
 

 

 
Abstract—This paper investigates the vibration control of a 

nonlinear plate using piezoelectric actuator based on an adaptive 
robust control algorithm. A complete mathematical modeling is 
presented in order to describe the dynamic of plate motion. Then, a 
robust adaptive fuzzy control algorithm, for controlling the proposed 
mechanical structure, is introduced. This controller includes a fuzzy 
scheme and a robust controller. Based on sliding mode controller a 
fuzzy system is introduced to mimic an ideal controller. The robust 
controller is designed based on compensation of the difference 
between the fuzzy controller and the ideal controller. The parameters 
of the fuzzy system and uncertainty bound of the robust controller are 
adjusted adaptively. The adaptive laws are designed based on the 
Lyapunov stability theorem to reach the stability of the closed-loop 
system. Detailed analysis for the closed-loop system is carried out to 
evaluate the vibration controller performance due to output 
excitation. Finally, the effect of initial condition on vibration 
characteristic is investigated, numerically. 
 

 

Keywords—Smart structure, nonlinear vibration, piezoelectric, 
strain gauge sensor.  

I. INTRODUCTION 
n recent years, the light plates have been widely used in 
mechanical, aeronautical and civil structures, because of 

their requirements to become lighter, more flexible and 
stronger. By studying the works in the field of the vibrations 
of elastic plates, such as those by Kung and Pao [1], Kisliakov 
[2] and Pasic and Herrmann [3] one can easily see that most of 
them are concerned with problems in which only one spatial 
mode is strongly excited. However, Sridhar, Mook and Nayfeh 
[4, 5] and Yang and Sethna [6] represented the motion with 
higher order mode to consider the effect of internal resonance 
and the modal interactions. In references [4, 5] the natural 
frequencies assure special relationships, while in reference [6] 
the equations are evaluated by the averaging procedure.  

From control view of point, smart materials have been used 
to develop operational quality or reduce the noise amplitude of 
the structures under vibratory excitation in a wide range. 
Control strategy plays a crucial role in these structures, 
especially in the lightweight ones. So, many researchers have 
been interested in designing appropriate controllers for smart 
materials with practical geometries [7]. The Positive Position 
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Feedback (PPF) controller is used by Shan et al. for a flexible 
structure [8]. They compared the results with the algorithm of 
velocity feedback. Kwak and Heo investigated the effect of 
the PPF algorithm on the model of a solar panel [9]. Gudarzi 
et al. have implemented a linear robust control approach on a 
piezolaminated thin plate. Also,  analysis has been taken in 
to account to ensure the robust performance of the uncertain 
system in wide range of frequencies [10]. Oueini et al. have 
studied a nonlinear controller based on saturation phenomena 
working as a vibration absorber for a linear model of a 
cantilever beam [11]. They inspected different parameters 
influence such as loops gains, damping of the controller and 
the initial condition on the performance of the closed-loop 
system. Pai et al. compared two control approaches of linear 
position feedback algorithm and the Nonlinear Saturation 
Control (NSC) in an experimental test [12]. They 
demonstrated the advantages of hybrid, proportional linear and 
saturation nonlinear controller. Saguranrum et al. showed the 
influence of non-uniformities in the structure properties for a 
beam with the saturation controller [13]. The reason of these 
non-uniformities is the imperfect bounding of the piezo-
actuator on the host layer. Hashemi-dehkordi et al., by 
applying an intelligent Active Force Control (AFC) based 
method, introduced a new approach to reduce the effect of 
negative damping that leads to Friction Induced Vibration 
[14]. Also, the effectiveness of the PID-AFC method in 
comparison with PID is investigated both in time domain and 
frequency domain. Karaarslan employed piezoceramic as a 
single phase Sheppard-Taylor converter to present a 
harvesting vibrational energy system [15]. The energy is 
gained using the piezoceramics and the converter controls the 
power flow to the preferred load. Oueini and Nayfeh introduce 
the algorithm of cubic velocity feedback for the first time in 
controlling of a nonlinear vertically excited beam [16]. They 
analyzed analytical bifurcation in the simulation and 
experimental results. Sodano et al. used Macro Fiber 
Composite (MFC) self-sensing actuators for vibration 
attenuation of inflated torus [17]. They presented the 
advantages of this kind of actuator in comparison with 
traditional PZT elements. Jun et al. implemented NSC for a 
nonlinear system by applying PZT patches [18].  

