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Abstract— It has been very difficult to find a dense orbit point
and densely many periodic points of a chaotic map. One of the rea-
sons is the complexity of the most popular definition of chaos made
by Devaney. There have been several attempts to replacing De-
vaney’s definition with simpler one, and one of them is using topo-
logical properties only, i.e., it uses the transitivity and the densely
many periodic points properties of the function. In this paper, using
these properties, we present a chaotic maps on Πn

i=1S
1. We pro-

duce a sequence space on the n symbols, and show that the (left)
shift map is a chaotic map on it. Then, by building a continuous
bijective map between the sequence space and S1, we show that
the angle multiplying map is a chaotic map on S1. From this we
show that a product of angle multiplying maps on Πn

i=1S
1 becomes

a chaotic map by constructing densely many periodic points and a
dense orbit. We also show that the function has infinitely many
dense orbits, and the Möbius transformation produces a chaotic
map on T 2.

Keywords— angle multiplying map, chaotic map, Mobius trans-
formation.

I. INTRODUCTION

D EVANEY introduced a definition of chaotic function in
[7] as follows: A continuous map f : X → X is said to

be chaotic on a metric space X if f is (topologically) transi-
tive, the periodic points of f are dense in X , and f has sensi-
tive dependence on initial conditions. We say that f is (topo-
logically) transitive if for all non-empty open subsets U and
V of X there exists a positive integer k such that fk(U) ∩ V
is nonempty. We also say that f has sensitive dependence on
initial conditions if there is a positive real number δ (a sensi-
tivity constant) where, for every neighborhoodN of arbitrary
point x in X , there exists a point y in N and a nonnegative
integer n such that the nth iterates fn(x) and fn(y) of x and
y respectively, are more than distance δ apart.

J. Banks and others showed in [3] that if f : X → X is
transitive and has dense periodic points then f has sensitive
dependence on initial conditions, i.e., chaos rely on topolog-
ical properties, not on metric. Since having a dense orbit im-
plies transitive, a continuous map f on a metric space X is
chaotic if f has a dense orbit and densely periodic points.
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In this paper we show that a product of angle multiplying
maps on Πn

i=1S
1 becomes chaotic by constructing a dense

orbit and densely many periodic points.

II. SHIFT MAP ON (Σn, d)

For positive integers n(> 1) and k there exist nk n-ary
sequences of length k such as

〈0, · · · , 0, 0〉 , · · · , 〈0, · · · , 0, n− 1〉 ,
〈0, · · · , 1, 0〉 , · · · , 〈0, · · · , 1, n− 1〉 ,

. . .
〈n− 1, · · · , n− 1, 0〉 , · · · , 〈n− 1, · · · , n− 1, n− 1〉 .

For every 1 ≤ j ≤ nk there is unique finite sequence
〈s1, s2, ..., sk〉 where si ∈ Zn with i ∈ {1, 2, ..., k} such
that j = 1 +

∑k
i=1

(
si × nk−i

)
. We denote the sequence

〈s1, s2, ..., sk〉 by c(n, k, j). Clearly, for any 1 ≤ j ≤
nk, c(n, k, j) is the j-th n-ary sequences of length k.

Example 1 Let n = 4 and k = 3. Then there are 43 = 64
4-ary sequences of length 3 as the following:

〈0, 0, 0〉 , 〈0, 0, 1〉 , 〈0, 0, 2〉 , 〈0, 0, 3〉 ,
〈0, 1, 0〉 , 〈0, 1, 1〉 , 〈0, 1, 2〉 , 〈0, 1, 3〉 ,
· · · · · · · · · · · ·

〈3, 3, 0〉 , 〈3, 3, 1〉 , 〈3, 3, 2〉 , 〈3, 3, 3〉 .

For example, since 1 + (1 · 43−1) + (0 · 43−2) + (0 · 43−3) =
1 + 16 = 17, we get c(4, 3, 17) = 〈1, 0, 0〉. That is, we
have c(4, 3, 1) = 〈0, 0, 0〉 , c(4, 3, 4) = 〈0, 0, 3〉 , c(4, 3, 5) =
〈0, 1, 0〉 , c(4, 3, 17) = 〈1, 0, 0〉, and c(4, 3, 64) = 〈3, 3, 3〉,
etc.

