  
 
 

D X
X

X
⋮         (10)                        

and  

{ }(1) (1) (1) (1)
1 2

ˆ , ,..., Nd d d=D                (11)                   

whose components are defined by 

1

cos( ) sin( ), ( 1,2,3..., )
l l

k

i c l i lj s l i
l

d a t a t i Nω δ ω
=

− + =∑ . The 

1

0lj

l j

l j
δ

≠
= 

=
 helps to eliminate the contribution, which 

comes from the cosine term of the j th sinusoid. When 2σ is 

unknown, Equation (9) becomes a univariate Student’s t 
distribution: 

( )2 1ˆ( , , , , ) , ( ) , 1
j j j c c cj j j

T
c c s c a a ap a a s Nσ

−

−∝ Τ −a a ω D X X ,     (12) 

with  

 

(1) (1)1 ˆ ˆˆ ˆ( ) ( )
1c j c j cj j j

T
a c a c as a a

N
= − −

−
D X D X     (13) 

When { }, ,
jc s−

a a ω is given, in a similar way, the 

conditional PDF of 
jsa given that , , ,

jc s−
a a ω D  and 2σ  

have already been known is   

( )2 2 1ˆ( , , , , ) , ( )
j j j s sj j

T
s c s s a ap a aσ σ

−

−∝ Νa a ω D X X  ,    (14)              

where  
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(2) 1sin( )ˆ
ˆ ,

sin( )

s j

j s j

s sj j

j
a

s aT
a a

j N

t

a

t

ω

ω

 
 

= =  
 
 

D X
X

X X
⋮             (15)                                                 

and  

{ }(2) (2) (2) (2)
1 2

ˆ , ,..., Nd d d=D ,                (16)                             

whose components are defined by 

(2)

1

ˆ cos( ) sin( ) , ( 1,..., )
l l

k

i i c l i s l i lj
l

d d a t a t i Nω ω δ
=

= − + =∑ .                           

When 2σ  is unknown, Equation (14) turns out to be 

( )2 1ˆ( , , , , ) , ( ) , 1
j j j s s sj j j

T
s s c s a a ap a a s Nσ

−

−∝ Τ −a a ω D X X  (17)                                                         

 with  

(2) (2)1 ˆ ˆˆ ˆ( ) ( )
1s j s j sj j j

T
a s a s as a a

N
= − −

−
D X D X .        (18) 

To be able to use the theory of GS for the nonlinear 
parameter ω , we need to introduce some reasonable 
approximations to linearize the nonlinear model 
function ( , )if t ω  with respect to ω  under the condition of 

the known amplitudes{ },c sa a . This can be done by 

expanding it around ω̂  in a region where the posterior PDF 
is concentrated: 

1

ˆ ˆ ˆ( , ) cos( ) sin( )

ˆ ˆ ˆ( sin( ) cos( ))( ),

l l

j j

k

i c l i s l i

l

c i j i s i j i j j

f t a t a t

a t t a t t

ω ω

ω ω ω ω
=

≅ +

+ − + −

∑ω

        (19)

 

 

where 2

ˆ 1

ˆ arg min ( ( , ))
N

j i i
i

d f t
ω

ω
∈ =

= −∑
ω

ω and
 

{ }1 1 1
ˆ ˆ,..., , , ,...,j j j kω ω ω ω ω− +=ω . Thus, the conditional PDF 

of jω  given that , , ,j c s−ω a a D  and 2σ  have already been 

known is a univariate Gaussian distribution: 

( )2 2 1ˆ( , , , , ) , ( )
j j

T
j j c s jp ω ωω σ ω σ −

− ∝ Νω a a D X X , (20)                            

where 

1 1 1 1
ˆ ˆsin( ) sin( )

ˆ ˆsin( ) sin( )

j j

j

j j

c j s j

c N j N s N j N

a t t a t t

a t t a t t
ω

ω ω

ω ω

− + 
 

=  
 − + 

X ⋮ .    (21)                                           

