
Time in Cyber-Physical Systems

Specifications, Modeling and Measurements

Miroslav Sveda

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

e-mail: sveda@ fit.vutbr.cz

Abstract—This paper addresses the role, interpretation and the

deployment of the notion “time” in distributed cyber-physical

systems. It discusses various possibilities how to approach such

modeling and selects the fitting one, which enables to utilize the

related specification language ASL in the domain applications.

Keywords-cyber-physical system; time; temporal partial

order; operational semantics; measurement.

I. INTRODUCTION

The integration of physical systems and processes with

networked computing has led to the emergence of a new

generation of engineered systems: Cyber-Physical Systems

(CPS) [9]. Such systems use computations and

communication deeply embedded in and interacting with

physical processes to add new capabilities to physical

systems. These cyber-physical systems range from small

embedded applications, such as pace makers to large-scale

huge systems, e.g. the international power-grid. Because

computer-augmented devices are everywhere, they are a

huge source of economic leverage. Embedded computers

allow designers to add capabilities to physical systems that

they could not feasibly add in any other way. By merging

computing and communication with physical processes and

mediating the way how to interact with the physical world

[14], cyber-physical systems bring many benefits: they make

systems safer and more efficient; they reduce the cost of

building and operating these systems; and they allow

individual machines to work together to form complex

systems that provide new capabilities. By merging

computing and communication with physical processes and

mediating the way we interact with the physical world,

cyber-physical systems bring many benefits: they make

systems safer and more efficient, they reduce the cost of

building and operating these systems, and they allow

individual machines to work together to form complex

systems that provide new capabilities.
This paper considers the orchestration of computing with

physical processes. It argues that to realize its full potential,
the core abstractions of computing need to be rethought to

incorporate essential properties of the physical systems, most
particularly the passage of time [13], [4].

The kernel of the paper consists of an explanation of the
notion “time” in sections II. and III., and of presenting the
Asynchronous Specification Language (ASL) including its
operational semantics for temporal partial order in sections
IV. and V. Next section discusses two case studies, the first
one demonstrates using ASL for behavioral specification of
lift cabin position measurement, and the second one time
measurement with clock synchronization in a distributed
system based on Internet.

II. TIME

Norbert Wiener in the Chapter 1, Newtonian and
Bergsonian Time, of his book [22] distinguishes between
reversible, Newtonian time of classical mechanics and
irreversible time of cybernetics with definite past-future
order fitting also such disciplines as meteorology,
thermodynamics, statistical mechanics, and biology.
Physicists perfect this notion into thermodynamic,
psychological, and cosmological time arrows that point in
the same direction [5]. Contemporary Cybernetics deals -- in
frame of its branches such as Artificial Intelligence, Systems
Theory, or Software Engineering -- with various concepts
and refinements of directed time. This paper reviews those
concepts and brings examples of their applications.

Basic meanings of the term "time" can be introduced in
the following complementary couples: physical/logical,
absolute/relative, global/local. To be more precise, we
consider an event domain, E, and a time domain, T, such that
instead of viewing the precedence relation "to causally
affect" on events we use members of a time domain to mark
the members of the event domain to introduce a temporal
order [12]. Especially, the physical time means that passing
of time is the primary cause for anything to happen; actually,
it denotes counting cycles of a physical, strictly periodic
process [1]. The logical time means that time passes only
because something happens -- it respects order of events only
[8]. The absolute time means that a reference is established
in relation to a unique event for a given system; evidently, it
relates to some origin of date/time, see e.g. [10]. The relative
time means that a reference is established in relation to an

Received: July 20, 2019. Revised: October 5, 2021. Accepted: October 27, 2021. Published: November 23, 2021.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0140 177

arbitrary selected event in the given system; clearly, it relates
to time intervals. The global time means that the time is
considered to be valid for the whole (distributed) system
while the local time means that the time is valid for a part of
the (distributed) system.