In the last few years, the research on controlling chaos has 
attracted a wide range of attention from engineering, physics, 
mathematics, and biology. The development of this field is 
started by Ott et al. [19]. They first introduced a new method 
for controlling a nonlinear dynamical structural system. 
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Numerous control methods have been proposed for controlling 
chaos [20-23] after that. Several nonlinear control techniques, 
such as feedback linearization [24], sliding-mode control [25-
27], backstepping [28,29], and adaptive control algorithms 
[30,31] have been also applied for controlling of chaotic 
systems. 

Recently, fuzzy logic control (FLC) has involved attention 
in control problems [32-38]. FLC systems offer an effective 
advance to handle nonlinear systems, especially in the 
presence of uncertainty of the plant or the situation where 
precise control action is unavailable. Different FLC schemes 
have been proposed for nonlinear and uncertain systems based 
on fuzzy systems. However, the main drawback of FLC 
systems is the lack of a systematic control design 
methodology. Particularly, stability analysis of an FLC system 
due to their nonlinearity is generally a long procedure [39]. 

In this paper, the application of a robust adaptive fuzzy 
control scheme to the case of nonlinear composite plate 
vibration is proposed. The dynamic model of the plate is based 
that is given by Chu and Herrmann [40] which is the dynamic 
analogue of the von Karman partial differential equations of 
the plate. The controller comprises a fuzzy system and a 
robust controller. The fuzzy system, with online tuned 
parameters is designed based on the, ideal, sliding-mode 
control (SMC). The robust controller is implemented to 
recompense for the divergence between the fuzzy and the ideal 
controllers. The uncertainty bound needed in the robust 
controller is also adaptively tuned online to avoid unnecessary 
high gain resulted from using fixed and most often 
conservative bounds. The adaptive laws are derived in the 
Lyapunov sense, thus, the asymptotic stability of the 
controlled system is guaranteed. Analysis of the control 
strategy for a strongly nonlinear plant and high level of 
amplitude of excitation is a contribution of this study. Piezo-
actuators are used for the real implementation of the control 
strategy, which allows achieving the required vibration level. 

II. DYNAMIC MODELING OF THE PLATE 
Consider a flat square plate of thickness  and edge length . 
All of the edges are simply supported. The plate is subjected 
to a lateral excitation force normal to the plate and a constant 
in-plane stress along the edges. A sketch of the system being 
studied is shown in Fig. 1.  
 

 
Fig. 1 Geometry of the problem 

 
The governing equations of an isotropic plate derived by 

Chu and Herrmann [40] are  

 

 

 

 

(1) 

where 

  

and the membrane forces are 

 

 
 

where  and  are the displacements in the mid-plane of the 
plate in the - and - directions respectively,  is the 
displacement in the plane normal to the mid-plane and ,  
and  are the modulus of elasticity, the Poisson ratio and the 
density, respectively. Also,  is the coefficient of lateral 
viscous damping and  is the lateral excitation. 

