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Abstract—This paper addresses the role, interpretation and the 

deployment of the notion “time” in distributed cyber-physical 

systems. It discusses various possibilities how to approach such 

modeling and selects the fitting one, which enables to utilize the 

related specification language ASL in the domain applications. 
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I.  INTRODUCTION 

The integration of physical systems and processes with 

networked computing has led to the emergence of a new 

generation of engineered systems: Cyber-Physical Systems 

(CPS) [9]. Such systems use computations and 

communication deeply embedded in and interacting with 

physical processes to add new capabilities to physical 

systems. These cyber-physical systems range from small 

embedded applications, such as pace makers to large-scale 

huge systems, e.g. the international power-grid. Because 

computer-augmented devices are everywhere, they are a 

huge source of economic leverage. Embedded computers 

allow designers to add capabilities to physical systems that 

they could not feasibly add in any other way. By merging 

computing and communication with physical processes and 

mediating the way how to interact with the physical world 

[14], cyber-physical systems bring many benefits: they make 

systems safer and more efficient; they reduce the cost of 

building and operating these systems; and they allow 

individual machines to work together to form complex 

systems that provide new capabilities. By merging 

computing and communication with physical processes and 

mediating the way we interact with the physical world, 

cyber-physical systems bring many benefits: they make 

systems safer and more efficient, they reduce the cost of 

building and operating these systems, and they allow 

individual machines to work together to form complex 

systems that provide new capabilities. 
This paper considers the orchestration of computing with 

physical processes. It argues that to realize its full potential, 
the core abstractions of computing need to be rethought to 

incorporate essential properties of the physical systems, most 
particularly the passage of time [13], [4].  

The kernel of the paper consists of  an explanation of the 
notion “time” in sections II. and III., and of presenting the 
Asynchronous Specification Language (ASL) including its 
operational semantics for temporal partial order in sections 
IV. and V. Next section discusses two case studies, the first 
one demonstrates using ASL for behavioral specification of 
lift cabin position measurement, and the second one time 
measurement with clock synchronization in a distributed 
system based on Internet.  

II. TIME 

Norbert Wiener in the Chapter 1, Newtonian and 
Bergsonian Time, of his book [22] distinguishes between 
reversible, Newtonian time of classical mechanics and 
irreversible time of cybernetics with definite past-future 
order fitting also such disciplines as meteorology, 
thermodynamics, statistical mechanics, and biology. 
Physicists perfect this notion into thermodynamic, 
psychological, and cosmological time arrows that point in 
the same direction [5]. Contemporary Cybernetics deals -- in 
frame of its branches such as Artificial Intelligence, Systems 
Theory, or Software Engineering -- with various concepts 
and refinements of directed time. This paper reviews those 
concepts and brings examples of their applications. 

Basic meanings of the term "time" can be introduced in 
the following complementary couples: physical/logical, 
absolute/relative, global/local. To be more precise, we 
consider an event domain, E, and a time domain, T, such that 
instead of viewing the precedence relation "to causally 
affect" on events we use members of a time domain to mark 
the members of the event domain to introduce a temporal 
order [12]. Especially, the physical time means that passing 
of time is the primary cause for anything to happen; actually, 
it denotes counting cycles of a physical, strictly periodic 
process [1]. The logical time means that time passes only 
because something happens -- it respects order of events only 
[8]. The absolute time means that a reference is established 
in relation to a unique event for a given system; evidently, it 
relates to some origin of date/time, see e.g. [10]. The relative 
time means that a reference is established in relation to an 
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arbitrary selected event in the given system; clearly, it relates 
to time intervals. The global time means that the time is 
considered to be valid for the whole (distributed) system 
while the local time means that the time is valid for a part of 
the (distributed) system. 