Now we define an operation to combine any two fi-
nite sequences. For any finite sequences 〈s1, ..., su〉 and
〈t1, ..., tv〉, we define that 〈s1, ..., su〉 ⊕ 〈t1, ..., tv〉 =
〈s1, ..., su, t1, ..., tv〉. Thus, for example, c(4, 3, 1) ⊕
c(4, 3, 4) = 〈0, 0, 0〉 ⊕ 〈0, 0, 3〉 = 〈0, 0, 0, 0, 0, 3〉
and c(4, 3, 5) ⊕ c(4, 3, 59) = 〈0, 1, 0〉 ⊕ 〈3, 2, 3〉 =
〈0, 1, 0, 3, 2, 3〉, etc.

We also define that c(n, k, j)m = ⊕mi=1c(n, k, j), i.e.,
〈s1, s2, ..., sk〉m = ⊕mi=1 〈s1, s2, ..., sk〉. For any finite se-
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quence 〈s1, s2, ..., sk〉we define two infinite sequences as fol-
lows:

〈s1, s2, ..., sk〉∞ = ⊕∞i=1 〈s1, s2, ..., sk〉
= 〈s1, s2, ..., sk, s1, ..., sk, ...〉 , and

〈s1, s2, ..., sk〉0 = 〈s1, s2, ..., sk〉 ⊕ 〈0〉∞
= 〈s1, s2, ..., sk, 0, 0, 0, ...〉 .

For a positive integer n > 1 let

Σn = {〈s1, s2, s3, ...〉 |sj ∈ Zn}
−{〈s1, s2, ..., sk〉 ⊕ 〈n− 1〉∞ |k ∈ N and sj ∈ Zn}

be the sequence space on the n symbols where 〈n− 1〉∞ =
〈0〉∞. We define a distance, d, between two sequences
s = 〈s1, s2, s3, ...〉 and t = 〈t1, t2, t3, ...〉 in Σn with θs =∑∞
i=1

si
ni
≤
∑∞
i=1

ti
ni

= θt by

d(s, t) =

{
θt − θs if θt − θs ≤ 1/2
1− (θt − θs) if θt − θs > 1/2

Since |si − ti| ∈ Zn for every i, the infinite series is domi-
nated by the geometric series

∑∞
i=1

n−1
ni ≤ 1. Hence we have

the following:

Proposition 2 (Σn, d) is a metric space.

Proof: Clearly, d(s, t) ≥ 0 for any s, t ∈ Σn, and
d(s, t) = 0 if and only if si = ti for all i. Since
|si − ti| = |ti − si|, it follows that d(s, t) = d(t, s). If
r, s, t ∈ Σn, then d(r, s) + d(s, t) ≥ d(r, t), because
|ri − si|+ |si − ti| ≥ |ri − ti|. ut

For every n the (left) shift map σ : (Σn, d) → (Σn, d)
defined by

σ(〈s1, s2, s3, ...〉) = 〈s2, s3, s4, ...〉

is clearly onto, since there are n pre-images under σ for any
s ∈ Σn. For instance, for 〈1, 0, 1, 1, ...〉 ∈ Σ2, we get
σ−1(〈1, 0, 1, 1, ...〉) = {〈0, 1, 0, 1, 1, ...〉 , 〈1, 1, 0, 1, 1, ...〉}.
That is, for any 〈s1, s2, s3, ...〉 ∈ Σn, we get

σ(〈m, s1, s2, s3, ...〉) = 〈s1, s2, s3, ...〉

for any m ∈ {0, 1, 2, ..., n− 1}.
For any element s = 〈s1, s2, s3, ...〉 ∈ Σn and 1 ≤ i ≤ j,
〈si, si+1, si+2, ..., sj〉 is called the (i, j)-cylinder of s, and
denoted by s(i, j).

Proposition 3 The shift map σ : (Σn, d) → (Σn, d) is con-
tinuous.

Proof: For an arbitrary ε > 0 and s = 〈s1, s2, s3, ...〉 ∈ Σn,
there is a positive integer k such that n−1

nk < ε. Then, for
any t = 〈t1, t2, t3, ...〉 satisfies d(s, t) < n−1

nk+1 , we have

s(1, k + 2) = t(1, k + 2). Hence d(σ(s), σ(t)) ≤ n−1
nk < ε.

That is, the shift map σ : (Σn, d) → (Σn, d) is continuous
on (Σn, d). ut

We need another operation, difference, on (Σn, d) by the
following:
For every s = 〈s1, s2, s3, ...〉 and t = 〈t1, t2, t3, ...〉, we de-
fine the difference s− t as

s− t = 〈s1 − t1, s2 − t2, s3 − t3, ...〉

where, if

s− t = 〈s1 − t1, s2 − t2, s3 − t3, ..., sN − tN 〉 ⊕ 〈n− 1〉∞

with sN − tN < n− 1 for some positive integer N , then

s− t = 〈s1 − t1, s2 − t2, s3 − t3, ..., sN − tN + 1〉0 .