If 2σ  is unknown, Equation (20) becomes is a univariate 
Student’s t distribution 

 ( )2 2 1ˆ( , , , , ) , ( ) , 1
j j j

T
j j c s jp s Nω ω ωω σ ω −

− ∝ Τ −ω a a D X X .    (22)               

with  

                             ( ) ( )2 1 ˆ ˆ
1j

T

s
Nω = − −

−
D D D D ,           (23) 

where 1 2
ˆ ˆ ˆˆ { ( ), ( ),..., ( )}Nd t d t d t=D whose components are 

defined by 
1

ˆ ˆ ˆ( ) cos( ) sin( )
l l

k

i c l i s l i
l

d t a t a tω ω
=

= +∑ .                            

A systematic form of GS algorithm [11,12,20] contains 

choosing initially arbitrary starting values ( ) ( ) ( ){ }0 0 0, ,c sa a ω  

and drawing successively random samples from the full 
conditional distributions:  

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

1 1 0 0 0 0(1)

1 1 1 0 0 0(1)

1 1 1 1 1 0 0
1 1 1

( { ,...., , ,...., }, , , )

( ,{ ,...., , ,...., }, , )

( , ,{ ,...., , ,...., }, ), ( 1,..., )

j j j j k j

j j j j j k

j j

c c c c c c s

s s c s s s s

j j c s j j k

a p a a a a a

a p a a a a a

p j kω ω ω ω ω ω

− +

− +

− + =

a ω D

a ω D

a a D

∼

∼

∼

  (24)                     

At each iteration of the Gibbs sampler, we cycle through the 
set of conditional distributions and draw one sample from 
each. When a sample is drawn from one conditional 
distribution, the succeeding distributions are updated with 
the new value of that sample. This yields the following 
drawings at the ' thK   iteration  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1

1 1

1 1 1

1 1 1 1
, 1

1 1 1 1 1
1

( { ,...., , ,...., }, , , )

( ,{ ,...., , ,...., }, , )

( , ,{ ,...., , ,...., }, )

j j j j k j

j j j j j k

j j j j k

K K K K K K K
c c c c c c s j

K K K K K K K

s s c s s s s j

K K K K K K K
j j c s

a p a a a a a

a p a a a a a

pω ω ω ω ω ω

− +

+

− +

+ + +

+ + + +
−

+ + + + +

a ω D

a ω D

a a D

∼

∼

∼

(25) 

We obtain ( ) ( ) ( ){ }1 1 1, ,K K K

c sa a ω
+ + + . For a large enough K , 

( )1K

ca + , ( )1K
sa +  and ( )1Kω +    can be considered as random 

variables drawn from their posterior PDF  distributions.  
Therefore we are able to generate samples of these posterior 
PDFs for each parameter. Using these samples, all of the 
estimates about the their  corresponding can then be found, 
such as the most probable values for them, the mean value, 
the marginal variances with respect to the most probable 
value etc. When 2σ  is unknown, we do the same thing as 
above except that the random numbers are drawn from the 
Student’s t distribution.    

V. CRAMÉR-RAO LOWER BOUND 

Estimators are often compared to the best possible 
performance given by CRLB [21-23] that provides a 
theoretical lower limit for their variances:  

( ) ( ) ( )1−≥ =ˆVar CRLBθ θ θ J θ ,                 (26)                                                            
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where ( )J θ  is called Fisher information matrix[21] and 

defined as an expectation of the second derivatives of the 
signal function with respect to θ as follows:  

( ) ( ) ( )2

2 2
1

1

σ =

 ∂ ∂ ∂ 
= =   

∂ ∂∂    
∑

ln ( , )
T

N
i i

i

P I f f
E

D θ θ θ
J θ

θ θθ
.  (27)          

For largeN , ( )J θ  is a diagonal matrix.  