Various disciplines utilize several notions of time. To be
more complete, we should specify time models by more
attributes than precedence relation. Models of time can be
classed, see e.g. [8], according to individuals (points,
intervals), order (partial order, branching towards future,
linear), boundedness (unbounded, beginning, ending), local
structure (discrete, dense, continuous) and global structure
(connectedness, homogeneity). Whereas synchronous
models of computation regard all concurrent activities
happen in a lock-step, asynchronous models are not
restricted in this sense. They can be treated as interleaving
models of computation, which sequentialize simultaneous
actions non-deterministically, or as true concurrency models
of computation, which impose only a partial ordering
between actions. By the way, various models were designed
aiming to describe also some relativistic phenomena, see e.g.
[3].

An implicit time domain of a system process respects
internal events (changes in the state) of that process. An
explicit time domain, on the other hand, consists of events
that are not produced in the process, but which bear an
observable temporal relation of the local process [6]. Both
types of timing can be considered as either internal to the
local process or external to the remote processes (e.g.
environmental processes). Evidently, implicit timing suffices
only for a synchronous system timed by a common global
clock or for a system driven by only one sequential process
while real-time asynchronous distributed systems require
explicit time domains. According to Holt [7], a model of
real-time systems is natural if its internal time corresponds
well with the external, physical time of the environment.
However, different timing mechanisms rule various parallel
environmental processes. In addition, distributed applications
consider a distinctive, locally measured time for each node.
A useful time model, therefore, must conform with external
events as well as with internal timing, and it should provide
unambiguous semantics for a specification and
implementation of real-time distributed systems.

III. SPACE AND TIME DOMAINS

This subsection selects and narrows some ideas from [8],
and [24] focusing on local time. The treatment of event-time
relationships resembles to the approach presented in [15];
however, time domain is shifted from total order to partial
order in this case. Hence, we consider an event domain, E,
and a time domain, T, such that instead of viewing the
precedence relation "to causally affect" on events we use
members of a time domain to mark the members of the event
domain to introduce a temporal order.

For each of the domains E and T there are two
possibilities how to choose domain elements: points and
intervals. To preserve simplicity, we select points for both
domains. Consequently, events can be interpreted as changes
of system states and members of time domain as time

instants. In this case, timing of events is mapping E→T.
Actions with non-zero duration can be described by their
starting and ending points that require individual timings.
Point structures of domains E and T simplify introduction of
partial order in general. Local time concept requires to
employ a partial order consistent with locality either of
events or of timing. There are at least two natural
possibilities how to introduce a timed partial order on events:
(a) to define locality as an equivalence relation on events Loc
= (E,~) and then, for each class of that equivalence to specify
a separate linear time, i.e. to use multiple time lines (see
similar conception in [2]); or (b) to connect locality

explicitly with temporal partial order (Loc × T,~) (see e.g.
[23]). From the application viewpoint, both possibilities
correspond to the same relation: for case (a), temporal partial
order is induced on T by manifold mapping; for case (b),
partially ordered time generates a decomposition of event
domain into classes so that events in each class are mutually
comparable by linear temporal order. Nevertheless, we prefer
the case (a).

Koymans [8] distinguishes three local temporal
structures: discrete, dense, and continuous. The same can be
applied to space or even space-time coordinates, see e.g. [3].
We prefer scalable discrete time structure and fix discrete
finite space structure in form of finite set of locations.

An implicit time domain of a system process respects
internal events (changes in the state) of that process. An
explicit time domain, on the other hand, consists of events
that are not produced in the process, but which bear an
observable temporal relation of the local process [6]. Both
types of timing can be considered as either internal to the
local process or external to the remote processes (e.g.
environmental processes). Evidently, implicit timing suffices
only for a synchronous system timed by a common global
clock or for a system driven by only one sequential process
while real-time (asynchronous) distributed systems require
explicit time domains. In accordance with Holt [7], a model
of real-time systems is natural if its internal time corresponds
well with the external, physical time of the environment.
However, different timing mechanisms rule various parallel
environmental processes. In addition, distributed applications
consider a distinctive, locally measured time for each node.
A useful time model, therefore, must conform with external
events as well as with internal timing, and it should provide
unambiguous semantics for a specification and
implementation of real-time distributed systems.

