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Abstract— State feedback technique through a gain matrix has 

been a well-known method for pole assignment of a linear system. 
The technique could encounter a difficulty in eliminating the steady-
state errors remained in some states. Introducing an integral element 
to work with the gain can effectively eliminate the errors. This paper 
presents design and implements the state-PI feedback controller for 
controlling the magnetic levitation system. First, a linear model that 
represents the nonlinear dynamics of the magnetic levitation system 
is derived by the feedback linearization technique. Then, the state-PI 
feedback control developed from the linear model is proposed. 
Results are compared between the conventional state feedback 
technique and the proposed method. In addition, we practically 
implemented the controller in an experimental magnetic levitation 
system and investigated its regulating performance. The experimental 
results show the effectiveness of the proposed method for disturbance 
dampening and stabilizing the system. 
 

I. INTRODUCTION 
agnetic levitation technology eliminates mechanical 
contact between moving and stationary parts. This 
implies that this technique also eliminates the friction 

problem. Therefore, they are widely used in various fields, 
such as high-speed trains, magnetic bearings, vibration 
isolation systems and so on. Magnetic levitation systems are 
inherently unstable and uncertain nonlinear dynamical systems. 
Therefore, it is always a challenging task to construct a high 
performance feedback controller to fix the position of the 
magnetic levitation system rapidly and exactly. In recent years, 
many proposals have been presented in literatures based on 
linear and nonlinear system models for controlling this system 
[1-3]. The standard linear techniques are usually based upon 
an approximation linear model by which a linear control law 
can be constructed to meet the design specification. A wide 
variety of control methods are proposed ranging from PID and 
classical state feedback controls to complex nonlinear and 
adaptive controls. Several advanced control algorithms are 
applied for controlling magnetic levitation system, such as 
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model reference control [4], robust control [5], sliding mode 
control [6], feedback linearization method [7] etc. Recently, 
state-PI feedback [8,9] has been proposed for regulation 
problem of an LTI system. The concept is extended to 
stabilization control of a magnetic levitation system as 
reported by this paper is shown on Fig. 1.  

In this paper we consider stabilization control of a magnetic 
levitation system. First, the state-PI feedback control is applied 
to achieve stabilization and disturbance rejection via pole-
placement. Second, a linear model representing the nonlinear 
dynamics of the magnetic levitation system is derived by the 
feedback linearization. The achieved results are compared with 
those obtained from the conventional state feedback approach. 
Section 2 presents the designing of state-PI feedback 
controller. Section 3 gives a brief on model representation of a 
magnetic levitation system. Experimental results for 
stabilization of the magnetic levitation system follow in 
Section 4. Section 5 provides the conclusion. 
 

 
Fig. 1 Magnetic levitation system 

II. POLE PLACEMENT BY STATE-PI FEEDBACK  
 Let’s consider a delay-free completely controllable LTI 
system described by 
 

0, ( )u t= + = 0x Ax B x x
          (1) 

 
where n∈x R  is the state vector, and u R∈ is the control 
input. ( )n n×A  and ( 1)n×B  are the system  matrix and the 
control gain vector, respectively. From A, the characteristic 
polynomial can be written as 

 
1

1 1 0det( ) 0n n
n ns a s a s a s a−

−− = + + + + =I A 

 (2) 
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Where 0 1[ ]na a a=a 

, 0 det( ) ( 1) det( )na = − = −A A
and 1 ( )na trace− = − −A . The control u of the state-PI 
feedback is 

 

( )u dτ τ= + ∫p IK x K x ,          (3) 

 

where , n∈p IK K R are the designed gain matrices to achieve 
a desired closed-loop characteristic polynomial. The closed-
loop system can be represented by Eq. (4). 

 

0

( ) ( )
t

dτ τ= + + ∫p Ix' A BK x BK x       (4) 

 

Eq. (5) represents the closed-loop characteristic equation, 
while Eq. (6) represents the prescribed characteristic 
polynomial. 

