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Practical Approach for Modeling Chaotic Maps related
to Mobius Transformation

Taeil Yif

Abstract— Tt has been very difficult to find a dense orbit point
and densely many periodic points of a chaotic map. One of the rea-
sons is the complexity of the most popular definition of chaos made
by Devaney. There have been several attempts to replacing De-
vaney’s definition with simpler one, and one of them is using topo-
logical properties only, i.e., it uses the transitivity and the densely
many periodic points properties of the function. In this paper, using
these properties, we present a chaotic maps on IT7_; S*. We pro-
duce a sequence space on the n symbols, and show that the (left)
shift map is a chaotic map on it. Then, by building a continuous
bijective map between the sequence space and S', we show that
the angle multiplying map is a chaotic map on S*. From this we
show that a product of angle multiplying maps on IT?_; S* becomes
a chaotic map by constructing densely many periodic points and a
dense orbit. We also show that the function has infinitely many
dense orbits, and the Mobius transformation produces a chaotic
map on T72.

Keywords— angle multiplying map, chaotic map, Mobius trans-
formation.

I. INTRODUCTION

EVANEY introduced a definition of chaotic function in

[7] as follows: A continuous map f : X — X is said to
be chaotic on a metric space X if f is (topologically) transi-
tive, the periodic points of f are dense in X, and f has sensi-
tive dependence on initial conditions. We say that f is (topo-
logically) transitive if for all non-empty open subsets U and
V of X there exists a positive integer k such that f*(U) NV
is nonempty. We also say that f has sensitive dependence on
initial conditions if there is a positive real number § (a sensi-
tivity constant) where, for every neighborhood N of arbitrary
point = in X, there exists a point 4 in N and a nonnegative
integer n such that the nth iterates f™(x) and f™(y) of x and
y respectively, are more than distance J apart.

J. Banks and others showed in [3] that if f : X — X is
transitive and has dense periodic points then f has sensitive
dependence on initial conditions, i.e., chaos rely on topolog-
ical properties, not on metric. Since having a dense orbit im-
plies transitive, a continuous map f on a metric space X is
chaotic if f has a dense orbit and densely periodic points.
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In this paper we show that a product of angle multiplying
maps on I ;| S! becomes chaotic by constructing a dense
orbit and densely many periodic points.

II. SHIFT MAP ON (%, d)

For positive integers n(> 1) and k there exist n* n-ary
sequences of length k such as

..7<07...70’n_1>’
..’<0’...’17n_1>’

n-1,---,n—=10),--,(n—1,---;n—1,n-1).

For every 1 < j < n” there is unique finite sequence
(s1, 82, ..., Sk) where s; € Z, with i € {1,2,...,k} such
that j = 1+ 3%, (Si X nk*i).
(s1,82,...,8k) by c(n,k,j). Clearly, for any 1 < j <
n¥, c(n, k, j) is the j-th n-ary sequences of length k.

We denote the sequence

Example 1 Let n = 4 and k = 3. Then there are 4% = 64
4-ary sequences of length 3 as the following:

(0,0,0), (0,0,1), (0,0,2), (0,0,3),
), (0,1,1),

(3,3,0), (3,3,1), (3,3,2), (3,3,3).
For example, since 1+ (1-4371) 4+ (0-4372) +(0-4373) =
1+ 16 = 17, we get ¢(4,3,17) = (1,0,0). That is, we
have ¢(4,3,1) = (0,0,0), ¢(4,3,4) = (0,0,3), ¢(4,3,5) =

(0,1,0), c(4,3,17) = (1,0,0), and c(4,3,64) = (3,3,3),
etc.

Now we define an operation to combine any two fi-
nite sequences. For any finite sequences (s, ...,s,) and
(t1,...,ty), we define that (sq1,...,8,) & (t1,...,%)
(S1y .oy Sus b1y .oy ty).  Thus, for example, c(4,3,1)
c(4,3,4) = (0,0,0) & (0,0,3) = (0,0,0,0,0,
and ¢(4,3,5) @ ¢(4,3,59) = (0,1,0) @ (3,2,3)
(0,1,0,3,2,3), etc.