We express the governing equations and the membrane 
forces in the non-dimensional form 

 
(2a) 

 
(2b) 

 

(2c) 

 

 
(3) 

with 

  

where 
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We further assume that the lateral load is distributed 
symmetrically and sinusoidal so that the related spatial modes 
are effectively excited. Considering these, one can choose the 
first two fundamental orthogonal mode shapes to capture the 
motion and study their interaction. Thus, a solution of  in 
equations (2) is assumed to be 

 
 (4) 

where  and  are the amplitudes of the modes and  and  
are from 0 to . Substituting equation (4) into equation (2a, b), 

 and  can be computed with the aid of a symbolic 
computational tool, to give 

 

 

(5) 

where  are the polynomials of  and  listed below 

 

 

 

 

(6) 

If constant in-plane stresses  and  are taken into 
account, the displacement functions  and  should be 
modified to be  [10]. Where  and 

 are constants to be determined by equation (3) with 
modified  and  in equation (6) and assumed  in equation 
(4). Thus one will have 

 (7) 

By substituting the displacement functions given in 
equations (4) and (6) into equation (2c) and using the Galerkin 
method, two coupled nonlinear second order ordinary 
differential equations of independent variable  are obtained, 
as 

 

 

(8) 

where  and  are given as [41]. 

  

 

 

 

 

 

 

 

and  and  are the amplitudes of the mode  
and the mode  of the lateral excitation  
respectively. 

III. CONTROLLER DESIGN 
Sliding-mode control, based on the theory of variable structure 
systems, has been widely used to robust control of nonlinear 
systems. Sliding mode controllers act in presence of 
uncertainty and disturbances and cause the closed-loop system 
be robust stable with consistency of performance [42, 43]. In 
general, the design of SMCs consists of two steps: The first 
step is finding a feedback controller which causes the state 
trajectory to reach the sliding surface  in finite time and 
thereafter remain on , and the second is to guarantee that the 
resulting trajectory on  is stable. Consider the following -th 
order chaotic dynamic system, 

 (9) 
where  is the vector 
of states which are assumed to be measurable,  is the 
control input,  and  are smooth functions which are 
not known a priori. The tracking error is defined as 

 (10) 
where  represents the desired trajectory. The objective is 
to determine a controller for the system described by (9), so 
that the tracking error converges to zero while maintaining all 
signals bounded. 

In the presence of uncertainties, the chaotic system (9) is 
modified as 

 (11) 
In which  and  are the nominal values, and  and 

 are the uncertainties of  and  respectively. (11) can 
be rewritten as 

 (12) 
where  is the lumped uncertainty, defined as 

 It is assumed that the lumped uncertainty is bounded 
such that . Let the time derivative operator be 

, and define a sliding surface as 
 (13) 

With  a user defined constant. The time derivative of  
can be obtained as 
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 (14) 

where  The sliding-mode control law is 

defined as . Where the equivalent controller  
is a feedback linearization controller, obtained from  

 (15) 

and the robust controller  is designed to dispel the 
uncertainties as 

 (16) 
Substituting (15), (16) into (12), and using (14) yields 

 (17) 

Then consider the following candidate Lyapunov function 
 differentiating the Lyapunov function with respect 

to time and using (17) yields 

 
(18) 

Therefore, the SMC system introduced by  
can guarantee the stability of the uncertain system (12) in the 
Lyapunov sense. In the design of the SMC, the uncertainty 
bound , which includes unknown dynamics, parameter 
variations, and external load disturbance, must be available. 
However, the bound of uncertainties is difficult to obtain in 
advance for practical applications. Moreover, to satisfy the 
existence condition of the sliding-mode, a conservative control 
law with large control effort usually results by using fixed, and 
most often conservative, bounds [44]. In order to exploit the 
advantages, and tackle the disadvantages, of both SMC and 
FLC systems, a hybrid control scheme is proposed in this 
study, referred to as adaptive fuzzy sliding-mode control 
(AFSMC) system. This approach provides a systematic way to 
design FLC systems while retaining the robustness and 
asymptotic stability properties of SMC. 

Assume that the parameters of the system (37) are well 
known. Then an ideal controller can be obtained as 

 (19) 

By substituting (19) in (9) the resulting error dynamic is 

 (20) 

By proper selection of  as the coefficients of a Hurwitz 
polynomial, the error dynamic is stable. However, since the 
system is not known completely, the ideal controller  cannot 
be implemented precisely, therefore, as an alternative, using 
the universal approximation capability of fuzzy systems, the 
ideal controller can be approximated by a fuzzy system. 