 
VI. COMPUTER SIMULATIONS 

To demonstrate the proposed approach, let us consider a 
multiple harmonic frequency signal:  

  cos(0.1 t 1) 2cos(0.15 2)

5cos(0.3 3) 2cos(0.31 4) 3cos( +5) 
i i i

i i i i

d t

t t t e

= + + +

+ + + + + +
(28) 

Here i  runs in a symmetric time interval T−  and 

T ( )2 1T N+ =  and ie ~ ( )0,1Ν . We obtained noisy data 

samples ( 512N = ), shown in Fig.1 and carried out 
Bayesian analysis.  

All the methods, introduced in the paper were coded in 
Mathematica and run on a workstation in two cases where 
the standard deviation of noise is known or not.  We need to 
give initial values for the parameters to start the iteration. 
Instead of choosing them randomly from a uniform 
distribution [9], we first performed a Fast Fourier 
Transformation (FFT) of the data and then chose the 
locations of the peaks in the power spectrum density, which 
is a squared magnitude of FFT, as an initial estimate for the 
frequencies. Once, initial frequencies were obtained, we 
carried on calculating the coefficients ca  and sa  as initial 

values for the amplitudes, respectively. 

 In the case where the deviation of noise is unknown, the 
output of the computer simulation is illustrated in Table 1. 
The estimated parameter values are quoted as (value) ± 
(standard deviation) and used to regenerate the given signal 
model, shown in Figure 1. It can be seen that five 
frequencies and their corresponding amplitudes are 
recovered very well.  

   The usual way the result from a spectral analysis is 
displayed is in the form of a power spectral density. In 
Fourier transform spectroscopy this is typically taken as the 
squared magnitude of the discrete Fourier Transform (DFT) 
of the data. Therefore, a comparison of Bayesian and 
Fourier spectral densities shown in Figure 1 indicate 
separation of frequencies. DFT spectral density shows only 
four peaks among five frequencies but, Bayesian spectral 
density indicates five frequencies with high accuracies. 
Moreover, we initially assumed that the values of the 
random noise in data were drawn from the Gaussian density. 
Figure 2 shows the exact and estimated PDF of the random 

noise in data.  It is seen that the estimated (dotted) PDF is 
closer to the true (solid) PDF and the histogram of the 
errors, which is known as nonparametric estimator is also 
much closer to its true probability density. These results 
demonstrate how powerful Bayesian method is to separate 
noise from data. 
     Fig.3 shows only CPU time of different simulations for a 
variety of number of data samples and parameters and 
indicates that an increase in these numbers causes larger 
consumption of CPU time. 
      In order to evaluate the performance of GS, computer 
simulations have been performed and compared with the 
classical estimators such as ML and DFT, as well as CRLBs 
of ω  andα , expressed in decibel (dB), which are a function 
of N and SNR: 

                
( ) ( )
( ) ( ) ( )

3

2

10 /12

10 10 1/ (2 )

CRLB SNR Log N

CRLB Log N Log

ω

α σ

+

+

≃

≃
,      

(29)                                                                  

where
1 1

2 2

c s
a aα = + . We fixed  α  to 2  and properly 

scaled ( )ie t  to obtain different SNRs, defined 

as
2

2
SNR

2

α
σ

= . Unless stated otherwise, the angular 

frequency is chosen as 0.3ω π=  and SNR=20dB . We 
generated 100N =  data samples from a single real tone 
frequency signal model in a variety of noise levels. After 50 
independent trials under the same noise level, MSEs of the 
estimated frequency and amplitude were obtained for each 
method. Their logarithmic values were plotted with respect 
to SNR ratios, which vary from -10 dB to 30 dB and shown 
in Fig.4 and 6. They indicate the MSE performances for   
different estimators. The error curves in these figures were 
separated into two regions. The first one, on the left, shows 
that the estimator variances increase stronger than the CRLB 
and contain smaller threshold effects in Fig.6 than that of 
Fig.4. The second one, on the out of left indicates that the 
errors follow the CRLB and the curves close to it.   In Fig.4, 
it can be seen that GS, ML and DFT estimators have 
threshold about -5 dB, -4 dB and -2 dB of the SNR, 
respectively and follow nicely with the CRLB after -1 dB 
As expected, with increasing SNR, MSE values approaches 
to the CRLB but, with decreasing SNR, they get worse from 
it. This implies the higher the SNR, the lower CRLB. 
Moreover, all three estimators have same characters at high 
SNRs.       
    The above argument treats only with the case in which a 
size of data samples 100N =  is used for the estimation. 