IV. OPERATIONAL SEMANTICS FOR TEMPORAL PARTIAL

ORDER

The particular behavior of a of a non-Zeno, discrete real-
time system can be described by an infinite sequence of
pairs of states si and corresponding times ti [2]:

 P: (s0, t0) → (s1, t1) → (s2, t2) → ...

Different models of time interpret the time component, t,

of the system behavior, P=(s, t), in different ways. While
interval models of time associate each state with its duration

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0140 178

over time, clock models stamp observations of the node
state with time instants. To characterize asynchronous
systems, whose node state changes can be arbitrarily close
in time, analog-clock models record the exact time of every
state. By contrast, digital-clock models measure the time of
a state only with finite precision, approximating a dense
time domain by a sequence of discrete values--the time
between successive states may remain the same or may
increase by an arbitrary amount. For a distributed system, its
state space can be decomposed into the state spaces of its
nodes 1, 2, ..., n:

 1

P: (
1
s0,

1
t0) → (

1
s1,

1
t1) → (

1
s2,

1
t2) → ...

 2
P: (

2
s0,

2
t0) → (

2
s1,

2
t1) → (

2
s2,

2
t2) → ...

 ...
 j

P: (
j
s0,

j
t0) → (

j
s1,

j
t1) → (

j
s2,

j
t2) → ...

 ...
 n

P: (
n
s0,

n
t0) → (

n
s1,

n
t1) → (

n
s2,

n
t2) → ...

In this case, additional attributes of time clarify the

nature of the time component,
j
t, of the node j's behavior,

j
P=(

j
s,
j
t): real-time distributed architecture enrich models of

time by considering the number of time lines. A single time
line suffices for global clocks while multiple time lines
support independent local clocks. Accordingly, the values

j
ti

and
k
ti are either the i-th readings of global time, t, in nodes j

and k or the i-th readings of local times
j
t and

k
t in nodes j and

k. To respect the implementation viewpoint, distributed
applications consider for each node a distinctive local time,
i.e. the time of a local physical clock that suits to measuring
a duration of local process actions.

Local time represents a concept of physical timing; still,
its semantics can be derived from logical time and a
physical generator of periodic events. In his pioneer work
[11], Lamport defines logical time in a distributed system as
a partial ordering of events in the system. Similarly for the
purpose of this paper, time ordering of events in a system S

is specified by a minimal partial-order relation →
("precedes") on events, which satisfies the following four
conditions:

 • if A and B are events in the same process and A is
executed before B, then A → B (the term "process"

means sequential ordering of internal events);

 • if A is the transmission of information by one process
and B is the receipt of that information in S, then A →

B (communication proceeds in non-zero time);

 • if A → B and B → C in S, then A → C (transitivity);

and

 • for any event A of S, A → A does not hold (A →/ A)
(antireflexivity).

The totalization of the reflexive closure of the relation

→ ("precedes") is the relation ⇒ ("precedes or is
concurrent"):

 • if A →/ B in S, then B ⇒ A.

An eventcount, E, is an object that counts the number of

events of a specific type that have occurred during the
execution of the system. Each such event occurrence invokes
the operation ADVANCE(E): E := E + 1. The external

operation AWAIT(E,σ) suspends the calling process until the
value of the eventcount, E, is at least σ--the call AWAIT(E,σ)
usually resets the current value of E, so the relative timing is
possible. The external and internal operations interplay in the
following way:

 • if WE is the execution of the AWAIT operation in the
form AWAIT(E,σ), then there are at least σ members of
the set {AE AE is the execution of ADVANCE(E)
and AE ⇒ WE}.

An eventcount can monitor the external events of a class

that represents local physical timing of a distinctive part of
the system environment. Also, periodic events implemented
by an internal timer/counter circuit can advance an
eventcount that tracks local-time clock events. So, the local-
time model relates internal and accessible external clocking
while internal local times in different nodes of a distributed
system flow independently, without regular synchronization.

V. ASYNCHRONOUS SPECIFICATION LANGUAGE

The designed process-oriented procedural specification
language includes primitives related to synchronization,
timing, and communication. Hence, the specification of a
system logical structure employs sequential processes,
communicating asynchronously by message passing. A
process represents the sequence of statements executed at a
node of a distributed system. True concurrency with maximal
parallelism is supposed: each process drives its own node; if a
process is suspended, its node remains idle. Moreover, timing
mechanisms of the processes are expressed with the help of
local timers, using properly chosen time scales.