Consider an -input, single-output fuzzy system with  
fuzzy IF-THEN rules as 

Rule : If  is  and … and  is  then  
where  and  are the input and output of the 

fuzzy system, respectively,  is the fuzzy singleton for the 
output of the th rule, and  are fuzzy sets 
characterized by Gaussian membership functions as 

 (21) 

In which  and  are the center and width of the Gaussian 
membership function. Using singleton fuzzifier, product 
inference, and center average defuzzifier, the output of the 
fuzzy system is obtained as 

 (22) 

Define the firing strength of the - th rule as 

 (23) 

Then the output of the fuzzy system can be rewritten as 
 (24) 

where  and . It has been 
proven that fuzzy system (24) is a universal approximator 
[39]. Therefore, the ideal controller (19) can be approximated 
by an ideal fuzzy system  such that 

 (25) 
where  is the approximation error or the uncertainty which is 
assumed to be bounded as  and  is the optimal 
parameter vector 

 (26) 
The fuzzy IF–THEN rules of this fuzzy system have the 

following form 
Rule : If  is  then  
In practice, the optimal parameter vector , as well as the 

uncertainty or approximation error bound  may be unknown. 
Let  be a fuzzy system to approximate  
as 

 (27) 
where the fuzzy controller  is designed to approximate the 
ideal controller , and  is designed to compensate for the 
difference between the ideal controller and fuzzy controller. 
Substitution of (27) into (1) yields 

 (28) 
Multiplying (19) with , added to (28) and using (10) 

and (14), the error dynamic can be obtained as 

 

(29) 

Defining the approximation errors as 
 

 
(30) 

and using (35) and (30) gives 
 (31) 

Moreover, denote the estimation of the uncertainty bound as 
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 (32) 
It can be proved that if the AFSMC system is designed as 

(27) in which the parameter vector of the fuzzy system is 
adaptively tuned according to 

 (33) 
And the robust controller is designed as 

 (34) 
With bound estimation algorithm given by 

 (35) 
where  and  are positive constants known as learning rate, 
then the stability of the ASFMC is guaranteed. 

IV. NUMERICAL EXAMPLE AND DISCUSSIONS 
To examine the vibration behavior, we take a steel plate as an 
example. Since in the presented study we have only used two 
modes to represent the displacement , a qualitative measure 
of the response is expected. More modes should be taken into 
account for quantitative results. The parameters of the plate 
are as follows: density , modulus of elasticity 

 , Poisson ratio  coefficient of damping , 
length , thickness . We take the two boundary in-
plane compressive stresses to be equal i.e. , and of 
such value that  equates say, . For the excitation we 
consider that  and  where  are 
force amplitudes. With the parameters 

defined above, the equations (8) are rewritten as 

 

 
The Piezo-patches have been chosen because of their 

suitable properties such as higher flexibility, durability and the 
electromechanical coupling constant. The schematic view of 
the smart plate is shown Fig. 2. 

 
 

 
Fig. 2 Configuration of sensor/host/actuator 

 
 For flexible structures stiffening effect on the length of the 

actuator placement play a very important role [6]. Application 
of piezo-patches allows significant reduction of this effect and 
generation of larger deformations of the system. The response 
of the structure has been measured by a bounded-wire strain 
gauge, which has been mounted on the opposite side of the 
actuator side. The entire strain gauge is securely bonded to 

structural plate and will detect any deformation that may take 
place as shown in Fig. 3. Typically, the resistance change of a 
strain gauge is less than one ohm, so, measuring such small 
resistances usually requires a bridge circuit as that depicted in 
Fig. 3. Initially, the bridge is nulled by adjusting the 
resistances so that . The bridge also cancels out 
variations due to temperature changing, by connecting a 
dummy as one of the bridge resistors. 

