
 

 

  
Abstract—Calcium homeostasis is an important mechanism in 

human being. The disorder of such mechanism may leads to serious 
diseases. In this paper, we propose a mathematical model to describe 
calcium homeostasis based on the effects of two major factors, 
parathyroid hormone and vitamin D. The various kinds of dynamics 
behavior are investigated both theoretically and numerically.  
 

Keywords—Calcium homeostasis, geometric singular 
perturbation, parathyroid hormone, vitamin D.  

I. INTRODUCTION 
N order that all cells in human body function normally, 
appropriate amounts of calcium ion in the extracellular fluid 

are required [1]-[4]. The mechanism that maintains the 
calcium level in the normal range is calcium homeostasis. Two 
major factors involve in the mechanism are parathyroid 
hormone and vitamin D [1]-[4].      
 Parathyroid hormone (PTH) is released from the parathyroid 
glands in response to the low level of calcium ion in blood [1], 
[5].  The target organs of PTH are bone, intestine and kidney.  
On bone, PTH increases the osteoclastic activity resulting in 
the increase of calcium ion released into blood [1]. On 
intestine, PTH stimulates the enzyme that converts vitamin D 
to its active form and then increases calcium absorption from 
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diet [1]. On kidney, PTH stimulates the reabsorption of 
calcium from urine [1]. Therefore, the increase in PTH level 
leads to the increase in the calcium level in blood. When the 
calcium level in blood is high the release of PTH will be 
decreased in order to maintain the normal range of calcium 
level in blood.  

Vitamin D is produced in human body, requiring only 
exposure to sunlight. The major biological active metabolite of 
the vitamin D sterol family is 1,25(OH)2D3 [3]. After vitamin 
D is synthesized into its active form, it binds to vitamin D 
receptor (VDR) located on the target cells [6]. Vitamin D 
plays important roles in maintaining of calcium balance by 
enhancing calcium absorption in the intestines and increasing 
calcium mobilization from bone [6]-[10].  

Calcium is very essential for human being. It controls 
various processes such as the division of cells, the clotting of 
blood and the contraction of muscles [1]-[4]. The imbalance of 
calcium level may leads to some diseases such as 
hypocalcaemia and hypocalcaemia [1]-[4]. Therefore, it is 
necessary to maintain calcium level within the normal range. 
In the next section, we then propose a system of nonlinear 
ordinary differential equations to describe the effects of 
parathyroid hormone and vitamin D on calcium homeostasis. 

II. MODEL EQUATIONS  
We propose the following system of ordinary differential 

equations to describe calcium homeostasis based upon the 
effects of parathyroid hormone and vitamin D: 
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where X(t) denotes the concentration of parathyroid hormone 
(PTH) above the basal level in blood at time t, Y(t) denotes the 
concentration of calcitriol (the active form of vitamin D) in 
blood at time t, and Z(t) denotes the concentration of calcium 
in blood at time t.  

Equation (1) represents the rate of change of the 
concentration of PTH above the basal level in blood at time t. 
The first term on the right hand side stands for the secretion 
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rate of PTH from the parathyroid glands in response to the 
level of calcium and active vitamin D in blood. When the 
calcium level or vitamin D level is high the secretion rate of 
PTH will be decreased in order to counter balance the high 
level of calcium in blood. The last term stands for the removal 
rate of PTH from the system. 

Equation (2) represents the rate of change of the 
concentration of calcitriol (active vitamin D) in blood at time t. 
The first term on the right hand side stands for the synthesis 
rate of active vitamin D in response to the level of calcium and 
PTH in blood. The last term stands for the removal rate of 
active vitamin D from the system. 

Equation (3) represents the rate of change of the 
concentration of calcium in blood at time t. The first term on 
the right hand side stands for the rate of change in calcium 
level corresponding to the level of PTH and active vitamin D 
in blood. The last term stands for the removal rate of calcium 
from the system. 

Note that all parameters in the system are assumed to be 
positive. 

