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Symmetries and Conservation Laws for Biodynamical Systems
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Abstract—The aim of this paper is the study of sym-
metries and conservation laws for dynamical systems aris-
ing from biology and ecology by geometrical methods of
the Classical Mechanics, using symplectic and presymplec-
tic formalisms. It will be obtain new kinds of conservation
laws for symplectic and presymplectic systems, without the
help of a Noether type theorem, only using symmetries and
pseudosymmetries.
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. INTRODUCTION

In this paper we will study symmetries, conservation
laws and relationship between this in the geometric frame-
work of Classical Mechanics ([1], [2], [8], [23], [24]).
More exactly we extend the study of symmetries and con-
servation laws from symplectic case to the presymplec-
tic case. We will recall adapted Noether type Theorems
for the presymplectic systems with global dynamic and,
also, we will use the constraint algorithm of Gotay-Nester
([29]). All results remains valid for singular Lagrangian
and Hamiltonian systems ([6], [7]). We apply the results
for some important examples from biology and ecology:
Lotka-Volterra prey-predator ecological system ([20], [27],
[30], [31]), Bailey model for the evolution of epidemics
([3], [18], [27]), classical Kermack-McKendrick model of
evolution of epidemics ([18], [27]). For theoretical geo-
metrical models, numerical analysis of models and more
computation details see also [4], [5], [12], [21], [22].

There is a very well-known way to obtain conserva-
tion laws for a system of differential equations given by a
variational principle: the use of the Noether Theorem ([26])
which associates to every symmetry a conservation law and
conversely. However, there is a method introduced by G.L.
Jones ([17]) and M. Grsmareanu ([9], [10]) which can be
obtained new kinds of conservation laws, without the help
of a Noether’s type theorem.
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In the second section we recall the basic notions and
results for the geometrical study of a dynamical system
for the symplectic case and also, we present the classi-
cal Noether Theorem ([26]) and the Theorem of Jones-
Crasmareanu ([9], [10], [17]), accompanied by two inter-
esting examples ([9], [10], [11], [13], [25]).

In the third section we present a presymplectic version
of the Noether theorem (see [19]) and, finally, we extend
the results of Jones ([17]) and&nareanu ([9], [10]) from
symplectic systems to presymplectic systems, in order to
obtain conservation laws.

In the last section we will apply the results for some
important examples from biology and ecology: prey-
predator ecological system, Bailey model for the evolu-
tion of epidemics, classical Kermack-McKendrick model
of evolution of epidemics. This biodynamical systems are
included in the presymplectic case because2tfierm wy,
associated to the corresponding Lagrangian is degenerate.

All manifolds are real, paracompact, connected and
C*°. All maps areC'>°. Sum over crossed repeated indices
is understood.

. THE SYMPLECTIC CASE

Let M be a smoothy-dimensional manifoldC> (M)
the ring of real-valued smooth function&;(M) the Lie
algebra of vector fields and? (M) the C*° (M )-module
of p-differential forms,1 < p < n. ForX € X(M) with
local expressioX = X*(z) a?m we consider the system of
ordinary differential equations which give the flc#p, },
of X, locally,

dz?
dt

@'(t) (t) = X'(2'(t),...,z"(t)). 1)
A dynamical systens a couple(M, X), whereM is a
smooth manifold and € X(M). A dynamical system
is denoted by the flow oK, {®.}; or by the system of
differential equations (1).

Afunction f € C*° (M) is calledconservation lavor
dynamical systenjM, X) if f is constant along the every

integral curves ofX (solutions of (1)), that is

whereL x f means the Lie derivative gf with respect
to X.

If Z € X(M) is fixed, thenY” € X (M) is calledZ-
pseudosymmetrpr (M, X) if there existsf € C>(M)
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such thatLxY = fZ. A X-pseudosymmetry foX is
calledpseudosymmetiipr (M, X). Y € X(M) is called
symmetryfor (M, X) if LxY = 0.

Example 1 ([11], [13]) The Nahm’s system in the theory
of static SU(2)-monopoles is presented in [13]:

1 2 3
dx 9 5 dx 3.1 dx 19

Fr T
The vector fieldX = 2223 881 + 23zt 32 + zlz? 823
is homogeneous of order two, that[EX] X, where

Y = E xt 6 -
thatY |s aX-pseudosymmetry for (3) (or pseudosymmetry
for X).