From the syntax viewpoint, the language for process

specifications can be surveyed as an extended Pascal. The

most important added primitives relate to process

specification, timing, communication, and control structure:
 In this case, additional attributes of time clarify the

nature of the time component,
j
t, of the node j's behavior,

j
P=(

j
s,

j
t): real-time distributed architecture enrich models of

time by considering the number of time lines. A single time
line suffices for global clocks while multiple time lines
support independent local clocks. Accordingly, the values

j
ti

and
k
ti are either the i-th readings of global time, t, in nodes j

and k or the i-th readings of local times
j
t and

k
t in nodes j and

k. To respect the implementation viewpoint, distributed

process name(is:list_of_s_inputs; os:list_of_s_outputs;

 ic:list_of_m_inputs; oc:list_of_m_outputs): ...

 ... endprocess;

wait(_,timeout); wait(event,_); wait(event,timeout,test);

send(message,destination);

loop ... [... when <cond> action ... exit]
*
 ... endloop;

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0140 179

applications consider for each node a distinctive local time,
i.e. the time of a local physical clock that suits to measuring
a duration of local process actions. In this case, additional
attributes of time clarify the nature of the time component,
j
t, of the node j's behavior,

j
P=(

j
s,

j
t): real-time distributed

architecture enrich models of time by considering the
number of time lines. A single time line suffices for global
clocks while multiple time lines support independent local
clocks. Accordingly, the values

j
ti and

k
ti are either the i-th

readings of global time, t, in nodes j and k or the i-th readings
of local times

j
t and

k
t in nodes j and k. To respect the

implementation viewpoint, distributed applications consider
for each node a distinctive local time, i.e. the time of a local
physical clock that suits to measuring a duration of local
process actions.

Each of asynchronous processes can be equipped by its
individually timed local clock, can receive messages through
input buffer, and can send messages to other, directly or
indirectly addressable processes. Process header contains in
parentheses lists labelled by is, os, ic, and oc that act as the
interface with the process' environment. The language
distinguishes between signal inputs or outputs, which denote
un-buffered events carrying either value or signalling their
occurrence, and message inputs or outputs as typed
asynchronous channels between couples of processes. Those
signals and messages declare the inter-process
synchronization and communication, which operations are
driven by the statements wait(event,_),
wait(event,timeout,test), and send(message,destination).

The primitive wait(_,timeout) suspends a process for the
interval defined by the value timeout. Operational semantics
can be obtained through the eventcount abstraction introduced
above: in this case, an event is every tick of the local clock, so
the related operation is AWAIT(local_ticks,timeout_value).
For the primitive wait(event,_), which suspends a process
until the specified event (external signal or message) appears,
the model operation is AWAIT(event_type,1). The semantics
of the combined statement wait(event,timeout,test) requires
two eventcounts: the first anticipates the specified event and
the second, with a lower priority, monitors the local clock.
The reason of process activation can be checked through the
value of the logical variable test: when the value is true, the
event occurred within the interval timeout. In this case,
additional attributes of time clarify the nature of the time
component,

j
t, of the node j's behavior,

j
P=(

j
s,

j
t): real-time

distributed architecture enrich models of time by
considering the number of time lines. A single time line
suffices for global clocks while multiple time lines support
independent local clocks. Accordingly, the values

j
ti and

k
ti

are either the i-th readings of global time, t, in nodes j and k
or the i-th readings of local times

j
t and

k
t in nodes j and k. To

respect the implementation viewpoint, distributed
applications consider for each node a distinctive local time,
i.e. the time of a local physical clock that suits to measuring
a duration of local process actions.