III. GEOMETRIC SINGULAR PERTURBATION ANALYSIS 
Assuming that PTH has the fastest dynamics, active vitamin 

D has the intermediate dynamics and calcium has the slowest 
dynamics. In order to apply the geometric singular 
perturbation technique [11], [12] to our system, we then scale 
the dynamics of the three components and parameters of the 
system in term of small positive parameters 0 1ε< <<  and 
0 1δ< <<  as follows. Letting ,   ,     , x X y Y z Z= = =  

32
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The shapes and relative positions of the manifolds { }0f = , 

{ }0g = , and { }0h =  determine the shapes, directions and 
speeds of the solution trajectories. We then investigate each of 
the equilibrium manifolds in detail. 
 
The manifold { }0f =  
This manifold is given by the equation 
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The manifold { }0f =  also intersects the ( ),x z − plane along 
the curve  
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Note that, in the first octant, ( )1 ,x A y z=  is an decreasing 

function of y  and z  so that ( )1 , 0 A y z →  as y → ∞  and 

( )1 , 0 A y z →  as z → ∞ . 
 
The manifold { }0g =  
This manifold consists of two sub-manifolds, the trivial 
manifold 0y =  and the nontrivial manifold given by the 
equation 
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which is a decreasing function of z  in the first octant. 
The nontrivial manifold intersects the ( ),x y − plane along 
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attaining its maximum at the point where 2x x=  and  
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In addition, ( )2y B x=  intersects the x − axis and z − axis at 
the point where 3x x=  and    
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respectively. Note that 1 0z >  if the inequality (15) holds. 
The nontrivial manifold intersects the ( ),y z − plane along 

the line  
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which intersects the y − axis and the z − axis at the point 
where 1y y=  and 1z z= , respectively. 

The manifold { }0f =  intersects the trivial manifold 0y =  

of the manifold { }0g =  along the curve  
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which is asymptotic to the line 0x = .  
The manifold { }0f =  intersects the nontrivial manifold 

{ }0g =  along the curve 

   ( )
2

2 31 4

11 3

4

5 22 5

( )( ),  
( )( )

d k x k zc cx y
d k y k z c c c xc

 + + = = − + +  +
     (21) 

attaining its relative maximum at the point  
( )2 , ,M Mx y z  where My is a real solution of 

                                 
2 0Ay By C+ + =                                 (22) 

where 
5 1 2 2 2( ) 0A c d x c x= − + <  

( )2
1 2 2 3 2 2 4 1 2 2 3 2 4 5 1( ) ( )( )B d d x k x k k d x c c x c c k= + − + + −  

( )
( )

2
4 1 1 2 2 3 2 1 2 1 2 3 2 2 4

2
1 2 3 2

( ) ( )C c d k x c c x d d k x k x k k

c d k x

= + + + −

− +
 

and 

                          ( )
1

2
1 2 1 M

M
cz k

d k yx
−

+
=                             (23) 

Note that My  exists in the first octant and is unique if  
                                   0C >                                                 (24) 
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This manifold is given by the equation 
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which intersects the z − axis at the point where 3z z=  and is 
also asymptotic to the line  
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The manifold { }0f =  intersects the manifold { }0h =  
along the curve 
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Case 1 If ε  and δ  are sufficiently small, and the inequalities 
(15), (24), (25), (35), (36) hold, and  

                          22 3 4 1Sx x x x x< < < <                               (37) 

                                   4 5Mz z z< <                                       (38) 
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where all parametric values are defined as above, then a 
periodic solution exists for the system of (4)-(6). The proof of 
the theorem is based on geometric singular perturbation 
method [11]-[12].  

If all conditions in Case 1 hold, then the shapes of the 
manifolds { } { }0 , 0f g= =  and { }0h =  are positioned as in 
Fig. 1. Starting from a point A in front of the manifold 
{ }0f = . Here, { }0f <  and a fast transition will then bring the 

system to the point B on the manifold { }0f =  in the direction 

of decreasing x . Here, { }0g >  and a transition at intermediate 
speed will be made in the direction of increasing y  until the 
point C on the curve { }0f g= =  is reached. A slow transition 

then follows along this curve to the point D where the stability 
of sub-manifold will be lost. A jump to point E on the other 
stable part of { }0f g= =  followed by a slow transition in the 
direction of decreasing z until the point F is reached since 
{ }0h <  here. The stability of sub-manifold will be lost. A 

jump to point G on the other stable part of { }0f g= =  
followed by a slow transition in the direction of increasing z 
since { }0h >  here. Consequently, a slow transition will bring 
the system back to the point D, followed by flows along the 
same path repeatedly, resulting in the closed orbit DEFGD. 
Thus, for sufficiently small ε  and δ , a periodic solution of 
the system exists. 