We also define that ¢(n, k,j)™ =
<81,82,...,8k>m = @?;1 <81,82,...

I£ao |

@ c(n, k,j), ie.,
,Sk). For any finite se-
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quence (s1, S2, ..., Si;) we define two infinite sequences as fol-

lows:

<817527"'78k>00 :@Ool<817$27"'75k>
= (81,82, -+, Sk, S1y -+, Sk, ---) , and

(51,52, 88)" = (51,80, 5%) © (0)°
<817527“ Skvo 0707 >

For a positive integer n > 1 let

Yn = {(s1,52,53,...)|s; € Zpn}

—{(s1, 82, .., k) ®(n — 1) |k € Nand s; € Zy}

be the sequence space on the n symbols where (n — 1) =

(0)>°. We define a distance, d, between two sequences
s = <81,82,83, . > and t = <t1,t2,t3, > in X,, with 6, =
ﬁ1%_ 5017? = 0; by
) 0 =0 ifo, —0s <1/2
d<5’t)_{ 1—(6,—60,)  iff,—0,>1/2

Since |s; — t;| € Z, for every i, the infinite series is domi-
: : oo n—1

nated by the geometric series > ;2; "~ < 1. Hence we have

the following:

Proposition 2 (X,,, d) is a metric space.

Proof: Clearly, d(s,t) > 0 for any s,t € 3,, and

d(s,t) = 0 if and only if s; = ¢; for all ¢. Since
|si — t;| = |t; — si], it follows that d(s,t) = d(t,s). If
r,s,t € X, then d(r,s) + d(s,t) > d(r,t), because
|’I“Z‘—8i|+|$i—ti|2|’l“i—ti|. g
For every n the (left) shift map o : (X,,d) — (Z,,d)
defined by
0((81,82,83, >) = <82,83,S4, >

is clearly onto, since there are n pre-images under ¢ for any

s € X,. For instance, for (1,0,1,1,...) € X5, we get
-1((1,0,1,1,...)) = {(0,1,0,1,1,...),(1,1,0,1,1,..)}.
That is, for any (s1, s2, 83, ...) € X, we get
o({m, s1, 82,83, ...)) = (s1, 52, 53, ...)
forany m € {0,1,2,...,n — 1}.

For any element s = (s1, $2,83,...) € Zpand 1 <4 < 7,
(Siy Si+1, Sit2, .-, 55) is called the (4, j)-cylinder of s, and
denoted by s(i, 7).

Proposition 3 The shift map o :
tinuous.

(3, d) — (Xn,d) is con-

Proof: For an arbitrary ¢ > 0 and s = (s1, s9, s3, ..
there is a positive integer k such that 2=t

nk
any t = (t1,to,ts,...) satisfies d(s,t) <

) E Xy,
< ¢. Then, for

n—1
nk+1 El

we have
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s(1,k+2) = t(1,k + 2). Hence d(o(s),o(t)) < 7 < e.
That is, the shift map o : (X,,d) = (Zy,d) is contmuous
on (3,,d). 0

We need another operation, difference, on (X, d) by the
following:
For every s = (s1, 89, s3, ..
fine the difference s — ¢ as

S and t = (t1,t9,13,...), we de-

s—1=(s1—1t1,50 —t2,83 — 13,...)

where, if

s—t={(sy —t1,52 —t2,83 — t3,...,sN —tn) B (n — 1)

with sy — ty < n — 1 for some positive integer N, then

S—t:<81—tl,Sg—t2,$3—t3,...,sN—tN+1>0.

It is sufficient to show that there are densely many periodic
points and a dense orbit of o in (3,,, d) to prove that the shift
map o : (X,,d) — (X3,,d) is a chaotic map for any integer
n > 1 (See [1]). First, we will show that there are densely
many periodic points.