The primitive send(message,destination) implements
asynchronous communication with non-blocking semantics.
To respect different local clocks, the information transfer is
controlled by a special clocking that is common for the source

and the destination; however, the nodes communicate
asynchronously by message passing through an input buffer
at the destination. The input of a message induces the event
for the related operation AWAIT(message,1). If any
synchronization is required, it must be described explicitly
using confirmation and the wait statements. In this case,
additional attributes of time clarify the nature of the time
component,

j
t, of the node j's behavior,

j
P=(

j
s,

j
t): real-time

distributed architecture enrich models of time by
considering the number of time lines. A single time line
suffices for global clocks while multiple time lines support
independent local clocks. Accordingly, the values

j
ti and

k
ti

are either the i-th readings of global time, t, in nodes j and k
or the i-th readings of local times

j
t and

k
t in nodes j and k. To

respect the implementation viewpoint, distributed
applications consider for each node a distinctive local time,
i.e. the time of a local physical clock that suits to measuring
a duration of local process actions.

The control structure primitives loop ... endloop delimit
an indefinite cycle, which is exited upon a true result of
testing the condition following the primitive when.
Consequently, the statements, which occur between the
primitives action and exit and which follow the endloop
primitive, are executed. This combined statement enables to
extend the language with additional control structures by
simple macro-like text replacements, e.g.: In this case,
additional attributes of time clarify the nature of the time
component,

j
t, of the node j's behavior,

j
P=(

j
s,

j
t): real-time

distributed architecture enrich models of time by
considering the number of time lines. A single time line
suffices for global clocks while multiple time lines support
independent local clocks. Accordingly, the values

j
ti and

k
ti

are either the i-th readings of global time, t, in nodes j and k
or the i-th readings of local times

j
t and

k
t in nodes j and k. To

respect the implementation viewpoint, distributed
applications consider for each node a distinctive local time,
i.e. the time of a local physical clock that suits to measuring
a duration of local process actions.

Actually, the control structure timeloop(timeinterval) ...

endloop specifies an isochronous loop, which is periodically

initiated whenever the timeinterval expires and which can be

exited like the indefinite cycle. The operation AWAIT(local-

_ticks, timeinterval_value) defines the exact operational

semantics of timing these initiations.

VI. CASE STUDIES

A. Lift cabin Position Measurement

The first case study consists in the logical structure
description of the two-level structure, where higher level

if <cond> then <s1> else <s2> fi;

~loop when <cond> action <s1> exit <s2> when true exit

endloop;

timeloop(timeinterval) ... endloop;

~loop ... wait(_,interval) endloop;

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0140 180

behaves as an event-driven component and lower level
behaves as time-evolving interconnected component. The
behaviour of the higher level component can be described by
the following state sequence: In this case, additional
attributes of time clarify the nature of the time component,
j
t, of the node j's behavior,

j
P=(

j
s,

j
t): real-time distributed

architecture enrich models of time by considering the
number of time lines. A single time line suffices for global
clocks while multiple time lines support independent local
clocks. Accordingly, the values

j
ti and

k
ti are either the i-th

readings of global time, t, in nodes j and k or the i-th readings
of local times

j
t and

k
t in nodes j and k. To respect the

implementation viewpoint, distributed applications consider
for each node a distinctive local time, i.e. the time of a local
physical clock that suits to measuring a duration of local
process actions.

initialization → position_indication → fault_indication

The behaviour of the lower level can be described by

three communicating, individually timed automata. The first
automaton models the impulse detector, timed by its local
clock that defines a sampling interval. This interval must
conform not only to the maximal speed and the distance of
position marks but also to a pattern of samples for impulse
recognition, depending on the electro-magnetic interference
characteristics of the environment. Let the fitting pattern,
skipping possible transient fault states, is represented by
'1100'. Then adequate behaviour for an impulse recognition
can be described by the following sampling sequence with
regular periodic timing: In this case, additional attributes of
time clarify the nature of the time component,

j
t, of the node

j's behavior,
j
P=(

j
s,

j
t): real-time distributed architecture

enrich models of time by considering the number of time
lines. A single time line suffices for global clocks while
multiple time lines support independent local clocks.
Accordingly, the values

j
ti and

k
ti are either the i-th readings

of global time, t, in nodes j and k or the i-th readings of local
times

j
t and

k
t in nodes j and k. To respect the

implementation viewpoint, distributed applications consider
for each node a distinctive local time, i.e. the time of a local
physical clock that suits to measuring a duration of local
process actions.

