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Abstract—-The aim of this paper is the study of sym-
metries and conservation laws for dynamical systems aris-
ing from biology and ecology by geometrical methods of
the Classical Mechanics, using symplectic and presymplec-
tic formalisms. It will be obtain new kinds of conservation
laws for symplectic and presymplectic systems, without the
help of a Noether type theorem, only using symmetries and
pseudosymmetries.
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I. INTRODUCTION

In this paper we will study symmetries, conservation
laws and relationship between this in the geometric frame-
work of Classical Mechanics ([1], [2], [8], [23], [24]).
More exactly we extend the study of symmetries and con-
servation laws from symplectic case to the presymplec-
tic case. We will recall adapted Noether type Theorems
for the presymplectic systems with global dynamic and,
also, we will use the constraint algorithm of Gotay-Nester
([19]). All results remains valid for singular Lagrangian
and Hamiltonian systems ([6], [7]). We apply the results
for some important examples from biology and ecology:
Lotka-Volterra prey-predator ecological system ([20], [27],
[30], [31]), Bailey model for the evolution of epidemics
([3], [18], [27]), classical Kermack-McKendrick model of
evolution of epidemics ([18], [27]). For theoretical geo-
metrical models, numerical analysis of models and more
computation details see also [4], [5], [12], [21], [22].

There is a very well-known way to obtain conserva-
tion laws for a system of differential equations given by a
variational principle: the use of the Noether Theorem ([26])
which associates to every symmetry a conservation law and
conversely. However, there is a method introduced by G.L.
Jones ([17]) and M. Crâşm̆areanu ([9], [10]) which can be
obtained new kinds of conservation laws, without the help
of a Noether’s type theorem.
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In the second section we recall the basic notions and
results for the geometrical study of a dynamical system
for the symplectic case and also, we present the classi-
cal Noether Theorem ([26]) and the Theorem of Jones-
Crâşm̆areanu ([9], [10], [17]), accompanied by two inter-
esting examples ([9], [10], [11], [13], [25]).

In the third section we present a presymplectic version
of the Noether theorem (see [19]) and, finally, we extend
the results of Jones ([17]) and Crâşm̆areanu ([9], [10]) from
symplectic systems to presymplectic systems, in order to
obtain conservation laws.

In the last section we will apply the results for some
important examples from biology and ecology: prey-
predator ecological system, Bailey model for the evolu-
tion of epidemics, classical Kermack-McKendrick model
of evolution of epidemics. This biodynamical systems are
included in the presymplectic case because the2-form ωL

associated to the corresponding Lagrangian is degenerate.
All manifolds are real, paracompact, connected and

C∞. All maps areC∞. Sum over crossed repeated indices
is understood.

II. THE SYMPLECTIC CASE

Let M be a smooth,n-dimensional manifold,C∞(M)
the ring of real-valued smooth functions,X (M) the Lie
algebra of vector fields andAp(M) the C∞(M)-module
of p-differential forms,1 ≤ p ≤ n. ForX ∈ X (M) with
local expressionX = Xi(x) ∂

∂xi we consider the system of
ordinary differential equations which give the flow{Φt}t

of X, locally,

ẋi(t) =
dxi

dt
(t) = Xi(x1(t), . . . , xn(t)). (1)

A dynamical systemis a couple(M, X), whereM is a
smooth manifold andX ∈ X (M). A dynamical system
is denoted by the flow ofX, {Φt}t or by the system of
differential equations (1).

A functionf ∈ C∞(M) is calledconservation lawfor
dynamical system(M,X) if f is constant along the every
integral curves ofX (solutions of (1)), that is

LXf = 0, (2)

whereLXf means the Lie derivative off with respect
to X.

If Z ∈ X (M) is fixed, thenY ∈ X (M) is calledZ-
pseudosymmetryfor (M, X) if there existsf ∈ C∞(M)
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such thatLXY = fZ. A X-pseudosymmetry forX is
calledpseudosymmetryfor (M,X). Y ∈ X (M) is called
symmetryfor (M,X) if LXY = 0.