Proposition 4 There are densely many periodic points of o

in(X,,d).
Proof: For any finite sequence c(n, k,j) = (s1, S2,, ..., Sk)
with some positive integers k and j < nk, let

S =10(N,k, J)% = (81,82, ey Sky S1552y 5 vevy Sky eve) «

Clearly, s € X, and ok(s) = s. That is, s is a periodic point
of 0.

For any e > 0 there is a positive integer K such that
Yokl n, < €. Clearly, for any t = (t1,t2,...,1;,...) €
¥, there is a positive integer J(< n’*) such that the J-th
n-ary sequence is the (1, K)-cylinder of ¢, i.e., ¢(n, K, J) =
(t1,t,....,tx) = t(1, K). Since we will have Os at least for
the first K terms in ¢ — ¢(n, K, JJ)*®,ie.,t —c(n, K, J)® =

(0,0,...,0,tg+1 — tg, ...) forsome 1 < k < K, we have that
> ‘ti — tk| > n—1
d(t—c(n,K,J)>*) < Z — < Z — <e
i=K+1 =K1

with some 1 < k < K. Therefore there are densely many
periodic points in X3,,. a

For instance, for s = C(4,3,18)® =
we get 03(s) = (1,0,1,1,0,1, ..
odic point of period 3.

(1,0,1,1,0,1,...),
.) = s. That is, s is a peri-

Now, we need to construct a point which will have a dense
orbit. For any positive integer p let

Dy = {dr, da, ds, ..) = Sxz1 (B8] 10(n, b, j)7) € S
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For instance, if n = 2 and p = 1, then
Dl == @k>l (@5210(27]65])1)
= (e%L,0(2,1,5))
® (02,0(2,2,5))
® (82,0(2,3,5)) @
= (c(2,1,1) ® c(2,1,2%))
@ (c(2,2,1) ®¢(2,2,2) @c(z 2 3) ® c(2,2,2%))
( (2 3 1) '6(273725))
= <071>
@ (0,0, 0,1,1,0,1,1>
®(0,0,0,---,1,1,1) @ -
=(0,1,0,0, 0,1,1,0,1,1,0 0,0, -
€ Y.

1,101

Proposition 5 For any positive integer p,
k .
Dy = (di1,da,d3, ...) = p>1 (GB?:lC(W ka])p)
has a dense orbit under o on (L, d).

Proof: For any € > 0 there is a positive integer K such that
Sk St < e Forany t = (t1,tg,13,...) € X, and
each positive integer p there is a positive integer M), such
that (M,,, M, + K — 1)-cylinder of D), is same as c¢(n, K, J)
for some J which is the (1, K)-cylinder of ¢, that is,

<de7d]\/[p+1; deJrQ, ey de+K71> = (t1,t2,t3, ., LK) -

Then d (aMp*l(Dp),t) < YRk 5t < e So, for every
positive integer p, we have that Orb/; (D)) is dense in X,,. O

From the construction of D), we can get a surprising result
as the following.

Proposition 6 There are infinitely many dense orbits of o in
PINY

Proof: It is clear that, if p # ¢, then we have o* (Dp) # Dy
for any integer £ > 0. Therefore there are infinitely many

dense orbits of o in X,,. O

For example, let n = 2, p = 1 and ¢ = 2. Then we have

Dy = ®p>1 (@?k10(2 k j)1>

={(0,1,0,0,0,1,1,0,1,1,0,0,0,---,1,1,0,-- )

Dy = @p>1 (69?;10(2= k’j)2)
= (c(2,1,1)2 & c(2,1,21)?)
® (c(2,2,1)2®¢(2,2,2)? ®¢(2,2,3)? ® c(2,2,22)?)
@ (c(2,3,1)%¢(2,3,2%)?) - -
=(0,0,1,1,0,0,0,0,0,1,0,1,---,1,1,0,--)
For e = 0.2, there is £k = 3 such that

=1 1 1

— =+
4795
i 2 22

1
< =<02=c¢

+ - 23
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For an arbitrary sequence ¢ € Y, say t = (1,1,0,0,1,---),
the (1, 3)-cylinder of ¢, (1,1,0), is the (29, 31)-cylinder of
D and the (57,59)-cylinder of Dy. We get

d(c**(D1),1)

d“llOJJJu)JLLOﬁJ,~»
<Xy =3<02=e
d(056(D2)7 )
=d((1,1,0,1,1,0---),(1,1,0,0,1,- - -))
<EX:=5<02=¢e

Hence D and D> have dense orbits in o9, and it is true for
any positive integer p.