 

det[ ( ) ] 0s
s

− + − =I
p

BKI A BK        (5) 

1 1
0 1 1 1( ) n n n

d n n ns s s s sα α α α α− +
− +∆ = + + + +

 (6) 

 

It is noticed that the n-order of the open-loop system is 
increased by 1 due to the integral term. 

A. 5BFrobenius Canonical Form 
 The pole placement problem herein considers the Frobenius 
canonical form of a delay-free LTI system. Eq. (7) represents 
the state transformation 
 

-1,= =ξ Tx x T ξ ,             (7) 
 
where ( 1)n×ξ(t) is the transformed state variable vector, and

( )n n×T  is the transformation matrix. The matrices 
( )n n×cA and ( 1)n×cB are the transformed system matrix 

and the control gain vector, respectively. Both matrices can be 
calculated as follows: 
 

-1,c cA = TAT B = TB ,            (8) 

where 
 

-1 Tn =  1 1 1T q q A q A

.        (9) 

 
The vector (1 )n×1q in (9) is 
 

-1T
n c1q = e w ,               (10) 

 
in which cw is the controllability matrix of the system (1) 
 

2 -1[ ]n=cw B AB A B A B

,    (11) 

 
and the unit vector [0 0 1]T

n =e 

. The Frobenius 
canonical form can be expressed as 
 

u= +c cξ A ξ B              (12) 
 

B. 6BPole Placement For State-PI Feedback 
 The single-input LTI system (1) is assumed to be 
completely controllable, and B is of full column rank. State 
feedback through a PI controller can be achieved via the gain 
matrices KP and KI respectively. Note that due to the integral 
element, one additional closed-loop pole is needed. This 
imposes a condition for derivation of the gain matrices, and 
results in an increase in the order of the system by one. The 
system (1) with its Frobenius form of (12) is subject to the 
control input ( )u dτ τ= + ∫p IK x K x  or u = +FKξ  

0

( )
t

dτ τ∫FKξ  in which [ , ] [ , , ]= Fp I FK K K K T . There exist 

the following gain matrices to achieve a desired characteristic 
polynomial 

1 1
0 1 1 1( ) n n n

d n n ns s s s sα α α α α− +
− +∆ = + + + + +

 
 
       [ ]0 1 2 1n na a a a α−= −pK T    

 

[ ]0 1 2 1nα α α α −= − − − −IK T    

( 3) 
 
See [8], Proposition 2.1, for proof of Eq. (13). The design 
procedures are as follows: 
1.Calculate the transformation matrix for an n-order LTI plant 
using -1 Tn =  1 1 1T q q A q A

 where -1T
n c1q = e w  ,

[0 0 1]T
n =e 

and 2 -1[ ]n
c =w B AB A B A B

. 
2. Calculate the matrices 

cA  and 
cB  using -1

cA = TAT  and 

cB = TB  for the Frobenius form of (12). 
3. Assign the closed-loop pole locations of an n-order for 
state-PI feedback, add one negative real pole having a fast 
time-constant (i.e. a negative real pole with a large magnitude) 
4. Determine the prescribed characteristic polynomial 

( )d s∆ having the order of n or n+1 corresponding to step 3. 
5. Calculate the gain matrices for state-PI feedback use (13). 
 
Consider the following single-input controllable systems: 
Example 1. 
 

2 0 1
,

1 0 0
−

= =
   
      

A B             

 
The system in example 1 is originally unstable with its poles at 0 
and -2. It is desirable to have the closed-loop poles at                  
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-4.1002±3.8486j. As a result of transformation, the canonical 
form of the system model is 
 

0 1 0
0 2 1

u= +
−

   
      

ξ ξ                

 
To achieve the prescribed pole locations for step 3, an additional 
pole at -20 is considered. The desired characteristic polynomial 
is 
 

2 3( ) 632.46 195.63 28.20d s s s s∆ = + + +       
 
The obtained gain matrices are 
 

[ ]26.2 0= −PK                  
      [ ]195.63 632.41= − −IK . 
 