®3)

Equivalently,L xY = X, and this means

Let us recall thatv € AP(M) is calledinvariant formfor
(M, X) if Lyw = 0. If (M,w) is a symplectic manifold
then the dynamical syste(@/, X) is said to bea dynam-
ical Hamiltonian systenfor, shortly,Hamiltonian system)
if there exists a functiodd € C'>°(M) (calledthe Hamil-
tonian) such that

ixw=—dH, 4)

whereix denotes the interior product with respect¥o

Itis known that the symplectic form is an invariant 2-
form for (M, X)) and the Hamiltoniar is a conservation
law for (M, X).

A Cartan symmetryfor Lagrangianl is a vector
field X € X(TM) characterized byl xwy, 0 and
LxH = 0, wherewy, = dfy, is the Cartar2-form associ-
ated to the regular Lagrangidn 0, = J*(dL), J* being
the adjoint of the natural tangent structufeon T M and
H=F = gyL y' — L is the en energy of. It is known
that ([8]) that any Cartan symmetry for Lagrangians a
symmetry for the canonical semisprayof L ([23]), that
is LsX = 0. For each Cartan symmetey for (M, L) we
havedL x 05 = 0, which implies thatl. x 6, is a closed! -
form. If Lx 0 is a exactl-form, then we say thaX is ex-
act Cartan symmetrfor (M, L). Obviously, the canonical
semispray of_ is an exact Cartan symmetry for Lagrangian
L ([8], [23]).

In the classical case (k= 1), we know that Cartan
symmetries induce and are induced by constants of motions

is an exact Cartan symmetry.

The next theorem which gives the association between
pseudosymmetries and conservation laws is due to M.
Crasmareanu ([9], [10]) and G.L. Jones ([17]). Next, us-
ing this result, we will find new kinds of conservation laws,
nonclassical, without the help of Noether’s type theorem.

Theorem 3 Let X € X (M) be a fixed vector field and
w € AP(M) be a invariantp-form for X. If Y € X (M)
is symmetry forX and Sy, ..., Sp,—1 € X (M) are (p — 1)
Y -pseudosymmetry foX then
@ZM(X,Sl,...,

Sp—l) (5)

or, locally,

o =S ---S;;’ff YW i i, (6)
is a conservation laws fof/, X).
Particularly, if Y, Sy, ..., Sp—1 are symmetries foX

then® given by (5) is conservation laws foi, X).

Now, we can apply this result to the dynamical Hamil-
tonian systems.

Proposition 4 Let be(M, Xy) a Hamiltonian system on
the symplectic manifol@/, w), with the local coordinates
(zt,p;). Y € X(M) is a symmetry forX; and Z €
X (M) is aY -pseudosymmetry foX i then

b =w(Y,Z) )

is a conservation law for the Hamiltonian system
Particularly, if Y and Z are symmetries foX y then
® from (7) is a conservation law fqiM, X g ).

IfYy = Yk
@) becomes

<I>:(Y’“ ?k)((l)

+Yk0 andZ = Zk- 3,@4—Zk0a then

)(

Zk
Z

_01 ) =Y. ZF-Y*Z,.

(8)

(conservation laws), and these results are known as Noether Corollary 5 If Y € X' (M) is a X y-pseudosymmetry for

Theorem and its converse ([8], [10], [17], [26], [28]).

Theorem 2 (Noether Theorem) I is an exact Cartan
symmetry with. x 6, = df, then

Px =J(X)L—f

is a conservation law for the Euler-Lagrange equations as-
sociated to the regular Lagrangiah.

Conversely, ifF' is a conservation law for the Euler-
Lagrange equations assocaited to the regular Lagrangian

L, then the vector fielX uniquely defined by
inL = —dF
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Xy then
P = w(XH, Y) = —LyH (9)
o OH OH -~
d=-—"—Yr+ Y 1
p + O & (20)

is a conservation law fofM, X ).

Now, if we consider the Hamiltonian systgffiM, S1) on
the symplectic manifoldZ”’ M, wy,), whereSy, is the canon-
ical semispray and;, the Cartar2-form associated to a
regular Lagrangian. on T'M (for more details see [9],
[23]), then we have:
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Corollary 6 If Y =Y+ % +Yk
pseudosymmetry fafy, then

s € X(TM)isaSy-

P = (,UL(SL,Y) = —LyEL (11)
o OFE OE
L k Lk
¢ =Y + o —Y (12)

is a conservation law fofT'M, Sp).

An immediately consequence of this last result is the fol-
lowing ([9],[10]):

Corollary 7 If the canonical semisprag; associated to
the regular Lagrangianl. is 2-positive homogeneous with
respect to velocity (£ is a spray) and g;; is the metric
tensor ofL, then® = ¢,;5'Y7 is a conservation law for
(TM,Syp).