Since there are densely many periodic points (Proposition
4) and a (actually infinitely many) dense orbit(s) of o on
(35, d) for every integer n > 1 (Propositions 5 and 6), the
(left) shift map o : (£,,,d) — (X,,d) is a chaotic map for
any n.

III. CHAOTIC MAPS ON S!

For any integer n > 1 we define the angle multiplying map,
Py 2 St — S, by ¢, (2) = 2". Clearly, an angle multiplying
map 1), is an onto map on S* with v, (e2™%) 2mind for
0<6<1.

For a positive integer k, let €>™¢ ¢ S1 be a perlodlc point
of 4y, with period k, i.e., €270 = )} (£27i0) = 2min*0 Then
6 should satisfy the equation § = n*6 (mod 1). That is, (n*

1)6 = 0 (mod 1). Since 0 < 0 < 1, for any

2
0
e

we get YF (e2™0) = 2™ That is, 6 is a periodic point with
a period < k. Hence, for any ¢ > 0 and any point z =
e?™7 ¢ Sl there is a sufficiently large positive integer K s.t.
|7 — 1371| < eforsomei € {0,1,2,...,n® —2}. Thus, for
any positive integer k and i € {0,1,2, ..., n* — 2}, the set of
periodic points, including fixed points, of 1,

2740 lip i
{e ESW*nk_l}

is dense in S'. That is, there are densely periodic points of
an angle multiplying map 1, in S* for any integer n > 1.

= €

1\1':0,1,2,...,71’“—2},

Example 7 Forn =2 and k = 2, % and % are the images of
each other under the angle doubling map 1. That is, {%, %}
is a periodic orbit. If k = 3, then there are two periodic
orbits such as {7, z 7} and {?, %, %} Note that 0 is a fixed
point for both.
On the other hand, if n = 3 and k = 2, then

i i

0= = =
nkf—-1 32-1

0| =.

So, we have three orbits, {8, 33.{2.5}, {3, L} of period 2,
and two fixed points, O and 5
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We are ready to define a map between S* and (2, d). For
every integer n > 1 each point § € [0,1) = S can be
denoted by the n-ary expansion such as § = > 72 % with
t; € {0,1,2,....n — 1}.

Now we define a map ¢, : S* — %, by

on(z) = on (627”9) = (t1,t2,t3,...) € Xy
where z = 2™ ¢ St with § = 3.2, Zz.
It is trivial that ¢, : S' — X, is 1-1. Since, for any
(t1,ta,t3,...) € Xy, we get > 2, % € [0,1) = S, the map

@, : S — ¥, is onto.

We need a distance, d’, on S* for a fixed n. For any z =
e?™0 and w = €™ with § = Y22, Stand T = 3% %,
let s = (s1, 82, --) and t = (t1,t2,--) in 3,,. We define the
distance d’ by d’(z,w) = d(s,t). Than we have the follow-
ing.

Proposition 8 For any integer n > 1, ¢, : S' — %, and
oot %, — St are continuous.

Proof: For any integer ¥ > O and j = 0,1,2,...,n"F — 1,
denote Ay; = [njk , J:l) Then [(Ag;) = %, and for any

r o= 372 o € Agj, ai,ap,..,aq are fixed. Hence for
any s = <81,82,...> and t = <t1,t2,...> € X, with s; = t;
fori = 1,2,....k, we have d(s,t) < n—lk Then there exist

j € {0,1,2,3,...,n¥

— 1} st gpl(e), @pl(t) € Aw.