It is sufficient to show that there are densely many periodic
points and a dense orbit of σ in (Σn, d) to prove that the shift
map σ : (Σn, d) → (Σn, d) is a chaotic map for any integer
n > 1 (See [1]). First, we will show that there are densely
many periodic points.

Proposition 4 There are densely many periodic points of σ
in (Σn, d).

Proof: For any finite sequence c(n, k, j) = 〈s1, s2, , ..., sk〉
with some positive integers k and j ≤ nk, let

s = c(n, k, j)∞ = 〈s1, s2, , ..., sk, s1, s2, , ..., sk, ...〉 .

Clearly, s ∈ Σn, and σk(s) = s. That is, s is a periodic point
of σ.
For any ε > 0 there is a positive integer K such that∑∞
i=K+1

n−1
ni < ε. Clearly, for any t = 〈t1, t2, ..., tl, ...〉 ∈

Σn, there is a positive integer J(≤ nK) such that the J-th
n-ary sequence is the (1,K)-cylinder of t, i.e., c(n,K, J) =
〈t1, t2, ..., tK〉 = t(1,K). Since we will have 0s at least for
the first K terms in t− c(n,K, J)∞, i.e., t− c(n,K, J)∞ =
〈0, 0, ..., 0, tK+1 − tk, ...〉 for some 1 ≤ k ≤ K, we have that

d (t− c(n,K, J)∞) ≤
∞∑

i=K+1

|ti − tk|
ni

≤
∞∑

i=K+1

n− 1

ni
< ε

with some 1 ≤ k ≤ K. Therefore there are densely many
periodic points in Σn. ut

For instance, for s = C(4, 3, 18)∞ = 〈1, 0, 1, 1, 0, 1, ...〉,
we get σ3(s) = 〈1, 0, 1, 1, 0, 1, ...〉 = s. That is, s is a peri-
odic point of period 3.

Now, we need to construct a point which will have a dense
orbit. For any positive integer p let

Dp = 〈d1, d2, d3, ...〉 = ⊕k≥1

(
⊕nk

j=1c(n, k, j)
p
)
∈ Σn.
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For instance, if n = 2 and p = 1, then
D1 = ⊕k≥1

(
⊕2k
j=1c(2, k, j)

1
)

=
(
⊕21
j=1c(2, 1, j)

)
⊕
(
⊕22
j=1c(2, 2, j)

)
⊕
(
⊕23
j=1c(2, 3, j)

)
⊕ · · ·

=
(
c(2, 1, 1)⊕ c(2, 1, 21)

)
⊕
(
c(2, 2, 1)⊕ c(2, 2, 2)⊕ c(2, 2, 3)⊕ c(2, 2, 22)

)
⊕
(
c(2, 3, 1) · · · c(2, 3, 23)

)
⊕ · · ·

= 〈0, 1〉
⊕ 〈0, 0, 0, 1, 1, 0, 1, 1〉
⊕ 〈0, 0, 0, · · · , 1, 1, 1〉 ⊕ · · ·

= 〈0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, · · · , 1, 1, 1, · · ·〉
∈ Σ2.

Proposition 5 For any positive integer p,

Dp = 〈d1, d2, d3, ...〉 = ⊕k≥1

(
⊕nk

j=1c(n, k, j)
p
)

has a dense orbit under σ on (Σn, d).

Proof: For any ε > 0 there is a positive integer K such that∑∞
i=K+1

n−1
ni < ε. For any t = 〈t1, t2, t3, ...〉 ∈ Σn and

each positive integer p there is a positive integer Mp such
that (Mp,Mp +K − 1)-cylinder of Dp is same as c(n,K, J)
for some J which is the (1,K)-cylinder of t, that is,〈
dMp , dMp+1, dMp+2, ..., dMp+K−1

〉
= 〈t1, t2, t3, ..., tK〉 .

Then d
(
σMp−1(Dp), t

)
<
∑∞
i=K+1

n−1
ni < ε. So, for every

positive integer p, we have that Orb+σ (Dp) is dense in Σn. ut

From the construction of Dp we can get a surprising result
as the following.