Taking into account that the canonical semispfayasso-
ciated to the regular Lagrangidnis a spray if and only
if [S.,C] = S, thatisLg, C = S, we have that the
Liouville (canonical) vector fieldC' = 3 a?,i is a pseu-
dosymmetry forS;, and using the last corollary we obtain
that® = g;;4'y’ is a conservation law fofT'M, S1,). So

we obtained the conservation of the kinetic enefy;) =

19i7y'y’ of the metricg; ;.

Example 8 ([9], [10], [11])
isotropic harmonic oscillator

Let the 2-dimensional

= 0

1 +w2 1
{ q 7, = 0 (13)

('1'2 + w2q2
a toy model for many methods to finding conservation laws.
The Lagrangian is

L=- w?

S [@7 e @75

2 2
=@+ @] s
and then applying the conservation of energy we have two
conservation law®; = (ql)2 + w? (q1)2,
.9\ 2 2
@2 = (47) +w (¢*)"

A straightforward computation give that the complet
lift of X = ¢2 ﬁ —q" a =25 IS an exact Cartan symmetry
with f =0 and then the associated classical Noetherian
conservation law is

OL 5 .
®3=Px =J(X)L=X'g5=0"¢ —d'¢.

But we can obtain a nonclassical conservation law with
symmetries taking into account that the canonical spray of
Lis

0 0
S=4q 2 1 2 2 Y
g T T e Y e

and another computation gives that
0 0
Y — 22 Y 91 O
o T ap o 150
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is a symmetry forS. Also, becauseS is total 1-
homogeneous, that means titais 1-homogeneous with
respect to all variable, ¢), it result that

is a symmetry forS. Next, we haveLy H = 0, Ly H =
2H and then® = wr(S,Y) =0, ® = wr(S,Z) = 2H,
that means that we not have new conservation law applying
Theorem 3. Butb, = wr (Y, Z) = ¢'4® + w?¢q? is
a new conservation law given by Theorem 3 or by their
corollaries.

We remark thatb, is a nonclassical conservation law,
obtained by symmetries, ar®l, represent the energy of a
new Lagrangian of (13), = ¢'¢% — w?q¢'¢? ([29]).

. THE PRESYMPLECTIC CASE

In this section section we present a presymplectic ver-
sion of the Noether theorem ([19]) and we extend the re-
sults of Jones ([17]) and @gnareanu ([9], [10]) from sym-
plectic systems to presymplectic systems, in order to obtain
new kinds of conservation laws for presymplectic systems,
using the Theorem 3.

Let M be ann-dimensional manifoldw a closed2-
form with constant rank, and a closedi-form. The triple
(M, w, «) is said to be g@resymplectic syste(fiL9]).

The dynamics is determined by the solutions of the
equation
(15)

Sincew is not symplectic, (15) has no solution, in general,
and even if it exists it will not be unique. Lét: TM —
T*M be the map defined by(X) = ixw . It may happen
thatb is not surjective. We denote byerw the kernel of

b. Exactly, like in the symplectic case, let us remark that
w is aninvariant 2-form for every solutior¢ of (15), if this
solution exists. It is enough to compuigw = disw +
’L'gdw =0.

Gotay (1979) and Gotay, Nester (1979) (see [14], [15],
[16]) developed a constraint algorithm for presymplectic
systems. They consider the points &f where (15) has
a solution and suppose that this set, denotedBy is a
submanifold of M. Nevertheless, these solutions by
may not be tangent tb/>. Then, we have to restridt/; to a
submanifold where the solutions of (15) are tangent/fto
Proceeding further, we obtain a sequence of submanifolds:

in:()é.

o= My — - > My — My =M.

Alternatively, these constraint submanifolds may be de-
scribed as follows:

M; = {z € M|a(z)(v) =0, Yo € T, M-}
where

T, M- = {v € TyM|w(z)(u,v) =0, Yu € T, M;_1}.
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We call M, the secondary constraint submanifold the
tertiary constraint submanifold, and, in generad; is the
i-ary constraint submanifold. If the algorithm stabilizes,
that means there exists a positive integesuch thatV/;, =
My, anddimM;, # 0, then we have dinal constraint
submanifoldM ¢ = My, on which a vector fieldX exists
such that
(ixw = a)n; - (16)

If ¢ is a solution of (16), then every arbitrary solution on
My is of the form¢’ = ¢+ Y, whereY € (kerwNTMy).