Therefore d(¢,'(s), ¢, (t)) < I(Ax;) = - and
ool T, — Stis continuous.
By the similar way, ¢, : S* — ¥, is continuous. a

Hence it is clear that the diagram Figure 1 is commutative,

1.8.: 00 @Yy = ©Yn 0 Yy
z = 627”)0 z/)n(z) _ . wn(z> eQm@n
Sl >~ Sl
on(2) = pn(e¥™?)
with 6 = 7%, iﬁ
= <t1,t2,t3,...>
! O’(<t1,t2,t3, >) = <t2,t3,t4, > !
b > 2up
p = (t1,t2,t3,...) o(p) = (ta,t3,ta,..)

Fig. 1 Commutative Diagram: o o @y, = @y 0 Yn

From Propositions 3 and 8 the map

¢n:W;1000@n St — 5t

is continuous. By Propositions 4 and 6 it is clear that there
are densely many periodic points and infinitely many dense
orbits of the map 1), in S* for every positive integer n > 1.
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That is, the preimages of dense orbits and periodic points of &
on (X, d) under ,, become dense orbits and periodic points
of 4, on S!, respectively. Therefore 1, is a chaotic map on
S1 for any integer n > 1.

IV. CONCLUSION
Let M be an arbitrary positive integer, and n;(> 1) a posi-
tive integer for each 1 < i < M. Define amap ¥ = 1M ),
on [T, St with
VPp, = 4)07;_1 oo oy : St — St

To show the map W is a chaotic map on IT,; S we need the
following two lemmas.

Lemma 9 There exist densely many periodic points of ¥ =
M, 4y, on TIM | S

Proof: Let ¢ > 0 and Hj]‘/il
trary point in Hj]‘/ilS U with 0; =
{0,1,2, ...,
such that
o0\ 2
d (o, (), (tG1) G2y o tiky) ) < &2/M.

Hence we get

zj = HM e2™% an arbi-

o8] (J 1)
i=1 p
nj

nj — 1}. Then, for j = 1,2, ...,

where t(;;) €
M, there are K;

\/Z?ild (on, ). (t0- b rtiy) ) <=

Then HJ 1n; <t(j,1), L(j,2)s s t(j7Kj)> is a periodic point
of ¥ with the period of lem(K1, K, ..., Kjr) and

d (HMlzj,Hj]\iltp;le <t(j71), L(j,2)5 -+ t(j7Kj)>OO) <e. O

For instance, let M = 2,¢ = 0.01,n; = 3 and no = 2.
From £2/M = (0.01)%/2 = 0.00005, we pick K1 = 5 and
Ky = 8 since

1/3% ~ 0.000017 < 0.00005 < 0.000152 ~ 1/3* and
1/28 ~ 0.000015 < 0.00005 < 0.000061 ~ 1/27.

For an arbitrary point in S' x S, say (21, z2), from 2z; =

™% where ; = 0.7 = Y%, "L with ) € {0,1,2}
and zp = €2™% where f; = 0.12 = Y22, tg";” where
t(2,5) € {0,1}, we have
o t X
6, = i:l (?1)1>
:3""324'33"'34""35'1'36+ and
02 :Zz 1 (22)

- 1 1 1 1,0, 1
—2+zz+zs+27+2*5+2*6+2*7+2*8+79+““
Hence we get

<270307232703"'>a
<070707171717170717'”>7

p3(21) =
pa(22) =
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d(<2 0, 0 2,2, 0 0,2, > (2,0,0,2,2)%)?
=d((2,0,0,2,2,0,0,2,---),(2,0,0,2,2,2,0,0---))*
2 2
< (2262) < (3) ~0.000017 < 0.00005,
oo\ 2
d (802(22)a <t(2,1)7 t(2,2)5 - t(2,8)> )
= d((0,0,0,1,1,1,1,0,1,---),(0,0,0,1,1,1,1,0)>)?