Therefore, one may ask how to vary accuracy of the 
estimation with N .  To answer it, we set up an experiment 

in which the algorithms of three methods were run for 50 
simulated data with different lengths. In this case Figure 5 
and 7  show  the MSE performances of three estimators with 
different data length which varies from 25N =  to 300N =  
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at 0.3ω π=  under SNR=20 dB. They indicate that the 

larger data samples give the lower MSEs of frequencies than 
that of amplitudes. This implies that all three estimators are 
more effective for the frequency estimation, rather than 
amplitude estimation. On the other hand, an efficiency 
parameter [24], defined as     

100i
i

i

CRLB

MSE
η = × ,                           (30) 

indicates the closeness of estimators to the CRLB.   Table 2 
and 3 contain the MSEs and the efficiency values η  for the 

frequency and amplitude estimation obtained at the last 
states where SNR 30dB= and 300N = . It can be seen that 
the efficiency value for the GS at SNR 30dB=  and for 

300N =  is much closer to the CRLB than that of the other 
methods in both frequency and amplitude estimation. Thus, 
it is said that GS is more effective than the others for higher 
SNR and larger data sample. 

CONCLUSIONS 

     In this work we have presented a numerical procedure, 
namely GS, based on Bayesian inference for estimating 
parameters of multiple sinusoids embedded in noise. Overall 
results show that Bayesian approach can not only give us the 
best estimates for the parameters but, it can also tell us 
uncertainties associated with their estimated values.              
Experiments with synthetic signals show that GS performs 
frequency estimations with a high-resolution, according to 
the CRLB.  On the other hand, it requires a maximization of 
full conditional marginal probability density function of 
frequencies that can be difficult if SNR is low. Comparing 
with classical estimators such as ML and DFT, all three 
methods can give similar performance in higher SNRs and 
larger N. However ML and DFT require larger CPU times 
than GS estimator. 
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TABLES AND FIGURES 
  Table 1. Computer simulations for five harmonic frequency signal 
model            

  

 
 
Fig.3  Different simulation  times with respect to number of parameters and  
data samples 
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             Fig. 1.  Spectral analysis of multiple frequency model 
 

 

 

 Fig.2  Comparison of exact and estimate probability densities of   
      noise in  data 
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Fig. 4. Mean square frequency error versus SNR at 0.3ω π=  
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Fig. 5 Mean square frequency error versus N at 0.3ω π=  
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            Fig.6. Mean square amplitude error versus SNR  at 2=a  
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    Fig.7. Mean square amplitude error versus N  at  2=a  

 

 

 

Table 3. Performance comparison of Bayesian methods for amplitude 

estimation in single frequency signal model 
 

           

            30SNR dB=  
          

            300N =  
 

Methods     

 

 MSE(dB) 

 

Efficiency 

 

 MSE(dB) 

 

Efficiency 

GS -79.175 100.041 -83.484 100.045 
ML     -79.079 100.162 -82.850 100.81 

DFT -79.103 100.133 -83.401 100.144 

CRLB -79.208 100 -83.521 100 

                
         30SNR dB=  

  

            300N =  
 

Methods 

 

  MSE(dB) 

 

Efficiency 

   

MSE(dB) 

 

Efficiency 

GS -46.9800 100.021 -41.7415 100.046 
ML -45.6409 102.955 -40.8652 102.192 

DFT -46.0871 101.958 -40.8450 100.381 

CRLB -46.9897 100 -41.7609 100 
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