Example 2. 
 

0 1 0 0
980 0 2.8 , 0

0 0 100 100
= − =

−

   
   
   
   

A B         

 

The system is originally unstable with its poles at ±31.3050 
and -100. It is desirable to have the closed-loop poles at           
-10±10j and -20. As a result of transformation, the canonical 
form of the system model is 
 

0 1 0 0
0 0 1 0

98000 980 100 1
u= +

−

   
   
   
   

ξ ξ

         

 
To achieve the prescribed pole locations for step 3, an 
additional pole at -100 is considered. The desired 
characteristic polynomial is 
 

2 3 4( ) 200000 34000 2600 90d s s s s s∆ = + + + +   
 
The obtained gain matrices are 
 

[ ]317.71 7.79 0.30= − −PK            

[ ]9820 122.4 26= −IK              
 

The results shown in Figs. 2 and 3 have the initial states of 

[ ]0( ) 0.1 0 Tt =x  and [ ]0.005 0 0 T . 
 

 
(a) Responses of states: 1 2, .x x  

 
(b) Control signal u  

Fig. 2 Time responses and control signal of the numerical example 1 with state-PI feedback from the proposed method 
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(a) Responses of states: 1 2,x x and 3x  

 

 
(b) Control signal u 

Fig. 3 Time responses and control signal of the numerical example 2 with state-PI feedback from the proposed method 
 
 

III. MAGNETIC LEVITATION SYSTEM 
 The magnetic levitation system is a magnetic ball 
suspension system which is used to levitate a steel ball on air 
by the electromagnetic force generated by an electromagnet. 
Consider a steel ball of mass M placed under an electromagnet 
at distance y as shown in Fig. 4. The objective of the control 
system is to keep the steel ball in a dynamic balance around its 
equilibrium point. The design of the suspension system 
presented here uses the electromagnetic attraction force. 
 

M

y

Mg

R L
i

v

Electromagnet

Steel ball

3

ki
y

 
Fig. 4 Ball suspension system. 

 
The magnetic ball suspension system can be categorized into 
two systems: a mechanical system and an electrical system. 

The ball position in the mechanical system can be controlled 
by adjusting the current through the electromagnet where the 
current through the electromagnet in the electrical system can 
be controlled by applying controlled voltage across the 
electromagnet terminals, thus the ball will levitate in an 
equilibrium state. But it is a nonlinear, open loop, unstable 
system that demands a good dynamic model and a stabilized 
controller. Electromagnetic force produced by current is given 
by the Kirchoff’s voltage law. The voltage equation of the 
electromagnetic coil is given by 
 

( )v Ri L y i= +                (14) 
 
where  v  : input voltage, 
  i   : winding current, 
  R  : winding resistance and 
  L : winding inductance. 
 
The total inductance L is a function of the distance and given 
by 
 

0 0( ) L yL y L
y

= +             (15) 

 
Where L is the inductance of the electromagnetic (coil) in the 
absence of the levitated object, L0 is the additional inductance 
contributed by its presence, and y0 is the equilibrium position. 
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Assuming the suspended object remains close to its 
equilibrium position, y=y0, and therefore 
 

0( )L y L L= +               (16) 
 
Also assuming that L>>L0, Eq. (14) can be simplified as 
 

v Ri Li= +                  (17) 
 
The principal equation for the suspended object comes by 
applying Newton’s second law of motion. For this one degree 
of freedom system, a force balance taken at the centre of 
gravity of the object yields 

 

3

kiMy Mg
y

= −

              (18) 

 
where  M  : ball mass, 
  y   : ball position, 
  g : gravitational constant and 
  k : magnetic force constant. 
 