Proposition 6 There are infinitely many dense orbits of σ in
Σn.

Proof: It is clear that, if p 6= q, then we have σk(Dp) 6= Dq

for any integer k ≥ 0. Therefore there are infinitely many
dense orbits of σ in Σn. ut

For example, let n = 2, p = 1 and q = 2. Then we have

D1 = ⊕k≥1

(
⊕2k
j=1c(2, k, j)

1
)

= 〈0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, · · · , 1, 1, 0, · · ·〉

D2 = ⊕k≥1

(
⊕2k
j=1c(2, k, j)

2
)

=
(
c(2, 1, 1)2 ⊕ c(2, 1, 21)2

)
⊕
(
c(2, 2, 1)2 ⊕ c(2, 2, 2)2 ⊕ c(2, 2, 3)2 ⊕ c(2, 2, 22)2

)
⊕
(
c(2, 3, 1)2 · · · c(2, 3, 23)2

)
⊕ · · ·

= 〈0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, · · · , 1, 1, 0, · · ·〉
For ε = 0.2, there is k = 3 such that

∞∑
i=k+1

1

2i
=

1

24
+

1

25
+ · · · < 1

23
< 0.2 = ε.

For an arbitrary sequence t ∈ Σ2, say t = 〈1, 1, 0, 0, 1, · · ·〉,
the (1, 3)-cylinder of t, 〈1, 1, 0〉, is the (29, 31)-cylinder of
D1 and the (57, 59)-cylinder of D2. We get

d(σ28(D1), t)
= d (〈1,1,0, 1, 1, 1 · · ·〉 , 〈1,1,0, 0, 1, · · ·〉)
< Σ∞i=4

1
2i

= 1
8 < 0.2 = ε.

d(σ56(D2), t)
= d (〈1,1,0, 1, 1, 0 · · ·〉 , 〈1,1,0, 0, 1, · · ·〉)
< Σ∞i=4

1
2i

= 1
8 < 0.2 = ε.

Hence D1 and D2 have dense orbits in σ2, and it is true for
any positive integer p.

Since there are densely many periodic points (Proposition
4) and a (actually infinitely many) dense orbit(s) of σ on
(Σn, d) for every integer n > 1 (Propositions 5 and 6), the
(left) shift map σ : (Σn, d) → (Σn, d) is a chaotic map for
any n.

III. CHAOTIC MAPS ON s1

For any integer n > 1 we define the angle multiplying map,
ψn : S1 → S1, by ψn(z) = zn. Clearly, an angle multiplying
map ψn is an onto map on S1 with ψn(e2πiθ) = e2πinθ for
0 ≤ θ < 1.

For a positive integer k, let e2πiθ ∈ S1 be a periodic point
of ψn with period k, i.e., e2πiθ = ψkn(e2πiθ) = e2πinkθ. Then
θ should satisfy the equation θ ≡ nkθ (mod 1). That is, (nk−
1)θ ≡ 0 (mod 1). Since 0 ≤ θ < 1, for any

θ ∈
{

i

nk − 1
|i = 0, 1, 2, ..., nk − 2

}
,

we get ψkn(e2πiθ) = e2πiθ. That is, θ is a periodic point with
a period ≤ k. Hence, for any ε > 0 and any point z =
e2πiτ ∈ S1, there is a sufficiently large positive integer K s.t.
|τ − i

nK−1
| < ε for some i ∈ {0, 1, 2, ..., nK − 2}. Thus, for

any positive integer k and i ∈ {0, 1, 2, ..., nk − 2}, the set of
periodic points, including fixed points, of ψn,{

e2πiθ ∈ S1|θ =
i

nk − 1

}
is dense in S1. That is, there are densely periodic points of
an angle multiplying map ψn in S1 for any integer n > 1.

Example 7 For n = 2 and k = 2, 1
3 and 2

3 are the images of
each other under the angle doubling map ψ2. That is, {1

3 ,
2
3}

is a periodic orbit. If k = 3, then there are two periodic
orbits such as {1

7 ,
2
7 ,

4
7} and {3

7 ,
6
7 ,

5
7}. Note that 0 is a fixed

point for both.
On the other hand, if n = 3 and k = 2, then

θ =
i

nk − 1
=

i

32 − 1
=
i

8
.