 

 
Fig. 3 Placement of the gauges and interface circuit using a bridge 
  
By analyzing the bridge circuit of Fig. 3 as 

 

 

The voltage across the bridge can be expressed as  

 

By simplifying the analysis, considering that all the 
resistors in the bridge have the same values , we have 

 

The input membership functions are selected as shown in 
Fig. 4. 

 

 
Fig. 4 Membership functions of s for AFSMC 

 
The parameters of these membership functions are chosen 

such that the parameter  remains close to zero. The initial 
output membership functions are arbitrarily selected as 

 and the initial value of uncertainty bound is 
chosen as . The learning rates are set to  and 

. The actuator/sensor pair segments are assumed to be 
bounded on the top and the lower surface of the core layer and 
mechanical and electrical properties of piezo-actuator and 
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strain gauge are shown in TABLE I. In addition, the external 
load is considered a concentrated transverse harmonic load. 
For the design and simulation of the control system, 
MATLAB® Simulink were utilized, and a Multi-Input Single-
Output (MISO) configuration, with the output being the 
voltage at the sensor location, and the input being the control 
voltage applied into the actuator of the top surface (see Fig. 2), 
was considered. In order to investigate the performance of 
controller in suppressing the vibration induced by harmonic 
external excitation, the displacement of the center point of the 
plate is shown in Fig. 5. It should be noted that the controller 
is forced to start after the time interval  and the 
closed-loop performance can be evaluated after this time 
period. 

 
TABLE I 

MFC and strain gauge properties 
Strain Gauge  Piezo-actuator 
Strain 
resistance 

Gauge 
factor  Stack area No-Load displacement at 

 
100 Ohm 2  100  0.038 
Initial 
deflection 

Initial 
voltage  Test 

voltage  Capacitance 

0  0   120  13  
 

 
Fig. 5 Comparison of closed-loop and open loop displacement 

 
This figure shows the comparison of the dynamic response 

of the open loop system and those obtained from closed-loop 
one by implementing robust AFSMC controller. It is clear that 
the nonlinear system vibrates with more than one harmony. 
However, in the closed-loop system, the displacement tends to 
reduce in amplitude oscillating with more harmonies and this 
is because of the nonlinearities that are added by controller. 
Also, the closed-loop system has done a great job in vibration 
attenuation. Because of consideration of the shear stress the 
displacement components in the - and - direction before and 
after implementing the controller is compared in Fig. 6. 

Also, the control effort is depicted for the close-loop system 
as shown in Fig. 7. It can be seen that the control input does 
not have sudden jumps and can be applied in time domain. 
Also, as one can see, the control effort increases as time goes 
on and this is because of the fact that the compensator has to 
reduce the amplitude of vibration system under the harmonic 

excitation that acts on the plate continuously. 
 

 
Fig. 6 Comparison of closed-loop and open loop displacement 

 

 
Fig. 7 Control effort 

 
Figures 8 and 9 show the phase plane analysis for open loop 

system, closed-loop system using AFSMC compensator. 
 

 
Fig. 8  Phase plane diagram of open loop system 
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Fig. 9  Phase plane diagram of closed-loop system based on AFSMC 

controller 
 
The main observations are as follows: the nonlinear 

behavior of the open loop and closed-loop system is a stable 
focus around the system equilibrium point and the whole state 
space. However, the closed-loop system damps the states to 
the equilibrium point faster. In addition, the intersection points 
in phase plane of non-autonomous systems do not sate for 
equilibrium points but occurs because of the nonlinearities and 
time dependency of the system. Meanwhile, by comparing 
Fig. 8 and Fig. 9, one can see that in both systems for a 
complete oscillation around the equilibrium point there is for 
sub-harmonies. However, for the closed-loop system based on 
AFSMC controller number of the intersections increases as 
times goes on. This is maybe because of the fact that the 
nonlinear and non-autonomous terms become more powerful 
compared to the other terms. Another observation is that the 
controlled system tends to vibrate in negative amplitude. This 
shows that the adaptive system does not suppress the 
vibrations symmetrically.  