1y

1z

2y

3x
0

2z

z

x

y

1x

0f =

0g =

0f g= =

0f h= =

0g h= =

1S
2S

My

Mz

4x 2x
A B

C

D
E

F

G

0f g= =

 
Fig. 1 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in ( , , )x y z − space in Case 1 . Segments of the trajectories 
with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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Case 2 If ε  and δ  are sufficiently small, and the inequalities 
(15), (24), (25), (35), (36) hold, and  

                            2 2 4 3 1Sx x x x x< < < <                             (39) 

                                   4 5Mz z z< <                                       (40) 
where all parametric values are defined as above, then the 
manifolds are positioned as in Fig. 2 and the system of (4)-(6) 
will have a stable equilibrium point.  

If all conditions in Case 2 hold, then the shapes of the 
manifolds { } { }0 , 0f g= =  and { }0h =  are positioned as in 
Fig. 2. Starting from a point A in front of the manifold 

{ }0f = . Here, { }0f <  and a fast transition will then bring the 

system to the point B on the manifold { }0f =  in the direction 

of decreasing x . Here, { }0g >  and a transition at intermediate 
speed will be made in the direction of increasing y  until point 

C on the curve { }0f g= =  is reached. Here, { }0h >  and a 

slow transition then follows along this curve until the point 2S  
is reached. Thus, the solution trajectory is expected in this case 
to tend toward this stable equilibrium point 2S  as time passes. 

1y

1z

2y

3x
0

2z

z

x

y

1x

0f =

0g =

0f g= =

0f h= =

0g h= =

1S

My

Mz

4x
2x

A B

0f g= =

C

2S

 
 
 
 
 
Fig. 2 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in ( , , )x y z − space in Case 2 . Segments of the trajectories 
with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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Case 3 If ε  and δ  are sufficiently small, and the inequalities 
(15), (24), (25), (35), (36) hold, and  

                           22 4 3 1Sx x x x x< < < <                               (41) 

                                   4 5Mz z z< <                                       (42) 
where all parametric values are defined as above, then the 
manifolds are positioned as in Fig. 3 and the system of (4)-(6) 
will have a stable equilibrium point.  

If all conditions in Case 3 hold, then the shapes of the 
manifolds { } { }0 , 0f g= =  and { }0h =  are positioned as in 
Fig. 3. Starting from a point A in front of the manifold 
{ }0f = . Here, { }0f <  and a fast transition will then bring the 

system to the point B on the manifold { }0f =  in the direction 

of decreasing x . Here, { }0g >  and a transition at intermediate 
speed will be made in the direction of increasing y  until point 

C on the curve { }0f g= =  is reached. Here, { }0h >  and a 
slow transition then follows along this curve to the point D 
where the stability of sub-manifold will be lost. A jump to 
point E on the other stable part of { }0f g= =  followed by a 
slow transition in the direction of decreasing z until the point 

1S  is reached since { }0h <  here. Thus, the solution trajectory 
is expected in this case to tend toward this stable equilibrium 
point 1S  as time passes. 

 

 
 
 
Fig. 3 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in ( , , )x y z − space in Case 3 . Segments of the trajectories 
with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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IV. COMPUTER SIMULATIONS 
A numerical result of the system (4)-(6) is presented in 

Fig. 4, with parametric values chosen to satisfy the 
inequalities identified in Case 1. The solution trajectory, 

shown in Fig. 4a project onto the ( ),x y -plane, tends to a 
limit cycle as theoretically predicted. The corresponding 
time courses of the PTH, active vitamin D, and calcium 
concentration are as shown in Fig. 4b, 4c, and 4d 
respectively. 