So, we have three orbits, {1
8 ,

3
8}, {

2
8 ,

6
8}, {

5
8 ,

7
8} of period 2,

and two fixed points, 0 and 1
2 .
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We are ready to define a map between S1 and (Σn, d). For
every integer n > 1 each point θ ∈ [0, 1) = S1 can be
denoted by the n-ary expansion such as θ =

∑∞
i=1

ti
ni with

ti ∈ {0, 1, 2, ..., n− 1}.
Now we define a map ϕn : S1 → Σn by

ϕn(z) = ϕn
(
e2πiθ

)
= 〈t1, t2, t3, ...〉 ∈ Σn

where z = e2πiθ ∈ S1 with θ =
∑∞
i=1

ti
ni .

It is trivial that ϕn : S1 → Σn is 1-1. Since, for any
〈t1, t2, t3, ...〉 ∈ Σn we get

∑∞
i=1

ti
ni ∈ [0, 1) = S1, the map

ϕn : S1 → Σn is onto.
We need a distance, d′, on S1 for a fixed n. For any z =

e2πiθ and w = e2πiτ with θ =
∑∞
i=1

si
ni and τ =

∑∞
i=1

ti
ni ,

let s = 〈s1, s2, · · ·〉 and t = 〈t1, t2, · · ·〉 in Σn. We define the
distance d′ by d′(z, w) = d(s, t). Than we have the follow-
ing.

Proposition 8 For any integer n > 1, ϕn : S1 → Σn and
ϕ−1
n : Σn → S1 are continuous.

Proof: For any integer k > 0 and j = 0, 1, 2, ..., nk − 1,
denote Akj =

[
j
nk ,

j+1
nk

)
. Then l(Akj) = 1

nk , and for any
x =

∑∞
i=1

ai
ni ∈ Akj , a1, a2, ..., ak are fixed. Hence for

any s = 〈s1, s2, ...〉 and t = 〈t1, t2, ...〉 ∈ Σn with si = ti
for i = 1, 2, ..., k, we have d(s, t) < 1

nk . Then there exist
j ∈ {0, 1, 2, 3, ..., nK − 1} s.t. ϕ−1

n (s), ϕ−1
n (t) ∈ Akj .

Therefore d(ϕ−1
n (s), ϕ−1

n (t)) < l(Akj) = 1
nk , and

ϕ−1
n : Σn → S1 is continuous.

By the similar way, ϕn : S1 → Σn is continuous. ut

Hence it is clear that the diagram Figure 1 is commutative,
i.e.: σ ◦ ϕn = ϕn ◦ ψn.

-

?
-

?

S1 S1
ψn(z) = znz = e2πiθ ψn(z) = e2πiθn

ϕn(z) = ϕn(e2πiθ)

with θ =
∑∞
i=1

ti
ni

= 〈t1, t2, t3, ...〉

Σn Σn

σ(〈t1, t2, t3, ...〉) = 〈t2, t3, t4, ...〉

p = 〈t1, t2, t3, ...〉 σ(p) = 〈t2, t3, t4, ...〉

Fig. 1 Commutative Diagram: σ ◦ ϕn = ϕn ◦ ψn

From Propositions 3 and 8 the map

ψn = ϕ−1
n ◦ σ ◦ ϕn : S1 → S1

is continuous. By Propositions 4 and 6 it is clear that there
are densely many periodic points and infinitely many dense
orbits of the map ψn in S1 for every positive integer n > 1.

That is, the preimages of dense orbits and periodic points of σ
on (Σn, d) under ϕn become dense orbits and periodic points
of ψn on S1, respectively. Therefore ψn is a chaotic map on
S1 for any integer n > 1.

IV. CONCLUSION

Let M be an arbitrary positive integer, and ni(> 1) a posi-
tive integer for each 1 ≤ i ≤M . Define a map Ψ = ΠM

i=1ψni

on ΠM
i=1S

1 with

ψni = ϕ−1
ni
◦ σ ◦ ϕni : S1 → S1.

To show the map Ψ is a chaotic map on ΠM
i=1S

1 we need the
following two lemmas.

Lemma 9 There exist densely many periodic points of Ψ =
ΠM
i=1ψni on ΠM

i=1S
1.

Proof: Let ε > 0 and ΠM
j=1zj = ΠM

j=1e
2πiθj an arbi-

trary point in ΠM
j=1S

1 with θj =
∑∞
i=1

t(j,i)
ni
j

where t(j,i) ∈
{0, 1, 2, ..., nj − 1}. Then, for j = 1, 2, ...,M , there are Kj

such that

d
(
ϕnj (zj),

〈
t(j,1), t(j,2), ..., t(j,Kj)

〉∞)2
< ε2/M.