Various disciplines utilize several notions of time. To be 
more complete, we should specify time models by more 
attributes than precedence relation. Models of time can be 
classed, see e.g. [8], according to individuals (points, 
intervals), order (partial order, branching towards future, 
linear), boundedness (unbounded, beginning, ending), local 
structure (discrete, dense, continuous) and global structure 
(connectedness, homogeneity). Whereas synchronous 
models of computation regard all concurrent activities 
happen in a lock-step, asynchronous models are not 
restricted in this sense. They can be treated as interleaving 
models of computation, which sequentialize simultaneous 
actions non-deterministically, or as true concurrency models 
of computation, which impose only a partial ordering 
between actions. By the way, various models were designed 
aiming to describe also some relativistic phenomena, see e.g. 
[3]. 

An implicit time domain of a system process respects 
internal events (changes in the state) of that process. An 
explicit time domain, on the other hand, consists of events 
that are not produced in the process, but which bear an 
observable temporal relation of the local process [6]. Both 
types of timing can be considered as either internal to the 
local process or external to the remote processes (e.g. 
environmental processes). Evidently, implicit timing suffices 
only for a synchronous system timed by a common global 
clock or for a system driven by only one sequential process 
while real-time asynchronous distributed systems require 
explicit time domains. According to Holt [7], a model of 
real-time systems is natural if its internal time corresponds 
well with the external, physical time of the environment. 
However, different timing mechanisms rule various parallel 
environmental processes. In addition, distributed applications 
consider a distinctive, locally measured time for each node. 
A useful time model, therefore, must conform with external 
events as well as with internal timing, and it should provide 
unambiguous semantics for a specification and 
implementation of real-time distributed systems. 

III. SPACE AND TIME DOMAINS 

This subsection selects and narrows some ideas from [8], 
and [24] focusing on local time. The treatment of event-time 
relationships resembles to the approach presented in [15]; 
however, time domain is shifted from total order to partial 
order in this case. Hence, we consider an event domain, E, 
and a time domain, T, such that instead of viewing the 
precedence relation "to causally affect" on events we use 
members of a time domain to mark the members of the event 
domain to introduce a temporal order. 

For each of the domains E and T there are two 
possibilities how to choose domain elements: points and 
intervals. To preserve simplicity, we select points for both 
domains. Consequently, events can be interpreted as changes 
of system states and members of time domain as time 

instants. In this case, timing of events is mapping E→T. 
Actions with non-zero duration can be described by their 
starting and ending points that require individual timings. 
Point structures of domains E and T simplify introduction of 
partial order in general. Local time concept requires to 
employ a partial order consistent with locality either of 
events or of timing. There are at least two natural 
possibilities how to introduce a timed partial order on events: 
(a) to define locality as an equivalence relation on events Loc 
= (E,~) and then, for each class of that equivalence to specify 
a separate linear time, i.e. to use multiple time lines (see 
similar conception in [2]); or (b) to connect locality 

explicitly with temporal partial order (Loc × T,~)  (see e.g. 
[23]). From the application viewpoint, both possibilities 
correspond to the same relation: for case (a), temporal partial 
order is induced on T by manifold mapping; for case (b), 
partially ordered time generates a decomposition of event 
domain into classes so that events in each class are mutually 
comparable by linear temporal order. Nevertheless, we prefer 
the case (a). 

Koymans [8] distinguishes three local temporal 
structures: discrete, dense, and continuous. The same can be 
applied to space or even space-time coordinates, see e.g. [3]. 
We prefer scalable discrete time structure and fix discrete 
finite space structure in form of finite set of locations. 

An implicit time domain of a system process respects 
internal events (changes in the state) of that process. An 
explicit time domain, on the other hand, consists of events 
that are not produced in the process, but which bear an 
observable temporal relation of the local process [6]. Both 
types of timing can be considered as either internal to the 
local process or external to the remote processes (e.g. 
environmental processes). Evidently, implicit timing suffices 
only for a synchronous system timed by a common global 
clock or for a system driven by only one sequential process 
while real-time (asynchronous) distributed systems require 
explicit time domains. In accordance with Holt [7], a model 
of real-time systems is natural if its internal time corresponds 
well with the external, physical time of the environment. 
However, different timing mechanisms rule various parallel 
environmental processes. In addition, distributed applications 
consider a distinctive, locally measured time for each node. 
A useful time model, therefore, must conform with external 
events as well as with internal timing, and it should provide 
unambiguous semantics for a specification and 
implementation of real-time distributed systems. 