((0,0,0,1,1,1,1,0,1,
(Z;’ig %)2 < (5)” ~ 0.000015 < 0.00005.

IN

Hence we have

\/Ejf‘ild (sonj(z]-) <t(g )5 L2y b K >>OO)2

2 2
< \/ (Z262) + (22 %)
< 1/0.00005 + 0.00005 = 0.01 = e.
Clearly,

H?:M;} <t(j,1)7 b2y t(j,Kj)>oooo
= (9051 <t<171>vt<1,2>:'~»t<1,5>> )

07! <t(2,1)7t(2,2)a "'7t(2,8)> )
is a periodic point in S* x S! with the period of 40 =

lem(Ky, K9) = lem(5,8), and

d ((ZLZQ),HJ 19n; <t(] 1), 2)7""t(juKJ')>OO) <€

Lemma 10 For any positive integer M and n; > 1 for i =
1,2, ..., M, there is a point (21, ..., 2p) € Hf\ilSl having a
dense orbit of U = M 4,,., that is, Orby((z1, ..., 201)) is
dense in TIM | S1.

Proof: For every positive integer k, let
k M k t—1,k
Ngy = 2y qn;  and Nt = I _yn;

with

Nf_ =1 and N}, =1.

Foreacht =1,2, ...,

k . Nk Ntk—
2t = (pnt EBk: 1 (@ C(’I’Lt,k‘,]) =+ )

e St

M define

Since, for every t = 1,2, ...,
sequences of length & with k =
Orby, (z)is dense in S™.

ng
For an arbitrary point (s1, s2, ..., Sp7) in Hi]\ilS1 and any
€ > 0, there exist least positive integers K; and j; such that

M, z; contains all the ng-ary
1,2,..., it is clear that

d (Cpnt (St)7 c(ntv Ktv.jt)o) < SZ/M.
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),{0,0,0,1,1,1,1,0,0,---))?

Let K = maac{Kl, Ko, -
integer J; such that c(n, Ky, ji)
1.e.,

d (on,(s1),c(ne, K, 1)) = d (on,(s1), c(ng, Ky, j1)°)
< &2/M.

,Kpr}. Then there is a positive
®(0) 7 = e(ny, K, Jy),

The first n;-ary sequence of length K will appear af-
ter ZkK:_ll k (Hf‘il nf) terms in ¢p,(2z;) for every t =

2,..,M.Foreacht =1,2,.... M —1, ¢(ny, K, J;) will ap-
pear after Y"1 ((Jt ~ DKM, an) terms later from
the starting of the first n;-ary sequence of length K in z;. And
c(npr, K, Jpr) appears after Jjs terms later from the starting
of the first n,-ary sequence of length K in zj;, Therefore,

nZK) + Jum,
c(ap(zt),K, Jy)) and

d (Stwa(Zt)) =d @nt(st)»c(nthv Jt)o) <
foreacht =1,2, ...,

-1/ M M

‘ i=t+1
we have c(ny, K, J;) =
e2/M

M . Hence we have

‘(81, 892y 4ny SM) — \I’L ((Zl, 22y eeny ZM))‘
< VSML @ (51,905 (2)
< \JSM d (pn, (50). el K, J)P)

<\/SM e2/M =e.

Therefore the point (21, ..., zar) € 1M, S has a dense orbit
of U = MM, 4,,, that is, Orby, ((21,.. zpyr)) is dense in
M, st O

For example, let M = 3,n1 =5,n9 =2,n3 =3, =0.1
and

M
(51, 82, 83) = (627ri917627ri927627ri93> c H gl
i=1
with 81 = 0.635, 65 = 0.22 and 63 = 0.582. From 52/M =
0.01/3 = 1/300 and 1/5* = 1/625 < 1/300,1/2° =
1/512 < 1/300,1/3% = 1/720 < 1/300, we get K| =
4, Ky = 9and K3 = 6. That is,