Hence we get√
ΣM
j=1d

(
ϕnj (zj),

〈
t(j,1), t(j,2), ..., t(j,Kj)

〉∞)2
< ε.

Then ΠM
j=1ϕ

−1
nj

〈
t(j,1), t(j,2), ..., t(j,Kj)

〉∞
is a periodic point

of Ψ with the period of lcm(K1,K2, ...,KM ) and

d′
(
ΠM
j=1zj ,Π

M
j=1ϕ

−1
nj

〈
t(j,1), t(j,2), ..., t(j,Kj)

〉∞)
< ε. ut

For instance, let M = 2, ε = 0.01, n1 = 3 and n2 = 2.
From ε2/M = (0.01)2/2 = 0.00005, we pick K1 = 5 and
K2 = 8 since

1/35 ≈ 0.000017 < 0.00005 < 0.000152 ≈ 1/34 and
1/28 ≈ 0.000015 < 0.00005 < 0.000061 ≈ 1/27.

For an arbitrary point in S1 × S1, say (z1, z2), from z1 =

e2πiθ1 where θ1 = 0.7 =
∑∞
i=1

t(1,i)
3i

with t(1,i) ∈ {0, 1, 2}
and z2 = e2πiθ2 where θ2 = 0.12 =

∑∞
i=1

t(2,i)
2i

where
t(2,i) ∈ {0, 1}, we have

θ1 =
∑∞
i=1

t(1,i)
3i

= 2
3 + 0

32
+ 0

33
+ 2

34
+ 2

35
+ 0

36
+ · · · , and

θ2 =
∑∞
i=1

t(2,i)
2i

= 0
2 + 0

22
+ 0

23
+ 1

24
+ 1

25
+ 1

26
+ 1

27
+ 0

28
+ 1

29
+ · · · .

Hence we get

ϕ3(z1) = 〈2, 0, 0, 2, 2, 0, · · ·〉 ,
ϕ2(z2) = 〈0, 0, 0, 1, 1, 1, 1, 0, 1, · · ·〉 ,
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and
d
(
ϕ3(z1),

〈
t(1,1), t(1,2), ..., t(1,5)

〉∞)2

= d (〈2, 0, 0, 2, 2, 0, 0, 2, · · ·〉 , 〈2, 0, 0, 2, 2〉∞)2

= d (〈2, 0, 0, 2, 2, 0, 0, 2, · · ·〉 , 〈2, 0, 0, 2, 2, 2, 0, 0 · · ·〉)2

≤
(∑∞

i=6
2
3i

)2
≤
(

1
35

)2
≈ 0.000017 < 0.00005,

d
(
ϕ2(z2),

〈
t(2,1), t(2,2), ..., t(2,8)

〉∞)2

= d (〈0, 0, 0, 1, 1, 1, 1, 0, 1, · · ·〉 , 〈0, 0, 0, 1, 1, 1, 1, 0〉∞)2

= d (〈0, 0, 0, 1, 1, 1, 1, 0, 1, · · ·〉 , 〈0, 0, 0, 1, 1, 1, 1, 0, 0, · · ·〉)2

≤
(∑∞

i=9
2
2i

)2
≤
(

1
28

)2
≈ 0.000015 < 0.00005.

Hence we have√
ΣM
j=1d

(
ϕnj (zj),

〈
t(j,1), t(j,2), ..., t(j,Kj)

〉∞)2

≤
√(∑∞

i=6
2
3i

)2
+
(∑∞

i=9
2
2i

)2

<
√

0.00005 + 0.00005 = 0.01 = ε.
Clearly,

Π2
j=1ϕ

−1
nj

〈
t(j,1), t(j,2), ..., t(j,Kj)

〉∞
=
(
ϕ−1

3

〈
t(1,1), t(1,2), ..., t(1,5)

〉∞
,

ϕ−1
2

〈
t(2,1), t(2,2), ..., t(2,8)

〉∞)
is a periodic point in S1 × S1 with the period of 40 =
lcm(K1,K2) = lcm(5, 8), and

d′
(
(z1, z2),Π2

j=1ϕ
−1
nj

〈
t(j,1), t(j,2), ..., t(j,Kj)

〉∞)
< ε.

Lemma 10 For any positive integer M and ni > 1 for i =
1, 2, ...,M , there is a point (z1, ..., zM ) ∈ ΠM

i=1S
1 having a

dense orbit of Ψ = ΠM
i=1ψni , that is, Orb+Ψ((z1, ..., zM )) is

dense in ΠM
i=1S

1.