IV. OPERATIONAL SEMANTICS FOR TEMPORAL PARTIAL 

ORDER 

The particular behavior of a of a non-Zeno, discrete real-
time system can be described by an infinite sequence of 
pairs of states si and corresponding times ti [2]: 

 

 P: (s0, t0) → (s1, t1) → (s2, t2) → ... 
 
Different models of time interpret the time component, t, 

of the system behavior, P=(s, t), in different ways. While 
interval models of time associate each state with its duration 
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over time, clock models stamp observations of the node 
state with time instants. To characterize asynchronous 
systems, whose node state changes can be arbitrarily close 
in time, analog-clock models record the exact time of every 
state. By contrast, digital-clock models measure the time of 
a state only with finite precision, approximating a dense 
time domain by a sequence of discrete values--the time 
between successive states may remain the same or may 
increase by an arbitrary amount. For a distributed system, its 
state space can be decomposed into the state spaces of its 
nodes 1, 2, ..., n: 

 
 1

P: (
1
s0, 

1
t0) → (

1
s1, 

1
t1) → (

1
s2, 

1
t2) → ... 

 2
P: (

2
s0, 

2
t0) → (

2
s1, 

2
t1) → (

2
s2, 

2
t2) → ... 

   ... 
 j

P: (
j
s0, 

j
t0) → (

j
s1, 

j
t1) → (

j
s2, 

j
t2) → ... 

   ... 
 n

P: (
n
s0, 

n
t0) → (

n
s1, 

n
t1) → (

n
s2, 

n
t2) → ... 

 
In this case, additional attributes of time clarify the 

nature of the time component, 
j
t, of the node j's behavior, 

j
P=(

j
s, 
j
t): real-time distributed architecture enrich models of 

time by considering the number of time lines. A single time 
line suffices for global clocks while multiple time lines 
support independent local clocks. Accordingly, the values 

j
ti 

and 
k
ti are either the i-th readings of global time, t, in nodes j 

and k or the i-th readings of local times 
j
t and 

k
t in nodes j and 

k. To respect the implementation viewpoint, distributed 
applications consider for each node a distinctive local time, 
i.e. the time of a local physical clock that suits to measuring 
a duration of local process actions. 

Local time represents a concept of physical timing; still, 
its semantics can be derived from logical time and a 
physical generator of periodic events. In his pioneer work 
[11], Lamport defines logical time in a distributed system as 
a partial ordering of events in the system. Similarly for the 
purpose of this paper, time ordering of events in a system S 

is specified by a minimal partial-order relation → 
("precedes") on events, which satisfies the following four 
conditions: 

 

  • if A and B are events in the same process and A is 
executed before B, then A → B (the term "process" 

means sequential ordering of internal events); 

  • if A is the transmission of information by one process  
and  B  is the receipt of that information in S, then A → 

B (communication proceeds in non-zero time); 

  • if A → B and B → C in S, then A → C (transitivity); 

and 

  • for any event A of S, A → A does not hold (A →/  A) 
(antireflexivity). 
 
The totalization of the reflexive closure of the relation 

→ ("precedes") is the relation ⇒ ("precedes or is 
concurrent"): 

 

  • if A →/  B in S, then B ⇒ A. 

 
An eventcount, E, is an object that counts the number of 

events of a specific type that have occurred during the 
execution of the system. Each such event occurrence invokes 
the operation ADVANCE(E): E := E + 1. The external 

operation AWAIT(E,σ) suspends the calling process until the 
value of the eventcount, E, is at least σ--the call AWAIT(E,σ) 
usually resets the current value of E, so the relative timing is 
possible. The external and internal operations interplay in the 
following way:  

 

  • if WE is the execution of the AWAIT operation in the 
form AWAIT(E,σ), then there are at least σ members of 
the set {AE   AE is the execution of ADVANCE(E) 
and AE ⇒ WE}. 