Figure 10 shows the phase plane diagram of the smart plate 
under different initial conditions. As one can see the nonlinear 
system has various dynamical behaviors for different initial 
conditions. Fig 10a depicts the system response for 

 initial 
condition. It can be seen that the closed-loop system acts as a 
stable focus around its equilibrium point. The second case 
initial condition, 

, acts as stable node as shown in Fig. 10b. Moreover, in 
the third initial condition 

, the system phase plane 
shows stable focus around it’s equilibrium point (see Fig. 
10c). For the fourth and fifth case where the initial conditions 
are  and 

 as depicted in Fig. 
10d and Fig. 10e the closed-loop system responses in close to 
a saddle point. 
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(e
) 

 
Fig. 10 Phase plane diagram of the plate under different initial 

conditions 

V. CONCLUSION 
Numerical investigations of a robust types of adaptive 
controller applied to a nonlinear plate model have been studied 
in this paper. Adaptive fuzzy sliding-mode control (AFSMC) 
is presented for the proposed nonlinear dynamic system. This 
controller uses the universal approximation potential of fuzzy 
logic control systems, accompanied by the robustness of 
SMCs. The parameters of the AFSMC system, together with 
the bound of the uncertainties are adaptively adjusted. The 
adaptive laws are achieved utilizing the Lyapunov stability 
theorem to guarantee the stability of the closed-loop system. 
The simulation results for the close-loop system showed that 
AFSMC controller is effectual for the considered plant. For 
higher amplitudes of excitation and random vibration, when 
plant’s nonlinear terms play more important role, a dangerous 
controller’s overload may appears, in the closed-loop system. 
It is particularly important in physical systems where 
maximum voltage of piezo-actuators and amplifiers is limited. 
The results also show that the robustness of the AFSMC 
scheme to plant uncertainties and external disturbances is 
quite promising. Finally, the closed-loop system’s behaviors 
for different initial conditions are compared and as it has been 
shown in the results, the nonlinear system remains stable. 

REFERENCES   
[1] G. C. Kung, and Y. -H. Pao, “Nonlinear flexural vibrations of a clamped 

circular plate,” Trans. ASME, J. Appl. Mech., vol. 39, pp. 1050–1054, 
1972. 

[2] S. D. Kisliakov, “On the nonlinear dynamic stability problem for thin 
elastic plates,” Int. J. Non-lin. Mech., vol. 11, pp. 219–228, 1970. 

[3] H. Pasic, and G. Herrmann, “Effect of in-plane inertia on buckling of 
imperfect plates with large deformations,” J. Sound Vib., vol. 95, issue 
4, pp. 469–478, 1984. 

[4] S. Sridhar, D. T. Mook, and A. H. Nayfeh, “Non-linear resonances in the 
forced responses of plates, part 1: Symmetric responses of circular 
plates,” J. Sound Vib., vol. 41, issue 3, pp. 359–373, 1975. 

[5] S. Sridhar, D. T. Mook, and A. H. Nayfeh, “Non-linear resonances in the 
forced responses of plates, part II: Asymmetric responses of circular 
plates,” J. Sound Vib., vol. 59, issue 2, pp. 159–170, 1978. 

[6] X. L. Yang, and P. R. Sethna, “Non-linear phenomena in forced 
vibrations of a nearly square plate: Antisymmetric case,” J. Sound Vib., 
vol. 155, issue 3, pp. 413–441, 1992. 

[7] A. Oveisi, M. Gudarzi, M. M. Mohammadi, and A. Doosthoseini, 
“Modeling, identification and active vibration control of a funnel-shaped 
structure used in MRI throat,”, J. Vibroeng., vol. 15, issue 1, pp. 438–
449, 2013. 

[8] J. Shan, H. Liu, and D. Sun, “Slewing and vibration control of a single-
link flexible manipulator by positive position feedback (PPF),” 
Mechatronics, vol. 15, pp. 487–503, 2005.  