  
 
 
                                                                                                     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 80.008, 0.15, 0.8, 0.5, 0.01, 0.9, 0.02, 0.02,c c c c c c c c= = = = = = = =  

9 1 2 2 3 4 5 6 1 2 30.08,  0.08,  0.01,  0.01,  3.9,  0.06,  0.08,  0.5,  0.07, 0.145, 0.06,  0.95,  0.95,  (0) 0.5,c k k k k k k k d d d xε δ= = = = = = = = = = = = = =

(0) 0.5, (0) 1.y z= =  (a) The solution trajectory projected onto the (x,y)-plane. (b) The corresponding time courses of PTH concentration (x), 
(c)  active vitamin D concentration (y), and (d) calcium concentration (z), respectively . 
 

a) 

c) d) 

b) 
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 A numerical result of the system (4)-(6) is presented in 
Fig. 5, with parametric values chosen to satisfy the 
inequalities identified in Case 2. The solution trajectory, 
shown in Fig. 5a project onto the ( ),x y -plane, tends to a 

stable equilibrium as theoretically predicted. The 
corresponding time courses of the PTH, active vitamin D, 
and calcium concentration are as shown in Fig. 5b, 5c, and 
5d respectively. 

 
 
 
                                                                                                     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 80.008, 0.15, 0.8, 0.9, 0.01, 0.9, 0.02, 0.02,c c c c c c c c= = = = = = = =  

9 1 2 2 3 4 5 6 1 2 30.08,  0.08,  0.01,  0.01,  3.9,  0.06,  0.08,  0.5,  0.05, 0.145, 0.06,  0.95,  0.95,  (0) 0.5,c k k k k k k k d d d xε δ= = = = = = = = = = = = = =

(0) 0.5, (0) 0.5.y z= =  (a) The solution trajectory projected onto the (x,y)-plane. (b) The corresponding time courses of PTH concentration (x), 
(c)  active vitamin D concentration (y), and (d) calcium concentration (z), respectively . 
 

a) 

c) d) 

b) 
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 A numerical result of the system (4)-(6) is presented in 

Fig. 6, with parametric values chosen to satisfy the 
inequalities identified in Case 3. The solution trajectory, 
shown in Fig. 6a project onto the ( ),x y -plane, tends to a 

stable equilibrium as theoretically predicted. The 
corresponding time courses of the PTH, active vitamin D, 
and calcium concentration are as shown in Fig. 6b, 6c, and 
6d respectively. 

 
 

 
 
                                                                                                     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 80.008, 0.15, 0.8, 0.5, 0.01, 0.9, 0.02, 0.02,c c c c c c c c= = = = = = = =  

9 1 2 2 3 4 5 6 1 2 30.08,  0.08,  0.01,  0.01,  3.9,  0.06,  0.08,  0.5,  0.07, 0.145, 0.06,  0.95,  0.95,  (0) 0.5,c k k k k k k k d d d xε δ= = = = = = = = = = = = = =

(0) 0.5, (0) 1.y z= =  (a) The solution trajectory projected onto the (x,y)-plane. (b) The corresponding time courses of PTH concentration (x), 
(c)  active vitamin D concentration (y), and (d) calcium concentration (z), respectively . 

a) 

c) d) 

b) 
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V. CONCLUSION 
A system of nonlinear ordinary differential equations are 

developed in order to describe calcium homeostasis by 
focusing on the effects of parathyroid hormone and vitamin D. 
Geometric singular perturbation is then applied in order to 
obtain the delineating conditions that differentiate various 
kinds of dynamic behavior exhibited by the system. In this 
paper, we present the results in 3 cases. In Case 1, a periodic 
solution is expected. In Case 2 and 3, a stable equilibrium 
solution is expected. The well-known Runge-Kutta method 
which has been used to find an approximation of a solution for 
the system of ordinary differential equations [13]-[16] is then 
utilized in order to find an approximation of a solution of our 
system in each of the three cases. Computer simulations 
carried out in each case confirm our theoretical predictions. 
Both theoretical and numerical results show that our system 
can deduce a periodic behavior which closely resembles to the 
pulsatile patterns observed clinically in the serum level of 
parathyroid hormone, vitamin D and calcium [17]-[19]. 
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