Example 1 ([11], [13]) The Nahm’s system in the theory
of static SU(2)-monopoles is presented in [13]:

dx1

dt
= x2x3,

dx2

dt
= x3x1,

dx3

dt
= x1x2. (3)

The vector fieldX = x2x3 ∂
∂x1 + x3x1 ∂

∂x2 + x1x2 ∂
∂x3

is homogeneous of order two, that is[Y,X] = X, where

Y =
3∑

i=1

xi ∂
∂xi . Equivalently,LXY = X, and this means

thatY is aX-pseudosymmetry for (3) (or pseudosymmetry
for X).

Let us recall thatω ∈ Ap(M) is calledinvariant formfor
(M,X) if LXω = 0. If (M, ω) is a symplectic manifold
then the dynamical system(M,X) is said to bea dynam-
ical Hamiltonian system(or, shortly,Hamiltonian system)
if there exists a functionH ∈ C∞(M) (calledthe Hamil-
tonian) such that

iXω = −dH, (4)

whereiX denotes the interior product with respect toX.
It is known that the symplectic formω is an invariant 2-

form for (M,X) and the HamiltonianH is a conservation
law for (M, X).

A Cartan symmetryfor LagrangianL is a vector
field X ∈ X (TM) characterized byLXωL = 0 and
LXH = 0, whereωL = dθL is the Cartan2-form associ-
ated to the regular LagrangianL, θL = J∗(dL), J∗ being
the adjoint of the natural tangent structureJ on TM and
H = EL = ∂L

∂yi y
i − L is the en energy ofL. It is known

that ([8]) that any Cartan symmetry for LagrangianL is a
symmetry for the canonical semisprayS of L ([23]), that
is LSX = 0. For each Cartan symmetryX for (M, L) we
havedLXθL = 0, which implies thatLXθL is a closed1-
form. If LXθL is a exact1-form, then we say thatX is ex-
act Cartan symmetryfor (M,L). Obviously, the canonical
semispray ofL is an exact Cartan symmetry for Lagrangian
L ([8], [23]).

In the classical case (k= 1), we know that Cartan
symmetries induce and are induced by constants of motions
(conservation laws), and these results are known as Noether
Theorem and its converse ([8], [10], [17], [26], [28]).

Theorem 2 (Noether Theorem) IfX is an exact Cartan
symmetry withLXθL = df , then

PX = J(X)L− f

is a conservation law for the Euler-Lagrange equations as-
sociated to the regular LagrangianL.
Conversely, ifF is a conservation law for the Euler-
Lagrange equations assocaited to the regular Lagrangian
L, then the vector fieldX uniquely defined by

iXωL = −dF

is an exact Cartan symmetry.

The next theorem which gives the association between
pseudosymmetries and conservation laws is due to M.
Crâşm̆areanu ([9], [10]) and G.L. Jones ([17]). Next, us-
ing this result, we will find new kinds of conservation laws,
nonclassical, without the help of Noether’s type theorem.

Theorem 3 Let X ∈ X (M) be a fixed vector field and
ω ∈ Ap(M) be a invariantp-form for X. If Y ∈ X (M)
is symmetry forX andS1, . . ., Sp−1 ∈ X (M) are (p− 1)
Y -pseudosymmetry forX then

Φ = ω(X,S1, . . . , Sp−1) (5)

or, locally,

Φ = Si1
1 · · ·Sip−1

p−1 Y ipωi1...ip−1ip (6)

is a conservation laws for(M, X).
Particularly, if Y , S1, . . ., Sp−1 are symmetries forX

thenΦ given by (5) is conservation laws for(M, X).

Now, we can apply this result to the dynamical Hamil-
tonian systems.

Proposition 4 Let be(M, XH) a Hamiltonian system on
the symplectic manifold(M, ω), with the local coordinates
(xi, pi). If Y ∈ X (M) is a symmetry forXH and Z ∈
X (M) is aY -pseudosymmetry forXH then

Φ = ω(Y,Z) (7)

is a conservation law for the Hamiltonian system
(M, XH).

Particularly, if Y andZ are symmetries forXH then
Φ from (7) is a conservation law for(M,XH).

If Y = Y k ∂
∂xk + Ỹk

∂
∂pk

andZ = Zk ∂
∂xk + Z̃k

∂
∂pk

then
(7) becomes

Φ =
(

Y k Ỹk

) (
0 −1
1 0

)(
Zk

Z̃k

)
= ỸkZk−Y kZ̃k.