q1
inp=1 → q2

inp=0 → ... q2
inp=1 → q3

inp=1 → ... q3
inp=0 → q4

inp=1 → q4
inp=0/IMP
 → q1

The information about detected impulse is sent to the

counting automaton, which can also access the indication of
the cabin movement direction through the variable D. The
counting automaton communicates the position value to the
display automaton. The display refreshment subsides to a
timing mechanism dependent on the physiologic constants of
human sight. In this case, additional attributes of time clarify
the nature of the time component,

j
t, of the node j's behavior,

j
P=(

j
s,
j
t): real-time distributed architecture enrich models of

time by considering the number of time lines. A single time
line suffices for global clocks while multiple time lines
support independent local clocks. Accordingly, the values

j
ti

and
k
ti are either the i-th readings of global time, t, in nodes j

and k or the i-th readings of local times
j
t and

k
t in nodes j and

k. To respect the implementation viewpoint, distributed
applications consider for each node a distinctive local time,
i.e. the time of a local physical clock that suits to measuring
a duration of local process actions.

For the sake of fault-detection requirements, the impulse
generator and transfer path are doubled. Consequently, a
second, identical impulse detector automaton appears
necessary. The subsequent automaton is the reversible
counter, which starts with the value (h+l)/2 and increments or
decrements the value according to the "impulse detected"
outputs from the first or second recognition automaton.
Overflow or underflow of the preset values of h or l indicate
an error. In this case, additional attributes of time clarify the
nature of the time component,

j
t, of the node j's behavior,

j
P=(

j
s,
j
t): real-time distributed architecture enrich models of

time by considering the number of time lines. A single time
line suffices for global clocks while multiple time lines
support independent local clocks. Accordingly, the values

j
ti

and
k
ti are either the i-th readings of global time, t, in nodes j

and k or the i-th readings of local times
j
t and

k
t in nodes j and

k. To respect the implementation viewpoint, distributed
applications consider for each node a distinctive local time,
i.e. the time of a local physical clock that suits to measuring
a duration of local process actions.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0140 181

B. communication time measurement compatible with

IEEE 1588

Cyber-physical systems can be highly connected and
integrated in multiple ways, even across business operations
and domain boundaries. Achieving effectively networked,
cooperating, and human-interactive systems will be an
integral factor in the adoption of such systems in the future.

Some of the key questions to be considered include what is
needed to enable streamlined and predictable development,
deployment, and evolution of networked and integrated
cyber-physical systems, particularly as systems become
interconnected with legacy systems and across industry
boundaries.

The case study addresses important topics associated
with the measurement of data communication delays in
computer networks. The contribution consists in developing
one-way delay measurement method and related support for
Internet environment including monitoring and comparison
of computer clocks, pulse-per-second signal processing, time
server with guaranteed accuracy concepts and high accuracy
time-stamping implementation.

Important characteristics of communication networks for
respecting Real-time requirements deal namely with Transit
Delay and Delay Variation with respect to actual Network
Load. This case study considers packet switching networks,
which in contrast to TDMA, FDMA or similar techniques,
guarantee no limited transfer time. In fact, actual Transit
Delay and Delay Variation depends on actual Network Load:
 • Packet Transit Delay (PDT)- means packet delay due to

data signal holdup, due to data processing by input or

output in active devices, and during the period when

packet is stored in buffers.

 • Packet Delay Variation (PDV)- means the difference of

individual packet’s PDTs.

 • Network Load (NL) – is directly influencing both PDT

a PDV. Measuring NL and related values of PDT and

PDV enables us to define functional dependencies for a

particular network.
Evidently, this measurement, see Fig. 1, considers

relative physical timing that facilitates clock synchronization
using NTP and PTP protocols with precision better then 1
ms.

VII. CONCLUSIONS

This paper stems from the author’s research projects with
partial results published in [16] ... [21]. The current paper
addresses the role, interpretation and the deployment of the
notion “time” in distributed cyber-physical systems. It
discusses various possibilities how to approach such
modeling and selects the fitting one, which enables to utilize
the related specification language ASL in the domain
applications specifications, modeling and measurements.