 
An eventcount can monitor the external events of a class 

that represents local physical timing of a distinctive part of 
the system environment. Also, periodic events implemented 
by an internal timer/counter circuit can advance an 
eventcount that tracks local-time clock events. So, the local-
time model relates internal and accessible external clocking 
while internal local times in different nodes of a distributed 
system flow independently, without regular synchronization. 

V. ASYNCHRONOUS SPECIFICATION LANGUAGE 

The designed process-oriented procedural specification 
language includes primitives related to synchronization, 
timing, and communication. Hence, the specification of a 
system logical structure employs sequential processes, 
communicating asynchronously by message passing. A 
process represents the sequence of statements executed at a 
node of a distributed system. True concurrency with maximal 
parallelism is supposed: each process drives its own node; if a 
process is suspended, its node remains idle. Moreover, timing 
mechanisms of the processes are expressed with the help of 
local timers, using properly chosen time scales.  

From the syntax viewpoint, the language for process 

specifications can be surveyed as an extended Pascal. The 

most important added primitives relate to process 

specification, timing, communication, and control structure:  
 In this case, additional attributes of time clarify the 

nature of the time component, 
j
t, of the node j's behavior, 

j
P=(

j
s, 

j
t): real-time distributed architecture enrich models of 

time by considering the number of time lines. A single time 
line suffices for global clocks while multiple time lines 
support independent local clocks. Accordingly, the values 

j
ti 

and 
k
ti are either the i-th readings of global time, t, in nodes j 

and k or the i-th readings of local times 
j
t and 

k
t in nodes j and 

k. To respect the implementation viewpoint, distributed 

process name(is:list_of_s_inputs; os:list_of_s_outputs; 

  ic:list_of_m_inputs; oc:list_of_m_outputs): ... 

 ... endprocess; 

wait(_,timeout); wait(event,_); wait(event,timeout,test); 

send(message,destination); 

loop ... [... when <cond> action ... exit]
*
 ... endloop; 
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applications consider for each node a distinctive local time, 
i.e. the time of a local physical clock that suits to measuring 
a duration of local process actions. In this case, additional 
attributes of time clarify the nature of the time component, 
j
t, of the node j's behavior, 

j
P=(

j
s, 

j
t): real-time distributed 

architecture enrich models of time by considering the 
number of time lines. A single time line suffices for global 
clocks while multiple time lines support independent local 
clocks. Accordingly, the values 

j
ti and 

k
ti are either the i-th 

readings of global time, t, in nodes j and k or the i-th readings 
of local times 

j
t and 

k
t in nodes j and k. To respect the 

implementation viewpoint, distributed applications consider 
for each node a distinctive local time, i.e. the time of a local 
physical clock that suits to measuring a duration of local 
process actions. 

Each of asynchronous processes can be equipped by its 
individually timed local clock, can receive messages through 
input buffer, and can send messages to other, directly or 
indirectly addressable processes. Process header contains in 
parentheses lists labelled by is, os, ic, and oc that act as the 
interface with the process' environment. The language 
distinguishes between signal inputs or outputs, which denote 
un-buffered events carrying either value or signalling their 
occurrence, and message inputs or outputs as typed 
asynchronous channels between couples of processes. Those 
signals and messages declare the inter-process 
synchronization and communication, which operations are 
driven by the statements wait(event,_), 
wait(event,timeout,test), and send(message,destination). 