(8)

Corollary 5 If Y ∈ X (M) is a XH -pseudosymmetry for
XH then

Φ = ω(XH , Y ) = −LY H (9)

or

Φ =
∂H

∂xk
Y k +

∂H

∂pk
Ỹk (10)

is a conservation law for(M, XH).

Now, if we consider the Hamiltonian system(TM, SL) on
the symplectic manifold(TM,ωL), whereSL is the canon-
ical semispray andωL the Cartan2-form associated to a
regular LagrangianL on TM (for more details see [9],
[23]), then we have:
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Corollary 6 If Y = Y k ∂
∂xk + Ỹ k ∂

∂yk ∈ X (TM) is aSL-
pseudosymmetry forSL then

Φ = ωL(SL, Y ) = −LY EL (11)

or

Φ =
∂EL

∂xk
Y k +

∂EL

∂yk
Ỹ k (12)

is a conservation law for(TM,SL).

An immediately consequence of this last result is the fol-
lowing ([9],[10]):

Corollary 7 If the canonical semispraySL associated to
the regular LagrangianL is 2-positive homogeneous with
respect to velocity (SL is a spray) and gij is the metric
tensor ofL, thenΦ = gijy

iỸ j is a conservation law for
(TM,SL).

Taking into account that the canonical semispraySL asso-
ciated to the regular LagrangianL is a spray if and only
if [SL, C] = SL, that isLSL

C = SL, we have that the
Liouville (canonical) vector fieldC = yi ∂

∂yi is a pseu-
dosymmetry forSL and using the last corollary we obtain
thatΦ = gijy

iyj is a conservation law for(TM, SL). So
we obtained the conservation of the kinetic energyE(L) =
1
2gijy

iyj of the metricgij .

Example 8 ([9], [10], [11]) Let the 2-dimensional
isotropic harmonic oscillator

{
q̈1 + ω2q1 = 0
q̈2 + ω2q2 = 0 (13)

a toy model for many methods to finding conservation laws.
The Lagrangian is

L =
1
2

[(
q̇1

)2
+

(
q̇2

)2
]
− ω2

2

[(
q1

)2
+

(
q2

)2
]

(14)

and then applying the conservation of energy we have two
conservation lawsΦ1 =

(
q̇1

)2 + ω2
(
q1

)2
,

Φ2 =
(
q̇2

)2 + ω2
(
q2

)2
.

A straightforward computation give that the complet
lift of X = q2 ∂

∂q1 − q1 ∂
∂q2 is an exact Cartan symmetry

with f = 0 and then the associated classical Noetherian
conservation law is

Φ3 = PX = J(X)L = Xi ∂L

∂q̇i
= q2q̇1 − q1q̇2 .

But we can obtain a nonclassical conservation law with
symmetries taking into account that the canonical spray of
L is

S = q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
− ω2q1 ∂

∂q̇1
− ω2q2 ∂

∂q̇2

and another computation gives that

Y = q̇2 ∂

∂q1
+ q̇1 ∂

∂q2
− ω2q2 ∂

∂q̇1
− ω2q1 ∂

∂q̇2

is a symmetry forS. Also, becauseS is total 1-
homogeneous, that means thatS is 1-homogeneous with
respect to all variables(q, q̇), it result that

Z = q1 ∂

∂q1
+ q2 ∂

∂q2
+ q̇1 ∂

∂q̇1
+ q̇2 ∂

∂q̇2

is a symmetry forS. Next, we haveLY H = 0, LZH =
2H and thenΦ = ωL(S, Y ) = 0, Φ = ωL(S, Z) = 2H,
that means that we not have new conservation law applying
Theorem 3. ButΦ4 = ωL(Y,Z) = q̇1q̇2 + ω2q1q2 is
a new conservation law given by Theorem 3 or by their
corollaries.

We remark thatΦ4 is a nonclassical conservation law,
obtained by symmetries, andΦ4 represent the energy of a
new Lagrangian of (13),̃L = q̇1q̇2 − ω2q1q2 ([29]).

III. THE PRESYMPLECTIC CASE

In this section section we present a presymplectic ver-
sion of the Noether theorem ([19]) and we extend the re-
sults of Jones ([17]) and Crâşm̆areanu ([9], [10]) from sym-
plectic systems to presymplectic systems, in order to obtain
new kinds of conservation laws for presymplectic systems,
using the Theorem 3.