K =maz{4,9,6} =9

We also find that £ + g% + & = 0.6336,% + 5 +
3 + o5 = 02207,3 + % + 55 + 35 = 0.5816, and
01 — 0.6336] < 1/300 |6 — 0.2207] < 1/300,]05 —
0.5816] < 1/300. For (t1,t2,---,tx) = c(n,k,j) we have
j=14+3F, (ti X nk*i). So, from

(3,0,4,1,0,0,0,0,0) = ¢(5,9,.J1),

(0,0,1,1,1,0,0,0,1) = ¢(2,9,J2), and

(1,2,0,2,0,1,0,0,0) = ¢(3,9,J3),
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we get
Ji = 1—5—2?21 (tiX59_i)
= 143-5%5+4.5041.5%=1237501,
Jo = 1+0, (4 x 207
= 1-2641.2541-2441=114,
J3o= 1430 (ti x 397

1-334+42.374+2-354+1-3% =11449.

Hence we get

Sk (T )
+ X (= DE T nf)
Ny
= 22:1 k ( ?:1 nf)
+3i ((Jt — D941 ”?)
+Js
= [11_[?:1”11 +2H?:1"12 +"'+8H?:1”§
[1237500 9T, n? +113 -9}y nd
111449
= [1-10+2-38+ -+ 8- 397442]
(1237500 - 9 - 20195 + 113 - 9 - 19683]
11449

= 3861578 + 224941830111 + 11448
224945703137,

L =

and the (224945703137,224945703137 + 8)-cylinders of
21, z9 and zz are ¢(5,9, J1), ¢(2,9, J2) and ¢(3, 9, J3). There-
fore we have

) — YRANASTOIIT (5 2 20|

< \/Z?:1 d (s¢,1)224945T03137 (1))
< /S d (pu, (51), €10, 9, J1)0)

< /32 _,1/300 < 0.1 = .

That is, (21, 22, 23) has a dense orbit in IT}, S1.

|(817 52,53

From Lemma 9 and 10 we have the main theorem:

Theorem 11 For any positive integer M let n; > 1 be an
integer for every 1 < ¢ < M. Then ¥ = Hf‘ilwni is a
chaotic map on 1124, S1.

Corollary 12 and 13 follows the main theorem 11 and
Lemma 9 and 10.

Corollary 12 For an arbitrary positive integer M there are
infinitely many dense orbits of ¥ = TIM | 1,,. on TIM | S*.

Forany ¢t =1,2,..., M let n; > 1 be a positive integer. For
any positive integer u let w* = (w{, wy, - - -, w};) with

nk Nk Nt’i
wlg = QOT_Ltl (EBzol <@]t_l [C(nt7 kv]) @ <0>u] t+> )
c ShL
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Itis clear that Orbg, (w®) = Orby ((w¥, ..., wY,)) is dense in
M, St and w® = (w,...,wY,) € OrbL(wy, ..., wy,)) =
Orb(¥)*(w") if u # v. Therefore there are infinitely many
dense orbits in T} S*.

Corollary 13 For every two positive integers ni,no > 1, the

ni

0 is a chaotic map on T?.

Mobius transformation (

For every two positive integers ni,ny > 1, the Mobius

transformation m 0 can be defined by ¥ =

0 ne
M 4y, = 1, X tby,, which is a chaotic map.

Using the revised definition of chaotic map ([1] and [3])
we show that the (left) shift map on the sequence set (X, d)
is a chaotic map by finding densely many periodic points
and a dense orbit of the shift map on (X,d). After mak-
ing a 1-1, onto and continuous map between S and (X, d),
we show that an angle multiplying map on S! is a composi-
tion of the shift map on (X, d) and the map between S' and
(X, d), which become a chaotic map on S'. We prove that
any combination of angle multiplying maps on T, S' be-
come a chaotic map by finding densely many periodic points
and a dense orbit of it. Through the construction of such
chaotic map on T, S1 in the main theorem (11) and lem-
mas (9 and 10), we have found that there are infinitely many
dense orbits and the Mobius transformation is a chaotic map
on T2
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