The state variables are defined as 1 2,x y x y= =  and 3x i= . 
The state equations of the system are 
 
     1 2x x= , 

1

3
2 3

xkx g
M x

= −

,             (19) 

     
3 3

R vx x
L L

= − +

     

 
Let us linearize the system about the equilibrium point 

0 01y x= = constant, which results in state vector as 

[ ]01 02 03
Tx x x=0x . At equilibrium, time rate derivative of 

x must be equal to zero i.e. 02 01 0x x= =
and 0 0y =

. The 
equilibrium point of the system is at 
 

[ ]
1/3

0
T

e eku u
gmR R

  
=   

   
0x        (20) 

 
Thus we can write the linearized model in state space form as 
under; 
 

( )
( )

1/3

1/3

0 1 0

3
0

0 0

ee

g gMR gR
uku
R
L

 
 
 
 

= − 
 
 
 −
 

A
, 

0
0
1
L

 
 
 

=  
 
 
 

B
  (21) 

 
The numerical values of the experimental system parameters 
are shown in Table 1. 
 

Table.1 Parameters of the magnetic levitation system 
Parameters Description Values 
y0 ball position at operating 

point (m) 
35×10-2 

M mass of steel ball (kg) 41.30×10-3 
R coil resistance ( Ω ) 1.71 
L coil inductance (H) 15.10×10-3 
i0 coil current at operating 

point (A) 
1.05 

K constant (kgm5/s2/A) 3.10×10-6 
ue coil applied voltage at 

operating point (V) 
1.79 

G gravitational constant (m/s2) 9.81 

3BIV. REAL TIME IMPLEMENTATION 
 The magnetic levitation system is present with focusing on 
stabilization and disturbance rejection issues. Results are 
compared with those designed by the pervious method 
including Ackermann’s formula [10]. 
 

A. 7BState-PI Feedback Controller 
 The state-PI feedback controller is applied to the 
stabilization and disturbance rejection problems of the 
magnetic levitation system. The block diagram in Fig.5 
represents a magnetic levitation system with state-PI feedback. 
For comparison purposes, the method based on Ackermann’s 
formula is also used. 
 

1
s C

A

PK

IK

B

DK

+
+

+

+

+

x y

1
s

u x

 
Fig. 5 Block diagram representation of a magnetic levitation 
system with state-PI feedback. 
 
The magnetic system is described by the following state-
variable models: 
 

3

0 1 0 0
1.4709 10 0 9.3716 0

4000 0 113.2450 66.2252
u

   
   = × − +   
   −   

x x

(22) 

 
 The system is inherently unstable since it has open-loop 
poles at ± 38.3523 and -113.2450. To stabilize this system, 
the system poles are to be placed at -10 and 50 ± 50j. As a 
result of transformation, the canonical form of the system 
model is  
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0 1 0 0
0 0 1 0

166572.07 1470.90 113.245 1
u

   
   = +   
   −   

ξ ξ

   (23) 

 
To achieve the prescribed pole locations, an additional pole at    
-100 and -200 are considered for 2 cases. Using the proposed 
method, the following gain matrices are obtained: 
 
- (for adding poles at -100)  
 

[ ]497.6974 2.3700 1.4610−=pK
       

 [ ]48346.0449 1047.3126 256.6998−=iK         
 
- (for adding poles at -200)  
 

[ ]734.6962 2.3700 2.9710−=pK         

 [ ]82472.1625 2014.0627 422.7998−=iK        
 
For a comparison, using the Ackermann’s formula one can 
obtain the gain matrix KP = [341.2612 12.0375 0.0490]. 
 

B. 8BExperimental Setup 
 Consider the magnetic levitation system shown in Fig. 6, in 
which an electromagnet exerts attractive force to levitate a 
steel ball. We practically implement the proposed state-PI 
feedback controller in an experimental setup. An image of the 
experimental apparatus system can be seen in Fig. 7a. The coin 
cell batteries acting as disturbance to the ball can be controlled 
as shown in Fig. 7b. These experiments point out that the 
proposed controller is robust. In order to test the state-PI 
feedback controller on a real plant, the regulator was designed 
in Simulink of Matlab (Fig. 8). It was then implemented with 
the RTW of Matlab via a digital board on the real system. The 
digital board is a Rapcon, 12-bit input/output card [13], used 
with an Intel coreTM2 duo computer. The analog input and 
output blocks in the simulink scheme of Fig. 7 are input/output 
blocks compatible with the Rapcon digital board with 
sampling time 0.001s. The magnetic levitation unit is 
composed of an electromagnet, of a steel ball, and of a linear 
hall effect sensor set that measures the position of the ball. 
 