Let M be ann-dimensional manifold,ω a closed2-
form with constant rank, andα a closed1-form. The triple
(M, ω, α) is said to be apresymplectic system([19]).

The dynamics is determined by the solutions of the
equation

iXω = α . (15)

Sinceω is not symplectic, (15) has no solution, in general,
and even if it exists it will not be unique. Letb : TM →
T ∗M be the map defined byb(X) = iXω . It may happen
that b is not surjective. We denote bykerω the kernel of
b. Exactly, like in the symplectic case, let us remark that
ω is aninvariant2-form for every solutionξ of (15), if this
solution exists. It is enough to computeLξω = diξω +
iξdω = 0.

Gotay (1979) and Gotay, Nester (1979) (see [14], [15],
[16]) developed a constraint algorithm for presymplectic
systems. They consider the points ofM where (15) has
a solution and suppose that this set, denoted byM2, is a
submanifold ofM . Nevertheless, these solutions onM2

may not be tangent toM2. Then, we have to restrictM2 to a
submanifold where the solutions of (15) are tangent toM2.
Proceeding further, we obtain a sequence of submanifolds:

· · · → Mk → · · · → M2 → M1 = M .

Alternatively, these constraint submanifolds may be de-
scribed as follows:

Mi = {x ∈ M |α(x)(v) = 0, ∀v ∈ TxM⊥
i−1}

where

TxM⊥
i−1 = {v ∈ TxM |ω(x)(u, v) = 0, ∀u ∈ TxMi−1} .
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We callM2 the secondary constraint submanifold,M3 the
tertiary constraint submanifold, and, in general,Mi is the
i-ary constraint submanifold. If the algorithm stabilizes,
that means there exists a positive integerk such thatMk =
Mk+1 anddimMk 6= 0, then we have afinal constraint
submanifoldMf = Mk, on which a vector fieldX exists
such that

(iXω = α)|Mf
. (16)

If ξ is a solution of (16), then every arbitrary solution on
Mf is of the formξ′ = ξ + Y , whereY ∈ (kerω ∩ TMf ).

Next, we present the definitions of symmetries and
conservation laws for the presymplectic systems which
admit a global dynamics ([6], [19]). Also, the adapted
Noether Theorem ([19]) is presented. We say that a
presymplectic system(M, ω, α) admits a global dynamics
if there exists a vector fieldξ on M such thatξ satisfies
(15). This condition is equivalent to the following one:

α(kerω)(x) = 0, ∀x ∈ M.

Definition 9 A functionF : M → R is said to be a con-
servation law (or constant of the motion) ofξ if ξF =
LξF = 0.

Thus, ifγ is an integral curve ofξ, thenF ◦ γ is a constant
function.

Definition 10 A diffeomorfismΦ : M → M is said to be a
symmetry ofξ if Φ maps integral curves ofξ onto integral
curves ofξ, i.e.,TΦ(ξ) = ξ.

Definition 11 A dynamical symmetry ofξ is a vector field
X on M such that its flow consists of symmetries ofξ, or,
equivalently,[X, ξ] = LξX = 0.

We denote byXω(M) the set of all solutions of (15):

Xω(M) = {X ∈ X (M)|iXω = α} .

Definition 12 A functionF : M → R is said to be a con-
servation law (or constant of the motion) ofXω(M) if F
is constant along all the integral curves of any solution of
(15).

That is, F satisfiesXω(M)F = 0 or, equivalently,
(kerω)F = 0.

Definition 13 A diffeomorfismΦ : M → M is said to be
a symmetry ofXω(M) if Φ satisfiesTΦ(ξ) ∈ Xω(M) for
all ξ ∈ Xω(M).

Definition 14 A dynamical symmetry ofXω(M) is a vec-
tor field X on M such that[X,Xω(M)] ⊂ kerω, i.e.
[X, ξ] = LξX = 0, for all ξ ∈ Xω(M).

Let us remark that ifF is a constant of motion ofXω(M),
thenXF is also a constant of motion ofXω(M).
Also, if we denote byD (Xω(M)) the set of all dynamical
symmetries ofXω(M), then for anyX,Y ∈ D (Xω(M))
we have[X,Y ] ∈ D (Xω(M)), i.e.,D (Xω(M)) is a Lie
subalgebra of the Lie algebraX (M) of vector fields onM .