The primitive wait(_,timeout) suspends a process for the 
interval defined by the value timeout. Operational semantics 
can be obtained through the eventcount abstraction introduced 
above: in this case, an event is every tick of the local clock, so 
the related operation is AWAIT(local_ticks,timeout_value). 
For the primitive wait(event,_), which suspends a process 
until the specified event (external signal or message) appears, 
the model operation is AWAIT(event_type,1). The semantics 
of the combined statement wait(event,timeout,test) requires 
two eventcounts: the first anticipates the specified event and 
the second, with a lower priority, monitors the local clock. 
The reason of process activation can be checked through the 
value of the logical variable test: when the value is true, the 
event occurred within the interval timeout. In this case, 
additional attributes of time clarify the nature of the time 
component, 

j
t, of the node j's behavior, 

j
P=(

j
s, 

j
t): real-time 

distributed architecture enrich models of time by 
considering the number of time lines. A single time line 
suffices for global clocks while multiple time lines support 
independent local clocks. Accordingly, the values 

j
ti and 

k
ti 

are either the i-th readings of global time, t, in nodes j and k 
or the i-th readings of local times 

j
t and 

k
t in nodes j and k. To 

respect the implementation viewpoint, distributed 
applications consider for each node a distinctive local time, 
i.e. the time of a local physical clock that suits to measuring 
a duration of local process actions. 

The primitive send(message,destination) implements 
asynchronous communication with non-blocking semantics. 
To respect different local clocks, the information transfer is 
controlled by a special clocking that is common for the source 

and the destination; however, the nodes communicate 
asynchronously by message passing through an input buffer 
at the destination. The input of a message induces the event 
for the related operation AWAIT(message,1). If any 
synchronization is required, it must be described explicitly 
using confirmation and the wait statements. In this case, 
additional attributes of time clarify the nature of the time 
component, 

j
t, of the node j's behavior, 

j
P=(

j
s, 

j
t): real-time 

distributed architecture enrich models of time by 
considering the number of time lines. A single time line 
suffices for global clocks while multiple time lines support 
independent local clocks. Accordingly, the values 

j
ti and 

k
ti 

are either the i-th readings of global time, t, in nodes j and k 
or the i-th readings of local times 

j
t and 

k
t in nodes j and k. To 

respect the implementation viewpoint, distributed 
applications consider for each node a distinctive local time, 
i.e. the time of a local physical clock that suits to measuring 
a duration of local process actions. 

The control structure primitives loop ... endloop delimit 
an indefinite cycle, which is exited upon a true result of 
testing the condition following the primitive when. 
Consequently, the statements, which occur between the 
primitives action and exit and which follow the endloop 
primitive, are executed. This combined statement enables to 
extend the language with additional control structures by 
simple macro-like text replacements, e.g.: In this case, 
additional attributes of time clarify the nature of the time 
component, 

j
t, of the node j's behavior, 

j
P=(

j
s, 

j
t): real-time 

distributed architecture enrich models of time by 
considering the number of time lines. A single time line 
suffices for global clocks while multiple time lines support 
independent local clocks. Accordingly, the values 

j
ti and 

k
ti 

are either the i-th readings of global time, t, in nodes j and k 
or the i-th readings of local times 

j
t and 

k
t in nodes j and k. To 

respect the implementation viewpoint, distributed 
applications consider for each node a distinctive local time, 
i.e. the time of a local physical clock that suits to measuring 
a duration of local process actions. 

 

Actually, the control structure timeloop(timeinterval) ... 

endloop specifies an isochronous loop, which is periodically 

initiated whenever the timeinterval expires and which can be 

exited like the indefinite cycle. The operation AWAIT(local-

_ticks, timeinterval_value) defines the exact operational 

semantics of timing these initiations. 

VI. CASE STUDIES 

A. Lift cabin Position Measurement 

The first case study consists in the logical structure 
description of the two-level structure, where higher level 

if <cond> then <s1> else <s2> fi; 

~loop when <cond> action <s1> exit <s2> when true exit    

endloop; 

timeloop(timeinterval) ... endloop;   

~loop ... wait(_,interval) endloop; 
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behaves as an event-driven component and lower level 
behaves as time-evolving interconnected component. The 
behaviour of the higher level component can be described by 
the following state sequence: In this case, additional 
attributes of time clarify the nature of the time component, 
j
t, of the node j's behavior, 

j
P=(

j
s, 

j
t): real-time distributed 

architecture enrich models of time by considering the 
number of time lines. A single time line suffices for global 
clocks while multiple time lines support independent local 
clocks. Accordingly, the values 

j
ti and 

k
ti are either the i-th 

readings of global time, t, in nodes j and k or the i-th readings 
of local times 

j
t and 

k
t in nodes j and k. To respect the 

implementation viewpoint, distributed applications consider 
for each node a distinctive local time, i.e. the time of a local 
physical clock that suits to measuring a duration of local 
process actions. 