Proof: For every positive integer k, let

Nk
t+ = ΠM

i=t+1n
k
i and Nk

t− = Πt−1
i=1n

k
i

with
Nk

1− = 1 and Nk
M+ = 1.

For each t = 1, 2, ...,M define

zt = ϕ−1
nt

(
⊕∞k=1

(
⊕n

k
t
j=1c(nt, k, j)

Nk
t+

)Nk
t−
)

∈ S1.

Since, for every t = 1, 2, ...,M , zt contains all the nt-ary
sequences of length k with k = 1, 2, ..., it is clear that
Orb+ψnt

(zt) is dense in S1.
For an arbitrary point (s1, s2, ..., sM ) in ΠM

i=1S
1 and any

ε > 0, there exist least positive integers Kt and jt such that

d
(
ϕnt(st), c(nt,Kt, jt)

0
)
< ε2/M.

Let K = max{K1,K2, · · · ,KM}. Then there is a positive
integer Jt such that c(nt,Kt, jt) ⊕ 〈0〉K−Kt = c(nt,K, Jt),
i.e.,

d
(
ϕnt(st), c(nt,K, Jt)

0
)

= d
(
ϕnt(st), c(nt,Kt, jt)

0
)

< ε2/M.

The first nt-ary sequence of length K will appear af-
ter

∑K−1
k=1 k

(∏M
i=1 n

k
i

)
terms in ϕnt(zt) for every t =

1, 2, ...,M . For each t = 1, 2, ...,M−1, c(nt,K, Jt) will ap-
pear after

∑M−1
t=1

(
(Jt − 1)K

∏M
i=t+1 n

K
i

)
terms later from

the starting of the first nt-ary sequence of lengthK in zt. And
c(nM ,K, JM ) appears after JM terms later from the starting
of the first nM -ary sequence of length K in zM , Therefore,
for

L =
K−1∑
k=1

(
k
M∏
i=1

nki

)
+
M−1∑
t=1

(Jt − 1)K
M∏

i=t+1

nKi

+ JM ,

we have c(nt,K, Jt) = c(ϕ(zt),K, Jt)) and

d′
(
st, ψ

L(zt)
)

= d
(
ϕnt(st), c(nt,K, Jt)

0
)
< ε2/M

for each t = 1, 2, ...,M . Hence we have∣∣∣(s1, s2, ..., sM )−ΨL ((z1, z2, ..., zM ))
∣∣∣

≤
√∑M

t=1 d
′ (st, ψL(zt))

<
√∑M

t=1 d (ϕnt(st), c(nt,K, Jt)
0)

<
√∑M

t=1 ε
2/M = ε.

Therefore the point (z1, ..., zM ) ∈ ΠM
i=1S

1 has a dense orbit
of Ψ = ΠM

i=1ψni , that is, Orb+Ψ((z1, ..., zM )) is dense in
ΠM
i=1S

1. ut

For example, let M = 3, n1 = 5, n2 = 2, n3 = 3, ε = 0.1
and

(s1, s2, s3) =
(
e2πiθ1 , e2πiθ2 , e2πiθ3

)
∈

M∏
i=1

S1

with θ1 = 0.635, θ2 = 0.22 and θ3 = 0.582. From ε2/M =
0.01/3 = 1/300 and 1/54 = 1/625 < 1/300, 1/29 =
1/512 < 1/300, 1/36 = 1/720 < 1/300, we get K1 =
4,K2 = 9 and K3 = 6. That is,

K = max{4, 9, 6} = 9.

We also find that 3
5 + 4

53
+ 1

54
= 0.6336, 1

23
+ 1

24
+

1
25

+ 1
29

= 0.2207, 1
3 + 2

32
+ 2

34
+ 1

36
= 0.5816, and

|θ1 − 0.6336| < 1/300, |θ2 − 0.2207| < 1/300, |θ3 −
0.5816| < 1/300. For 〈t1, t2, · · · , tk〉 = c(n, k, j) we have
j = 1 +

∑k
i=1

(
ti × nk−i

)
. So, from

〈3, 0, 4, 1, 0, 0, 0, 0, 0〉 = c(5, 9, J1),
〈0, 0, 1, 1, 1, 0, 0, 0, 1〉 = c(2, 9, J2), and
〈1, 2, 0, 2, 0, 1, 0, 0, 0〉 = c(3, 9, J3),
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we get

J1 = 1 +
∑9
i=1

(
ti × 59−i)

= 1 + 3 · 58 + 4 · 56 + 1 · 55 = 1237501,

J2 = 1 +
∑9
i=1

(
ti × 29−i)

= 1 · 26 + 1 · 25 + 1 · 24 + 1 = 114,

J3 = 1 +
∑9
i=1

(
ti × 39−i)

= 1 · 38 + 2 · 37 + 2 · 35 + 1 · 33 = 11449.