Definition 15 A Cartan symmetry of the presymplectic sys-
tem(M,ω, α) is a vector fieldX on M such thatiXω =
dG, for some functionG : M → R, andiXα = 0.

This definition is a natural generalization of the exact Car-
tan symmetry from the symplectic case. Moreover,LXα =
diXα, that means that in the presymplectic case the1-form
LXα is always an exact form. IfX is a Cartan symmetry
of (M, ω, α), thenX is a dynamical symmetry ofXω(M).
The set C(ω, α) of all Cartan symetries of(M, ω, α)
is a Lie subalgebra ofX (M) and we haveC(ω, α) ⊂
D (Xω(M)).

The presymplectic version of the Noether Theorem is
the following ([19]):

Theorem 16 If X is a Cartan symmetry of(M, ω, α), then
the functionG (as in Definition 15) is a conservation law of
Xω(M). Conversely, ifG is a conservation law ofXω(M),
then there exists a vector fieldX on M such thatiXω =
dG andX is a Cartan symmetry of(M, ω, α). Moreover,
every vector fieldX + Z, with Z ∈ kerω is also a Cartan
symmetry of(M, ω, α).

Next, taking into account that the presymplectic formω
is invariant for every solutionξ of (15), we can use the
main Theorem 3 for obtain new kinds of conservation laws
(non-Noetherian) for presymplectic systems which admit a
global dynamics ([6], [19]). Also, the results remains valid
for singular Lagrangian and Hamiltonian systems.

Definition 17 Let (M,ω, α) be a presymplectic system. If
we suppose thatξ ∈ X (M) is a solution of (15) andY ∈
X (M), then we say thatZ ∈ X (M) is a Y -dynamical
pseudosymmetry ofξ if there exists a functionf ∈ C∞(M)
such thatLξZ = fY .
A ξ-dynamical pseudosymmetry ofξ is called dynamical
pseudosymmetry ofξ.

Obviously, ifY = 0, a0-dynamical pseudosymmetry ofξ
is a dynamical symmetry ofξ.

Proposition 18 Let (M,ω, α) be a presymplectic system
such that there exists a vector fieldξ on M who satisfies
(15). If Y ∈ X (M) is a dynamical symmetry ofξ and
Z ∈ X (M) is a Y -dynamical pseudosymmetry ofξ, then
F = ω(Y, Z) is a conservation law forξ.
Particularly, if Y andZ are dynamical symmetry ofξ, then
F = ω(Y, Z) is a conservation law forξ.

Taking into account of the definition of a dynamical sym-
metry ofXω(M), we can say that, for a fixedY ∈ X (M),
the vector fieldZ onM is aY -dynamical pseudosymmetry
of Xω(M) if for everyξ ∈ Xω(M), there exists a function
f ∈ C∞(M) such thatLξZ = fY .

Proposition 19 Let (M,ω, α) be a presymplectic system
such that there exists at least vector fieldξ on M who sat-
isfies (15). IfY ∈ X (M) is a dynamical symmetry of
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Xω(M) and Z ∈ X (M) is a Y -dynamical pseudosym-
metry ofXω(M), thenF = ω(Y, Z) is a conservation law
for Xω(M).
Particularly, if Y and Z are dynamical symmetry of
Xω(M), then F = ω(Y, Z) is a conservation law of
Xω(M).

Example 20 ([19]) Let us consider the presymplectic sys-
tem(R6, ω, α), where

ω = dx1∧dx4−dx2∧dx3 , α = x4dx4−x3dx5−x5dx3,

with (x1, . . . , x6) the standard coordinates onR6.
It is easy to see thatkerω is generated by ∂

∂x5 and ∂
∂x6 .

The only secondary constraint isΦ1 = x3 = 0, there are
not tertiary constraints and the constraints algorithm ends
in M2, i.e.

Mf = M2 =
{
(x1, . . . , x6) ∈ R6|x3 = 0

}

The solution of the equation(iXω = α)Mf
are

Xω(Mf ) = x4 ∂

∂x1
+ kerω .

If we denote byi : Mf → R6 the embedding ofMf in R6,
theni∗ω = ωMf

= dx1∧dx4. So,kerωMf
is generated by

∂
∂x2 , ∂

∂x5 and ∂
∂x6 . The solutions of the equationiXωMf

=
i∗α are

XωMf (Mf ) = x4 ∂

∂x1
+ kerωMf

.