 

initialization → position_indication → fault_indication 
 
The behaviour of the lower level can be described by 

three communicating, individually timed automata. The first 
automaton models the impulse detector, timed by its local 
clock that defines a sampling interval. This interval must 
conform not only to the maximal speed and the distance of 
position marks but also to a pattern of samples for impulse 
recognition, depending on the electro-magnetic interference 
characteristics of the environment. Let the fitting pattern, 
skipping possible transient fault states, is represented by 
'1100'. Then adequate behaviour for an impulse recognition 
can be described by the following sampling sequence with 
regular periodic timing: In this case, additional attributes of 
time clarify the nature of the time component, 

j
t, of the node 

j's behavior, 
j
P=(

j
s, 

j
t): real-time distributed architecture 

enrich models of time by considering the number of time 
lines. A single time line suffices for global clocks while 
multiple time lines support independent local clocks. 
Accordingly, the values 

j
ti and 

k
ti are either the i-th readings 

of global time, t, in nodes j and k or the i-th readings of local 
times 

j
t and 

k
t in nodes j and k. To respect the 

implementation viewpoint, distributed applications consider 
for each node a distinctive local time, i.e. the time of a local 
physical clock that suits to measuring a duration of local 
process actions. 

 

q1 
inp=1 →  q2 

inp=0 → ... q2 
inp=1 →  q3 

inp=1 → ... q3 
inp=0 →  q4 

inp=1 → q4 
inp=0/IMP 
  →   q1 

 
The information about detected impulse is sent to the 

counting automaton, which can also access the indication of 
the cabin movement direction through the variable D. The 
counting automaton communicates the position value to the 
display automaton. The display refreshment subsides to a 
timing mechanism dependent on the physiologic constants of 
human sight. In this case, additional attributes of time clarify 
the nature of the time component, 

j
t, of the node j's behavior, 

j
P=(

j
s, 
j
t): real-time distributed architecture enrich models of 

time by considering the number of time lines. A single time 
line suffices for global clocks while multiple time lines 
support independent local clocks. Accordingly, the values 

j
ti 

and 
k
ti are either the i-th readings of global time, t, in nodes j 

and k or the i-th readings of local times 
j
t and 

k
t in nodes j and 

k. To respect the implementation viewpoint, distributed 
applications consider for each node a distinctive local time, 
i.e. the time of a local physical clock that suits to measuring 
a duration of local process actions. 

For the sake of fault-detection requirements, the impulse 
generator and transfer path are doubled. Consequently, a 
second, identical impulse detector automaton appears 
necessary. The subsequent automaton is the reversible 
counter, which starts with the value (h+l)/2 and increments or 
decrements the value according to the "impulse detected" 
outputs from the first or second recognition automaton. 
Overflow or underflow of the preset values of h or l indicate 
an error. In this case, additional attributes of time clarify the 
nature of the time component, 

j
t, of the node j's behavior, 

j
P=(

j
s, 
j
t): real-time distributed architecture enrich models of 

time by considering the number of time lines. A single time 
line suffices for global clocks while multiple time lines 
support independent local clocks. Accordingly, the values 

j
ti 

and 
k
ti are either the i-th readings of global time, t, in nodes j 

and k or the i-th readings of local times 
j
t and 

k
t in nodes j and 

k. To respect the implementation viewpoint, distributed 
applications consider for each node a distinctive local time, 
i.e. the time of a local physical clock that suits to measuring 
a duration of local process actions. 
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B. communication time measurement compatible with 

IEEE 1588 

Cyber-physical systems can be highly connected and 
integrated in multiple ways, even across business operations 
and domain boundaries. Achieving effectively networked, 
cooperating, and human-interactive systems will be an 
integral factor in the adoption of such systems in the future. 