ACKNOWLEDGMENT

This project has been carried out with a financial support
from the Czech Republic state budget by the IT4Innovations
Centre of Excellence, EU, CZ 1.05/1.1.00/02.0070CEZ and
by the MMT project no. MSM0021630528: Security-
Oriented Research in Information Technology, by the
Technological Agency of the Czech Republic through the
grant no. TA01010632: SCADA system for control and
monitoring RT processes, by the Ministry of Industry and
Trade of the Czech Republic through the grant no. FR-
TI1/037: Automatic Attack Processing and by the Brno
University of Technology, Faculty of Information

process detection (is: I0,I1,D; os: error; oc: counter):

type counter = process;

type message = record null end;

type direction = (up, down, idle);

var D: direction;

var impulse: message;

var error: boolean;

var q0, q1, count, l, h, sample_interval: integer;

var in0, in1, I0, I1: binary;

loop q0 := 1; q1 := 1; count := (h+l)/2; wait(D=idle,_);

write(false,error);

 wait(D<>idle,_);

 timeloop(sample_interval)

 read(in0,I0); read(in1,I1);

 if q0 <= 2 then if in0 = 1 then q0 := q0 + 1 fi

 else if in0 = 0 then q0 := q0 + 1 fi fi;

 if q1 <= 2 then if in1 = 1 then q1 := q1 + 1 fi

 else if in1 = 0 then q1 := q1 + 1 fi fi;

 if q0 >= 4 then q0 := 1; count := count - 1;

 send(impulse,counter) fi;

 if q1 >= 4 then q1 := 1; count := count + 1 fi;

 when l > count or count > h action write(true,error) exit;

 endloop;

endloop

endprocess;

process counter (is: D,level; os: error; ic: impulse; oc: display):

type display = process;

type message = record null end;

type direction = (up, down, idle);

var D: direction;

var impulse: message;

var level, lvl, maxlvl, minlvl: integer;

var error: boolean;

loop wait(D=idle,_); read(lvl,level); write(false,error);

 wait(D<>idle);

 loop wait(impulse,_); if D = up then lvl := lvl + 1

 else if D = down then lvl := lvl - 1;

 when (lvl > maxlvl) or (lvl < minlvl)

 action write(true,error) exit;

 send(lvl,display);

 when D = idle action exit;

 endloop;

endloop;

endprocess;

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0140 182

Technology through the specific research grant no. FIT-S-
11-1: Advanced Secured, Reliable and Adaptive Information
Technologies.

The author acknowledges contributions to the presented
work by his colleagues Petr Matousek, Jaroslav Rab,
Vladimir Vesely, Matej Gregr, Libor Polcak from the
Faculty of Information Technology, and Radimir Vrba from
the Faculty of Electrical Engineering and Communication.

REFERENCES

[1] D.W. Allan and N. Ashby and C. Hodge. Time in the Space Age.

IEEE Spectrum vol.35, no.3, 2012, pp.42-51.

[2] R. Alur and T.A. Henzinger: Logics and Models of Real Time: A
Survey. In: J.W. de Bakker et al. (eds.), Real-Time: Theory in
Practice. Springer-Verlag, LNCS 600, 1992, pp.74-106.

[3] J.C.M. Baeten and J.A. Bergstra: Real space process algebra. In
J.C.M. Baeten and J.F. Groote (eds), Concur 91, Springer-Verlag,
LNCS 527, 1991, pp.96-110.

[4] J.C. Eidson, E.A. Lee, S.Matic, S.A. Seshia, J.Zou: A Time-Centric
Model for Cyber-Physical Applications, MoDELS 2010, ACES-MB
Workshop Proceedings, Oslo, Norway, October 4, 2006, pp.21-35.

[5] S.W. Hawking: A Brief History of Time--From Big Bang to Black
Holes. Bantam Books, New York, 1988.

[6] A. Goswami and M. Joseph: Defining Time Domains for
Computation. In: H.S.M. Zedan (ed.), Real-Time Systems, Theory
and Applications. North-Holland, Amsterdam, 1990, pp.49-61.