Thus,Xω(Mf ) is strictly contained inXωMf (Mf ).
A function F : Mf → R is a conservation law of

Xω(Mf ) if

x4 ∂F

∂x1
= 0,

∂F

∂x5
= 0,

∂F

∂x6
= 0.

In particular, each functionF which depends only onx2

andx4 is a conservation law ofXω(Mf ).
For example,F1(x1, . . . , x6) = x2 andF2(x1, . . . , x6) =
x4 are constants of the motion ofXω(Mf ).
A function F : Mf → R is a conservation law of
XωMf (Mf ) if

x4 ∂F

∂x1
= 0,

∂F

∂x2
= 0,

∂F

∂x5
= 0,

∂F

∂x6
= 0.

Therefore, the functionsF which are constants of motion
of XωMf (Mf ) are the ones which depend only ofx4, for
instanceF2(x1, . . . , x6) = x4.

Obviously, all the constants of motion ofXωMf (Mf )
are also constants of motion ofXω(Mf ).

The vector fieldX = ∂
∂x1 on R6 satisfies the

conditions from the definition of Cartan symmetry, with
G(x1, . . . , x6) = x4, and we can deduce thatX is a Cartan
symmetry of

(
Mf , ωMf

, αMf

)
andGMf

is a conservation
law ofXωMf (Mf ).

If we consider the dynamical symmetries ofξ ∈
XωMf (Mf ), Y = x1 ∂

∂x1 + x4 ∂
∂x4 , Z = x1 ∂

∂x1 − x4 ∂
∂x4 ,

then we will obtainF = ωMf
(Y,Z) = −x1x4 a conserva-

tion laws forξ, by using the proposition 18.

IV. THE STUDY OF SOME BIOLOGICAL AND
ECOLOGICAL DYNAMICAL SYSTEMS

In this section we will use the geometrical results from
the previous sections to make a study of the behavior of
some very important examples from biology and ecology:
prey-predator ecological system ([20], [27], [30], [31]),
Bailey model for the evolution of epidemics ([3], [18],
[27]), classical Kermack-McKendrick model of evolution
of epidemics ([18], [27]). This biodynamical systems are
included in the presymplectic case because the 2-formωL

associated to the corresponding Lagrangian is degenerate.

A. The Prey-Predator Ecological System

Let us consider the system of ordinary differential
equations ([27]):

{
ẋ = ax− bxy
ẏ = −cy + dxy

, a, b, c, d > 0. (17)

This system is a complex biological system model, in
which two speciesx andy live in a limited area, so that
individuals of the speciesy (predator) feed only individu-
als of speciesx (prey) and they feed only resources of the
area in which they live. Proportionality factorsa andc are
respectively increasing and decreasing prey and predator
populations. If we assume that the two populations come
into interaction, then the factorb is decreasing prey popu-
lationx caused by this predator populationy and the factor
d is population growth due to this populationx.

The prey-predator system (17) is calledLotka–Volterra
equationsand, also known asthe predatorprey equations.
This system is a pair of first order, nonlinear, differential
equations frequently used to describe the dynamics of bio-
logical systems in which two species interact, one a preda-
tor and one its prey.x is the number of prey (for example,
rabbits), y is the number of some predator (for example,
foxes),ẋ = dx

dt , ẏ = dy
dt represent the growth rates of the

two populations over time,t represents time.
The evolution system (17) can be written in the form

of Euler-Lagrange equations:
{

d
dt

(
∂L
∂ẋ

)− ∂L
∂x = 0

d
dt

(
∂L
∂ẏ

)
− ∂L

∂y = 0
(18)

where the LagrangianL is

L =
1
2

(
ln y

x
ẋ− ln x

y
ẏ

)
+c ln x−a ln y−dx+by (19)

and the corresponding HamiltonianH is

H =
∂L

∂ẋ
ẋ+

∂L

∂ẏ
ẏ−L = −c ln x+a ln y +dx− by (20)
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Let us remark that the total energyEL = H is a conserva-
tion law for prey-predator system (17).

If we consider the Poincaré-Cartan forms associated to
L, θL = ∂L

∂ẋ dx+ ∂L
∂ẏ dy andωL = −dθL, thenωL has a con-

stant rank, equal with2, and so, we will obtain a presym-
plectic system(TR2, ωL, dEL).