Next, we present the definitions of symmetries and
conservation laws for the presymplectic systems which
admit a global dynamics ([6], [19]). Also, the adapted
Noether Theorem ([19]) is presented. We say that a
presymplectic systerM/, w, o) admits a global dynamics
if there exists a vector field on M such thatf satisfies
(15). This condition is equivalent to the following one:

alkerw)(x) =0, Vo € M.

Definition 9 A functionF' : M — R is said to be a con-
servation law (or constant of the motion) &fif {¢F =
L¢F = 0.

Thus, if is an integral curve of, thenF' o v is a constant
function.

Definition 10 A diffeomorfismb : M — M is said to be a
symmetry of if ® maps integral curves & onto integral
curves of, i.e., T®(§) =¢.

Definition 11 A dynamical symmetry @fis a vector field
X on M such that its flow consists of symmetrieg obr,
equivalently[X, {] = L X = 0.

We denote byt (M) the set of all solutions of (15):
XM)={X e X(M)|ixw=a} .

Definition 12 A functionF : M — R is said to be a con-
servation law (or constant of the motion) &% (M) if F

is constant along all the integral curves of any solution of
(15).

That is, F' satisfiesX¥(M)F
(kerw)F = 0.

Definition 13 A diffeomorfismb : M — M is said to be
a symmetry oft“ (M) if & satisfiesT'®(&) € X¥(M) for
all ¢ € X (M).

0 or, equivalently,

Definition 14 A dynamical symmetry cf“ (M) is a vec-
tor field X on M such that[X, X“(M)] C kerw, i.e.
[X,¢] =LeX =0, forall £ € X<(M).

Let us remark that i is a constant of motion ot (M),
then X F' is also a constant of motion &f“ (1M).

Also, if we denote byD (X (M)) the set of all dynamical
symmetries oft* (M), then for anyX,Y € D (X“(M))
we have[X,Y] € D (X¥(M)), i.e.,D(X¥(M)) is a Lie
subalgebra of the Lie algebfa( M) of vector fields onl/.
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Definition 15 A Cartan symmetry of the presymplectic sys-
tem(M,w, ) is a vector fieldX on M such thatixw =
dG, for some functiots : M — R, andixa = 0.

This definition is a natural generalization of the exact Car-
tan symmetry from the symplectic case. Moreovefn =
dix o, that means that in the presymplectic caseltfi@rm
Lxa is always an exact form. IX is a Cartan symmetry
of (M,w, ), thenX is a dynamical symmetry of'“ (M).
The setC(w,«) of all Cartan symetries of M,w, a)
is a Lie subalgebra oft(M) and we haveC(w,«) C
D (xX«(M)).

The presymplectic version of the Noether Theorem is
the following ([19]):

Theorem 16 If X is a Cartan symmetry ¢f\/, w, ), then
the functionG (as in Definition 15) is a conservation law of
X“(M). Conversely, it is a conservation law ot (M),
then there exists a vector field on M such that: xyw =
dG and X is a Cartan symmetry ofM, w, «). Moreover,
every vector field + Z, with Z € kerw is also a Cartan
symmetry of M, w, av).

Next, taking into account that the presymplectic fokm

is invariant for every solutiorg of (15), we can use the
main Theorem 3 for obtain new kinds of conservation laws
(non-Noetherian) for presymplectic systems which admit a
global dynamics ([6], [19]). Also, the results remains valid
for singular Lagrangian and Hamiltonian systems.

Definition 17 Let (M, w, «) be a presymplectic system. If
we suppose that € X (M) is a solution of (15) and” €

X (M), then we say thaZ € X(M) is a Y-dynamical
pseudosymmetry ¢fif there exists a functiofi € C>° (M)
suchthatl:Z = fY.

A &-dynamical pseudosymmetry fis called dynamical
pseudosymmetry gf

Obviously, ifY = 0, a0-dynamical pseudosymmetry of
is a dynamical symmetry df.

Proposition 18 Let (M, w, «) be a presymplectic system
such that there exists a vector fiefdon M who satisfies
(15). IfY € X(M) is a dynamical symmetry @f and
7Z € X(M) is aY-dynamical pseudosymmetry §fthen
F =w(Y, Z) is a conservation law fof.

Particularly, if Y and Z are dynamical symmetry f then
F =w(Y, Z) is a conservation law fof.