[7] C.M. Holt: Intervals as Time Lattices. In: H. S. M. Zedan (ed.), Real-
Time Systems, Theory and Applications. North-Holland, Amsterdam,
1990, pp.63-79.

[8] R. Koymans. (Real) time: a philosophical perspective. In J.W. de
Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg (eds), Real-
Time: Theory in Practice, pp.353-370. Springer-Verlag, 1992. LNCS
600.

[9] B.H. Krogh, E. Lee, I. Lee, A. Mok, R. Rajkumar, L.R. Sha, A.S.
Vincentelli, K. Shin, J. Stankovic, J. Sztipanovits, W. Wolf, W. Zhao:
Cyber-Physical Systems, Executive Summary, CPS Steering Group,
Washington D.C., March 6, 2008.
[http://www.nsf.gov/pubs/2008/nsf08611/nsf08611.htm]

[10] M. Kudlek: Calendars and Chronologies. In C. Freksa, M. Jantzen,
and R. Valk (eds), Foundations of Computer Science. Springer-
Verlag, 1997. LNCS 1337.

[11] L. Lamport: Time, Clocks, and the Ordering of Events in a
Distributed System, Communications of the ACM, vol.21, July 1978,
pp.558-565.

[12] L. Lamport: Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems, vol.16, no.3, 1994, pp.872-
923.

[13] E.A. Lee: Computing Needs Time, Communications of the ACM,
vol.52, no.5, May 2009, pp.70-79.

[14] E.A. Lee: CPS Foundations, DAC’10, Anaheim, California, USA,
ACM, June 2010, pp.737-742.

[15] S.E. Pomares Hernandez, J.R. Perez Cruz, M. Raynal, From the
Happened-Before Relation to the Causal Ordered Set Abstraction, J.
Parallel Distributed Computing, vol. 72, Feb. 2012, pp.791–795,
doi:10.1016/j.jpdc.2012.02.015.

[16] O. Rysavy, M. Sveda, R. Vrba: A Framework for Cyber-Physical
Systems Design - A Concept Study, Proceedings the Sixth
International Conference on Systems ICONS 2012, Saint Gilles,
Reunion Island, FR, IARIA, 2012, pp.79-82.

[17] M. Sveda: Local Time for Formal Specification of Networked
Embedded System, In: WSEAS Transactions on Computers, Vol. 2,
No. 1, 2003, Athens, GR, pp.4-9.

[18] M. Sveda: Rapid Prototyping of Networked Embedded Systems, In:
Proceedings of the IEEE International Conference and Workshop on
the Engineering of Computer-Based Systems 2003, Huntsville, AL,
US, IEEE CS, 2003, pp.125-132,

[19] M. Sveda: A Design Framework for Internet-Based Embedded
Distributed Systems, In: Proceedings of the International IEEE
Conference and Workshop ECBS'2004, Los Alamitos, California,
US, IEEE CS, 2004, pp.113-120

[20] M. Sveda, R. Vrba: An Embedded Application Regarded as Cyber-
Physical System, Proceedings of the Fifth International Conference
on Systems ICONS 2010, Les Menuires, FR, IEEE CS, 2010, pp.170-
174.

[21] M. Sveda, R. Vrba: A Cyber-Physical System Design Approach,
Proceedings of the Sixth International Conference on Systems -
ICONS 2011, St. Maarten, AN, IARIA, 2011, pp.12-18.

[22] N. Wiener. Cybernetics or Control and Communication in the Animal
and the Machine. Wiley, New York, 1948.

[23] S. Ying et al.: Foundations for Innovation in Cyber-Physical Systems,
Workshop Report, Energetics Incorporated, Columbia, Maryland, US,
January 2013.

[24] J. Zwiers: Layering and Action Refinement for Timed systems. In
J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg
(eds.), Real-Time: Theory in Practice Springer-Verlag, LNCS 600,
1992, pp.687-723.

Figure 1. Example of a “one way delay” configuration for communication time measurement compatible with IEEE 1588.

A B
network

measurement

device

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0140 183