Some of the key questions to be considered include what is 
needed to enable streamlined and predictable development, 
deployment, and evolution of networked and integrated 
cyber-physical systems, particularly as systems become 
interconnected with legacy systems and across industry 
boundaries. 

The case study addresses important topics associated 
with the measurement of data communication delays in 
computer networks. The contribution consists in developing 
one-way delay measurement method and related support for 
Internet environment including monitoring and comparison 
of computer clocks, pulse-per-second signal processing, time 
server with guaranteed accuracy concepts and high accuracy 
time-stamping implementation. 

Important characteristics of communication networks for 
respecting Real-time requirements deal namely with Transit 
Delay  and Delay Variation with respect to actual Network 
Load. This case study considers packet switching networks, 
which in contrast to TDMA, FDMA or similar techniques, 
guarantee no limited transfer time. In fact, actual Transit 
Delay and Delay Variation depends on actual Network Load:   
  • Packet Transit Delay (PDT)- means packet delay due to 

data signal holdup, due to data processing by input or 

output in active devices, and during the period when 

packet is stored in buffers.  

  • Packet Delay Variation (PDV)- means the difference of 

individual packet’s PDTs.  

  • Network Load (NL) – is directly influencing both PDT 

a PDV. Measuring NL and related values of PDT and 

PDV enables us to define functional dependencies for a 

particular network.  
Evidently, this measurement, see Fig. 1, considers 

relative physical timing that facilitates clock synchronization 
using NTP and PTP protocols with precision better then 1 
ms.  

VII. CONCLUSIONS 

This paper stems from the author’s research projects with 
partial results published in [16] ... [21]. The current paper 
addresses the role, interpretation and the deployment of the 
notion “time” in distributed cyber-physical systems. It 
discusses various possibilities how to approach such 
modeling and selects the fitting one, which enables to utilize 
the related specification language ASL in the domain 
applications specifications, modeling and measurements. 
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process detection (is: I0,I1,D; os: error; oc: counter): 

type counter = process; 

type message = record null end; 

type direction = (up, down, idle); 

var D: direction; 

var impulse: message; 

var error: boolean; 

var q0, q1, count, l, h, sample_interval: integer; 

var in0, in1, I0, I1: binary; 

loop q0 := 1; q1 := 1; count := (h+l)/2; wait(D=idle,_); 

write(false,error); 

 wait(D<>idle,_); 

 timeloop(sample_interval) 

  read(in0,I0); read(in1,I1); 

  if q0 <= 2 then if in0 = 1 then q0 := q0 + 1 fi 

   else if in0 = 0 then q0 := q0 + 1 fi fi; 

  if q1 <= 2 then if in1 = 1 then q1 := q1 + 1 fi 

   else if in1 = 0 then q1 := q1 + 1 fi fi; 

  if q0 >= 4 then q0 := 1; count := count - 1;   

 send(impulse,counter) fi; 

  if q1 >= 4 then q1 := 1; count := count + 1 fi; 

  when l > count or count > h action write(true,error) exit; 

 endloop; 

endloop 

endprocess; 

 

process counter (is: D,level; os: error; ic: impulse; oc: display): 

type display = process; 

type message = record null end; 

type direction = (up, down, idle); 

var D: direction; 

var impulse: message; 

var level, lvl, maxlvl, minlvl: integer; 

var error: boolean; 

loop wait(D=idle,_); read(lvl,level); write(false,error); 

 wait(D<>idle); 

 loop wait(impulse,_); if D = up then lvl := lvl + 1 

                  else if D = down then lvl := lvl - 1; 

  when (lvl > maxlvl) or (lvl < minlvl) 

                  action write(true,error) exit; 

  send(lvl,display); 

  when D = idle action exit; 

 endloop; 

endloop; 

endprocess; 
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Figure 1.  Example of a “one way delay” configuration for communication time measurement compatible with IEEE 1588.  
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