Taking into account of the definition of a dynamical sym-
metry of ¥ (M), we can say that, for a fixed € X(M),
the vector fieldZ on M is aY -dynamical pseudosymmetry
of X¥ (M) if for every ¢ € X“ (M), there exists a function
feC>®(M)suchthatl:Z = fY.

Proposition 19 Let (M, w, «) be a presymplectic system
such that there exists at least vector fi€ldn M who sat-
isfies (15). IfY € X (M) is a dynamical symmetry of
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X¥(M) and Z € X(M) is aY-dynamical pseudosym-
metry of X¥* (M), thenF = w(Y, Z) is a conservation law
for X« (M).

Particularly, if Y and Z are dynamical symmetry of
X“(M), then F w(Y, Z) is a conservation law of
XY (M).

Example 20 ([19]) Let us consider the presymplectic sys-
tem (RS, w, «), where

w=dz' Ndat —da® Ada? o = atdat — 23da® — 2P dad,

with (z!,. .., 2%) the standard coordinates &f.

H H o o)
It is easy to see thaterw is generated byys and 575.
The only secondary constraintds, = 2% = 0, there are
not tertiary constraints and the constraints algorithm ends
in M, i.e.

My =M, = {(z',...,2° € R%2® = 0}

The solution of the equatiofi xw = a)Mf are
XY (My) = x4i + kerw
= gt '

If we denote byi : My — RS the embedding o/ in R®,
theni*w = wyy, = da' Ada?. So,kerwyy, is generated by

2>, 525 anda%éﬁ. The solutions of the equatia wyy, =
i*a are

0
w _ .4
UM (My) =a Dl
Thus, X« (Mjy) is strictly contained inY“"s (My).
A function F' : My — R is a conservation law of
X@(My) if

+ kerwpy, -

JOF  9F OF

A9 o Yo Y
ozl T Oz " Oz6

In particular, each functiod which depends only onr?
andz* is a conservation law ot (My).

For exampleFy (z!,. .., 2%) = 22 and Fy (2!, ..., 25)
z* are constants of the motion af~ (My).

A function ' : M; — R is a conservation law of
XMr (My) if

=0.

SO 0P oF _or
Arl 7 9x2 7 9x5 T 7 926

Therefore, the function’ which are constants of motion
of X“*s (Mjy) are the ones which depend only of, for
instancery (z1, ..., 2%) = x4,

Obviously, all the constants of motion &f“*s (M)
are also constants of motion af’(My).
The vector fieldX = 2 on RS satisfies the
conditions from the definition of Cartan symmetry, with
G(z,...,2% = 2%, and we can deduce thitis a Cartan
symmetry of (M, was,, o, ) andGy, is a conservation
law of X“*s (My).

=0.
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If we consider the dynamical symmetries §f €

9 9
XM (My), Y = @l g + 2t 5w, Z = @l o — @ g
then we will obtainF' = wyy, (Y, Z) = —z'z* a conserva-

tion laws for¢, by using the proposition 18.

IV. THE STUDY OF SOME BIOLOGICAL AND
ECOLOGICAL DYNAMICAL SYSTEMS

In this section we will use the geometrical results from
the previous sections to make a study of the behavior of
some very important examples from biology and ecology:
prey-predator ecological system ([20], [27], [30], [31]),
Bailey model for the evolution of epidemics ([3], [18],
[27]), classical Kermack-McKendrick model of evolution
of epidemics ([18], [27]). This biodynamical systems are
included in the presymplectic case because the 2-foyrm
associated to the corresponding Lagrangian is degenerate.

A. The Prey-Predator Ecological System

Let us consider the system of ordinary differential
equations ([27]):

& = ar—bry
{ v = —cy+dzy a, b, ¢, d> 0. a7
This system is a complex biological system model, in

which two species andy live in a limited area, so that
individuals of the specieg (predator) feed only individu-
als of species: (prey) and they feed only resources of the
area in which they live. Proportionality factagsandc are
respectively increasing and decreasing prey and predator
populations. If we assume that the two populations come
into interaction, then the factdris decreasing prey popu-
lation z caused by this predator populatigrand the factor
d is population growth due to this populatien

The prey-predator system (17) is calleatka—Volterra
equationsand, also known athe predatorprey equations
This system is a pair of first order, nonlinear, differential
equations frequently used to describe the dynamics of bio-
logical systems in which two species interact, one a preda-
tor and one its preyz is the number of prey (for example,
rabbits), y is the number of some predator (for example,
foxes), = %, Y= % represent the growth rates of the
two populations over time,represents time.