[9] M. K. Kwak, and S. Heo, “Active vibration control of smart grid 
structure by multi-input and multi-output positive position feedback 
controller,” J. Sound Vib., vol. 304, pp. 230–45, 2007.  

[10] M. Gudarzi, A. Oveisi, and M.M. Mohammadi, “Robust active vibration 
control of a rectangular piezoelectric laminate flexible thin plate: An 
LMI-based approach,” International Review of Mechanical Engineering, 
vol. 6, no. 6, pp. 1217–1227, 2012. 

[11] S. S. Oueini, A. H. Nayfeh, and J. R. Pratt, “A nonlinear vibration 
absorber for flexible structures,” Nonlinear Dynam., vol. 15, pp. 259–
282, 1998. 

[12] P. F. Pai, B. Wen, A. S. Naser, and M. J. Schulz, “Structural vibration 
control using PZT patches and non-linear phenomena,” J. Sound Vib., 
vol. 215, no. 2, pp. 273–296, 1998.  

[13] S. Saguranrum, D. L. Kunz, and H. M. Omar, “Numerical simulations of 
cantilever beam response with saturation control and full modal 
coupling,” Comput. Struct., vol. 81, pp. 1499–1510, 2003.  

[14] S. M. Hashemi-Dehkordi, M. Mailah, and A. R. Abu Bakar, “Intelligent 
active force control with piezoelectric actuators to reduce friction 
induced vibration due to negative damping,” International Review of 
Electrical Engineering, vol. 4, no. 6, pp. 1294–1305, 2009. 

[15] A. Karaarslan, “Obtaining renewable energy from piezoelectric ceramics 
using Sheppard-Taylor converter,” International Review of Electrical 
Engineering, vol. 7, no. 2, pp. 3949–3956, 2012. 

[16] S. S. Oueini, and A. H. Nayfeh, “Single-mode control of a cantilever 
beam under principal parametric excitation,” J. Sound Vib., vol. 224, no. 
1, pp. 33–47, 1999. 

[17] H. A. Sodano, G. Park, and D. J. Inman, “An investigation into the 
performance of macro-fiber composites for sensing and structural 
vibration applications,” Mech. Syst. Signal. Pr., vol. 18, pp. 683–697, 
2004.  

[18] L. Jun, H. Hongxing, and S. Rongying, “Saturation-based active 
absorber for a non-linear plant to a principal external excitation,” Mech. 
Syst. Signal. Pr., vol. 21, pp. 1489–1498, 2007.  

[19] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling Chaos,” Physical 
Review Letters, vol. 64, pp. 1196–1199, 1990. 

[20] K. Pyragas, “Continuous control of chaos by self-controlling feedback,” 
Phys. Lett. A, vol. 170, pp. 421–428, 1992. 

[21] G. Chen, and X. Dong, “On feedback control of chaotic continuous-time 
systems,” IEEE T. Circuits-I, vol. 40, pp. 591–600, 1993. 

[22] W. C. Y. Yang, and L. Chua, “On adaptive synchronization and control 
of nonlinear dynamic systems,” Int. J. Bifurcat. Chaos, vol. 6, pp. 455–
471, 1996. 

[23] T. H. Yang, S. F. Chen, and Y. S. Gou, “Efficient strategy for the 
occasional proportional feedback method in controlling chaos,” Phys. 
Rev. E, vol. 59, pp. 5393–5399, 1999. 

[24] C. C. Fuh, and H. H. Tsai, “Control of discrete-time chaotic systems via 
feedback linearization,” Chaos Soliton. Fract., vol. 13, pp. 285–294, 
2002. 

[25] K. Konishi, M. Hirai, and H. Kokame, “Sliding mode control for a class 
of chaotic systems,” Phys. Lett. A, vol. 245, pp. 511–517, 1998. 