 
Fig. 6 Diagram of the magnetic levitation system. 

 

 
    
   (a) without disturbance  (b) with disturbance 

Fig. 7 Proposed magnetic levitation system 
 

C. 9BExperimental Results 
 The experimental results shown below were very 
satisfactory and demonstrated the robustness and the 
effectiveness of the state-PI controller. Fig. 9 shows the 
responses and the control input according to the proposed 
method, and the states are disturbed by changes in the mass at 
the time t=21.5s. It can be observed that using the proposed 
method the states possess very good responses, the 
disturbances are completely dampened out, and the control 
input is reasonable. With the conventional pole placement 
method, some states contain a large amount of steady-state 
errors due to disturbance as depicted in Fig. 10. 
 

 
Fig. 8 Implementation of the state-PI feedback controller on Simulink. 
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(a) Response of system state (x1). 

 

(b) Response of system state (x3). 

 
(c) Control signal. 

Fig. 9 Response of system states for 6% variation of the mass with the proposed state-PI feedback. 
 

 

(a) Response of system state (x1) 
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(b) Response of system state (x3). 

 
(c) Control signal. 

Fig. 10 Response of system states for 6% variation of the mass with the conventional state feedback. 
 
In Fig. 11, the large effect of a high step disturbance on the 
equilibrium position exceeds the linear range of the sensor, 
deteriorating the system performance. However, this effect 
does not occur with the state-PI feedback, as illustrated in Fig. 
11, which indicates that this controller produced an 
appropriate action fast enough to avoid large deviations on the 
steel ball position. The state feedback controller could not 
stabilize the plant for large variations on the mass. From Figs. 
11-12, one sees that the robust controllers achieve better 
disturbance rejection than the conventional state feedback 

controller and that the robust controllers perform very well in 
bringing the ball back to the adopted operating position even 
when the system is subjected to change in the mass. Further 
results are illustrated in Fig. 13 to show the effects of the 
additional real pole due to the design step 3 on the dynamic 
responses. It is found that an additional fast real pole results in 
better transient responses in an exchange of high gains. 
Moreover, the system is more robustness to external 
disturbances. 

 
 

 
(a) Response of system state (x1) 
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(b) Control signal. 

Fig. 11 Response of system states for 12% variation of the mass with the conventional state feedback. 
 

 
(a) Response of system state (x1) 

 
(b) Response of system state (x2) 

 
(c) Response of system state (x3) 
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(d) Control signal. 

Fig. 12 Response of system states for 12% variation of the mass with the proposed state-PI feedback. 
 

 
(a) Response of system state (x1) 

       
(b) Response of system state (x2) 

         
(b) Response of system state (x3) 
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(d) Control signal. 

 
Fig. 13 Response of system states for 12% variation of the mass with the proposed state-PI feedback (added pole at -200). 

 

V. CONCLUSION 
We have demonstrated that the proposed state-PI feedback 

control is efficient when used in motion control in which the 
displacement, velocity and current are usually needed as 
feedback signals. By comparison with the conventional state 
feedback control, its simple structure means less effort to be 
made in the implementation of the controller. This is very 
attractive for a practical design of a feedback control system. 
The magnetic levitation system has been used in this paper to 
practically demonstrate the effectiveness of the proposed 
control scheme. Experimental results indicate the state-PI 
feedback control scheme can result in a closed-loop system 
with good regulating performance as well as good robust 
property against high step disturbances. Also, the effects of the 
position of one additional pole required according to the 
integral term are investigated. It is recommended that a fast 
real pole be added to achieve more robustness to external 
disturbances bearing in mind on the increase in the feedback 
gains. 
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