The evolution system (17) can be written in the form
of Euler-Lagrange equations:

@ (5) - =
{d oL) _ oL _ (18)
dt \ Oy Jy

where the Lagrangiah is

1/1 |
I == (nyi_ ny:cy) +clnz—alny—dx+by (19)

2 T
and the corresponding Hamiltonidhis
L L
H= 8—.:1':—1—6—.@—1] = —clnz+alny+dz—by (20)
ot 0y
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Let us remark that the total enerd;, = H is a conserva-
tion law for prey-predator system (17).

If we consider the PoincérCartan forms associated to
L0 = %dm-}—%dy andw; = —df;,, thenw;, has a con-
stant rank, equal witB, and so, we will obtain a presym-
plectic system{TR?, w;,,dE}).

B. The Bailey Model for the evolution of epidemics

In Bailey model for the evolution of epidemics are con-
sidered two classes of hosts: individuals suspected of being
infected, whose number is denotedsbgnd individuals in-
fected carriers, whose number we denoteby

Assume that the latency and average removal rate is
zero and then remain carriers infected individuals during
the entire epidemic, with no death, healing and immunity.
It is proposed that, in unit time, increasing the number of
individuals suspected of being infected to be proportional
to the product of the number of those infected them. These
considerations lead us to the evolutionary dynamical sys-
tem given by the system of ordinary differential equations
(127)): .

€T =

y =
The model is suitable for diseases known animal and plant
populations and also corresponds quite well the character-
istics of small populations spread runny noses, dark, people
such as students of a class team.

First of all, let us remark that we haweconservation
law, x + y = n. That means that, the total number of in-
dividuals of a population, does not change during the evo-
lution of this epidemic.

The equations (21) can be write as Euler-Lagrange
equation, where the Lagrangidnis

—kxy

kxy , k>0.

(21)

1 /1 |
L= (ny:b— ”y) th(z+y) (22
2\
and the corresponding Hamiltonidh is
oL oL
=—t+——y—L=- . 2
&km—i—ayy k(x +vy) (23)

C. The Classical Kermack-McKendrick Model of Evo-
lution of Epidemics

The classical model of evolution of epidemics was for-
mulated by Kermack (1927) and McKendrick (1932) as fol-
lows. Let us denote the numerical size of the population
with n and let us divide it into three classes: the number
of individuals suspected of, the number of individuals
infected carrierg, and the number of isolate infected indi-
vidualsz.

For simplicity, we take zero latency period, that all in-
dividuals are simultaneously infected carriers that infect
those suspected of being infected. Considering the previ-
ous example we note the rate constantf disease trans-
mission. Changing the size of infected carriers depends on
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the ratek; and also depend dip, the rate that carriers are
isolated. In this way, we have the system ([27]):

Tz = —kixy
y = kixy—kay , k1,ka > 0. (24)
z = kay

Let us note that+y+2z = n, i.e. the number of individuals
of the population does not change. Thi@nservation law
tells us not cause deaths epidemic.

The evolution of a dynamic epidemic begins with a
large population which is composed of a majority of indi-
viduals suspected of being infected and in a small number
of infected individuals. Initial number of isolated infected
people is considered to be zero. So, we can consider the
subsystem ([27]):

{ @
Y
The Lagrange and Hamilton functions of the system (25)
are

—k1xy
kizy — kay

s ki, ko > 0. (25)

L = %(mTya:—h’Try) +Ek(x+y)—kelnz,
H —ki(x+y)+kolnzx,

and so, we have a nesonservation lavof (25),
H=FE;,=-ki(z+vy)+knz.

If we get back to the Kermack-McKendrick model
(24), then we have that the Lagrangian whose Euler-
Lagrange equations are really (24) is

f:L—k%(z—kly)Q, (26)
whereL is the Lagrangian of the subsystem (25).
The corresponding Hamiltonian is given by
— 0L 0L 0L
H=t—+4+y—+2-——-1L 27
Yo TV T ez 27)

V. CONCLUSION

Taking into account that the previous systems of ordi-
nary differential equations can be written in the form of the
Euler-Lagrange equations, by determining a suitable La-
grange functions, it follows that the study of biodynam-
ical systems (or dynamical systems, in general) by geo-
metrical methods of classical mechanics has a great impor-
tance for interdisciplinary research, especially considering
the possibility of finding symmetries and conservation laws
of these systems that describe natural processes of our lives
on earth.

This mathematical study will be deepened both models
presented here and for other examples from biology, ecol-
ogy, medicine and others.
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