Hence we get

L =
∑K−1
k=1 k

(∏M
i=1 n

k
i

)
+
∑M−1
t=1

(
(Jt − 1)K

∏M
i=t+1 n

K
i

)
+JM

=
∑8
k=1 k

(∏3
i=1 n

k
i

)
+
∑2
t=1

(
(Jt − 1)9

∏3
i=t+1 n

9
i

)
+J3

=
[
1
∏3
i=1 n

1
i + 2

∏3
i=1 n

2
i + · · ·+ 8

∏3
i=1 n

8
i

][
1237500 · 9

∏3
i=2 n

9
i + 113 · 9

∏3
i=3 n

9
i

]
+11449

= [1 · 10 + 2 · 38 + · · ·+ 8 · 397442]
[1237500 · 9 · 20195 + 113 · 9 · 19683]

+11449
= 3861578 + 224941830111 + 11448
= 224945703137,

and the (224945703137, 224945703137 + 8)-cylinders of
z1, z2 and z3 are c(5, 9, J1), c(2, 9, J2) and c(3, 9, J3). There-
fore we have∣∣(s1, s2, s3)−Ψ224945703137 ((z1, z2, z3))

∣∣
≤
√∑3

t=1 d
′ (st, ψ224945703137(zt))

<
√∑3

t=1 d (ϕnt(st), c(nt, 9, Jt)
0)

<
√∑3

t=1 1/300 < 0.1 = ε.

That is, (z1, z2, z3) has a dense orbit in ΠM
i=1S

1.

From Lemma 9 and 10 we have the main theorem:

Theorem 11 For any positive integer M let ni > 1 be an
integer for every 1 ≤ i ≤ M . Then Ψ = ΠM

i=1ψni is a
chaotic map on ΠM

i=1S
1.

Corollary 12 and 13 follows the main theorem 11 and
Lemma 9 and 10.

Corollary 12 For an arbitrary positive integer M there are
infinitely many dense orbits of Ψ = ΠM

i=1ψni on ΠM
i=1S

1.

For any t = 1, 2, ...,M let nt > 1 be a positive integer. For
any positive integer u let wu = (wu1 , w

u
2 , · · · , wuM ) with

wut = ϕ−1
nt

(
⊕∞k=1

(
⊕n

k
t
j=1 [c(nt, k, j)⊕ 〈0〉u]N

k
t+

)Nk
t−
)

∈ S1.

It is clear that Orb+Ψ(wu) = Orb+Ψ((wu1 , ..., w
u
M )) is dense in

ΠM
i=1S

1 and wu = (wu1 , ..., w
u
M ) 6∈ Orb+Ψ((wv1 , ..., w

v
M )) =

Orb(Ψ)+(wv) if u 6= v. Therefore there are infinitely many
dense orbits in ΠM

i=1S
1.

Corollary 13 For every two positive integers n1, n2 > 1, the

Möbius transformation

(
n1 0
0 n2

)
is a chaotic map on T 2.

For every two positive integers n1, n2 > 1, the Möbius

transformation

(
n1 0
0 n2

)
can be defined by Ψ =

ΠM
i=1ψni = ψni × ψn2 , which is a chaotic map.

Using the revised definition of chaotic map ([1] and [3])
we show that the (left) shift map on the sequence set (Σ, d)
is a chaotic map by finding densely many periodic points
and a dense orbit of the shift map on (Σ, d). After mak-
ing a 1-1, onto and continuous map between S1 and (Σ, d),
we show that an angle multiplying map on S1 is a composi-
tion of the shift map on (Σ, d) and the map between S1 and
(Σ, d), which become a chaotic map on S1. We prove that
any combination of angle multiplying maps on ΠM

i=1S
1 be-

come a chaotic map by finding densely many periodic points
and a dense orbit of it. Through the construction of such
chaotic map on ΠM

i=1S
1 in the main theorem (11) and lem-

mas (9 and 10), we have found that there are infinitely many
dense orbits and the Möbius transformation is a chaotic map
on T 2.
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