B. The Bailey Model for the evolution of epidemics

In Bailey model for the evolution of epidemics are con-
sidered two classes of hosts: individuals suspected of being
infected, whose number is denoted byx and individuals in-
fected carriers, whose number we denote byy.

Assume that the latency and average removal rate is
zero and then remain carriers infected individuals during
the entire epidemic, with no death, healing and immunity.
It is proposed that, in unit time, increasing the number of
individuals suspected of being infected to be proportional
to the product of the number of those infected them. These
considerations lead us to the evolutionary dynamical sys-
tem given by the system of ordinary differential equations
([27]): {

ẋ = −kxy
ẏ = kxy

, k > 0. (21)

The model is suitable for diseases known animal and plant
populations and also corresponds quite well the character-
istics of small populations spread runny noses, dark, people
such as students of a class team.

First of all, let us remark that we havea conservation
law, x + y = n. That means thatn, the total number of in-
dividuals of a population, does not change during the evo-
lution of this epidemic.

The equations (21) can be write as Euler-Lagrange
equation, where the LagrangianL is

L =
1
2

(
ln y

x
ẋ− ln x

y
ẏ

)
+ k(x + y) (22)

and the corresponding HamiltonianH is

H =
∂L

∂ẋ
ẋ +

∂L

∂ẏ
ẏ − L = −k(x + y) . (23)

C. The Classical Kermack-McKendrick Model of Evo-
lution of Epidemics

The classical model of evolution of epidemics was for-
mulated by Kermack (1927) and McKendrick (1932) as fol-
lows. Let us denote the numerical size of the population
with n and let us divide it into three classes: the number
of individuals suspected ofx, the number of individuals
infected carriersy, and the number of isolate infected indi-
vidualsz.

For simplicity, we take zero latency period, that all in-
dividuals are simultaneously infected carriers that infect
those suspected of being infected. Considering the previ-
ous example we note the rate constantk1 of disease trans-
mission. Changing the size of infected carriers depends on

the ratek1 and also depend onk2, the rate that carriers are
isolated. In this way, we have the system ([27]):





ẋ = −k1xy
ẏ = k1xy − k2y
ż = k2y

, k1, k2 > 0. (24)

Let us note thatx+y+z = n, i.e. the number of individuals
of the population does not change. Thisconservation law
tells us not cause deaths epidemic.

The evolution of a dynamic epidemic begins with a
large population which is composed of a majority of indi-
viduals suspected of being infected and in a small number
of infected individuals. Initial number of isolated infected
people is considered to be zero. So, we can consider the
subsystem ([27]):

{
ẋ = −k1xy
ẏ = k1xy − k2y

, k1, k2 > 0. (25)

The Lagrange and Hamilton functions of the system (25)
are

L = 1
2

(
ln y
x ẋ− ln x

y ẏ
)

+ k1(x + y)− k2 ln x ,

H = −k1(x + y) + k2 ln x ,

and so, we have a newconservation lawof (25),
H = EL = −k1(x + y) + k2 ln x.

If we get back to the Kermack-McKendrick model
(24), then we have that the Lagrangian whose Euler-
Lagrange equations are really (24) is

L = L +
1
2
(ż − k1y)2 , (26)

whereL is the Lagrangian of the subsystem (25).
The corresponding Hamiltonian is given by

H = ẋ
∂L

∂ẋ
+ ẏ

∂L

∂ẏ
+ ż

∂L

∂ż
− L . (27)

V. CONCLUSION

Taking into account that the previous systems of ordi-
nary differential equations can be written in the form of the
Euler-Lagrange equations, by determining a suitable La-
grange functions, it follows that the study of biodynam-
ical systems (or dynamical systems, in general) by geo-
metrical methods of classical mechanics has a great impor-
tance for interdisciplinary research, especially considering
the possibility of finding symmetries and conservation laws
of these systems that describe natural processes of our lives
on earth.

This mathematical study will be deepened both models
presented here and for other examples from biology, ecol-
ogy, medicine and others.
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A, 30, 1979, pp. 129-142.

[16] M.J. Gotay, J.M. Nester, ”Presymplectic Lagrangian
systems. II: the second-order equation problem”,An-
nales de l’Institut Henri Poincaŕe, A, 32, 1980, pp.
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