[26] H. T. Yau, C. K. Chen, and C. L. Chen, “Sliding mode control of chaotic 
systems with uncertainties,” Int. J. Bifurcat. Chaos, vol. 10, pp. 1139–
1147, 2000. 

[27] J. M. Nazzal, and A. N. Natsheh, “Chaos control using sliding-mode 
theory,” Chaos Soliton. Fract., vol. 33, pp. 695–702, 2007. 

[28] S. Bowong, and F. M. Moukam-Kakmeni, “Synchronization of uncertain 
chaotic systems via backstepping approach,” Chaos Soliton. Fract., vol. 
21, pp. 1093–1108, 2004. 

[29] M. T. Yassen, “Controlling, synchronization and tracking chaotic Liu 
system using active backstepping design,” Phys. Lett. A, vol. 360, pp. 
582–587, 2007. 

[30] T. Yang, C. M. Yang, and L. B. Yang, “A detailed study of adaptive 
control of chaotic systems with unknown parameters,” Dynam. Control, 
vol. 8, pp. 255–267, 1998. 

[31] Y. J. Cao, “A nonlinear adaptive approach to controlling chaotic 
oscillators,” Phys. Lett. A, vol. 270, pp. 171–176, 2000. 

[32] O. Calvo, and J. H. E. Cartwright, “Fuzzy control of chaos,” Int. J. 
Bifurcat. Chaos, vol. 8, pp. 1743–1747, 1998. 

[33] L. Chen, G. Chen, and Y. W. Lee, “Fuzzy modeling and adaptive control 
of uncertain chaotic systems,” Information Sciences, vol. 121, pp. 27–
37, 1999. 

-2 -1 0 1 2
x 10-3

-0.02

-0.01

0

0.01

0.02

W (m)

dW
/d

t (
m

/s
ec

)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 7, 2013 645



 

 

[34] Y-C. Chang, “A robust tracking control for chaotic Chua’s circuits via 
fuzzy approach,” IEEE T. Circuits-I, vol. 48, pp. 888–895, 2001. 

[35] C. W. Park, C. H. Lee, and M. Park, “Design of an adaptive fuzzy model 
based controller for chaotic dynamics in Lorenz systems with 
uncertainty,” Inform. Sciences, vol. 147, pp. 245–266, 2002. 

[36] X. Guan, and C. Chen, ” Adaptive fuzzy control for chaotic systems 
with tracking performance,” Fuzzy Set. Syst., vol. 139, pp. 81–93, 2003. 

[37] O. V. Ramana Murthy, R. K. P. Bhatt, and N. Ahmad, “Extended 
dynamic fuzzy logic system (DFLS) based indirect stable adaptive 
control of non-linear systems,” Appl. Soft Comput., vol. 4, pp. 109–119, 
2004. 

[38] J. H. Kim, C. W. Park, E. Kim, and M. Park, “Fuzzy adaptive 
synchronization of uncertain chaotic systems,” Phys. Lett. A, vol. 334, 
pp. 295–305, 2005. 

[39] L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and 
Stability Analysis,” Prentice-Hall, New Jersey, 1994. 

[40] H. Chu, and G. Herrmann, 
“Influence of large amplitudes in free flexural vibrations of rectangular 
elastic plates,” J. appl. Mech., vol. 23, pp. 532-540, 1956. 

[41] A. Y. T. Leung, and S. K. Chui, “On the non-linear vibration of the Von 
Karman square plate by the IHB method,” J. Sound Vib., vol. 204, issue 
2, pp. 239-247, 1997. 

[42] J. -J. E. Slotine, and W. Li, “Applied Nonlinear Control,” Prentice-Hall, 
New Jersey, 1991.  

[43] H. Khalil, “Nonlinear Systems,” Prentice Hall, New Jersey, 1996.  
[44] C. M. Lin, and C.F. Hsu, “Self-learning fuzzy sliding mode control for 

antilock braking systems,” IEEE T. Contr. Syst. T., vol. 11, pp. 273–278, 
2003. 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 7, 2013 646




