


Abstract— A multi-factor authentication framework relays on the 
usage of two or more sources of data for identity retrieval. Moving 
from  authors'  previous  experimentation  on  two  factor  biometric 
authentication frameworks, the present paper shows the impact of the 
usage  of  neural  networks   as  a  way to  fuse  the  outcomes  of  the 
different factors.  The aim is to experiment neural networks as a way 
to  map  the  multidimensional  probabilistic  space  of  a  multi-factor 
biometric  framework  into  the  mono-dimensional  binary  space 
required by an authentication system.
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I. INTRODUCTION

ULTI-FACTOR  authentication  is  the  most  diffused 
solution  to  secure  identification  systems world  wide. 

Examples  of  this  approach  are  the  two-factor  verification 
systems introduced  by banks,  in  order  to  authenticate  users 
during  online  transactions  [1].  Additionally,  relevant  ICT 
providers such as Google [2] are moving their authentication 
infrastructure towards this model.

M

In  a  multi-factor  framework,  people  is  authenticated  by 
means of something they know (STK), something they have 
(STH)  and  something  they  are  (STA).  From  a  simplified 
perspective biometry could be considered as a way to obtain 
information of STA type.

Biometry  is  generally  referred  to  as  the  science  (and 
technology)  which  provides  information  about  someone's 
identity  by  means  of  his/her  biological  traits.  Generally 
speaking,  two  different  kinds  of  biometric  traits  exist: 
behavioral  and  physical.  Behavioral  biometry  (BB)  tries  to 
assign unique habits to a given subject. Examples of BB are 
keystroke  rhythm and signature  pressure  and  speed.  On the 
other side, physical biometry involves the analysis of anatomic 
traits  such  as  fingerprints,  face  or  voice  (actually  voice 
indirectly represents vocal tract anatomy [3]). 

In a previous work from the authors [4], the feasibility of a 
two  factor  biometric  authentication  system  has  been 
investigated,  where  signature  has  been  used  as  STK,  while 
voice  represented  the  STA  component.  Indeed,  signature 
recognition is the ability to assign/verify a unique id to a given 
signature act, analyzed during its realization (we refer here to 
on-line signatures, that is, those obtained by means of digital 
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tablets).  Speaker  recognition,  on  its  turn,  is  the  ability  to 
assign/verify a unique id to a given pass-phrase. Moving from 
the  fact  that  applying  a  signature  is  a  behavioral  trait,  this 
element can be considered as the unique ability a person has to 
impress a paper (rather that transmitting a set of impulses at a 
given speed and pressure [5]). On its turn, a pass-phrase can be 
considered as both something a person knows (the content of 
the pass-phrase)  and something the person is (the frequency 
response induced by the vocal tract anatomy).

Every multi-factor framework has to deal to the fusion of 
scores: each factor is analyzed by a different subsystem, whose 
outcome defines  the  possibility to  grant  access  to  a  facility 
from the  perspective  of  the  single  subsystem. How to  fuse 
together  the different outcomes generating an unique binary 
decision (go/no go) is defined as the fusion problem.

In a previous work [4] a naïve solution has been applied in 
order  to  fuse  the  biometric  outcomes  obtaining  an  unique 
probabilistic  value,  later,  by means  of  a  training  session,  a 
decision  threshold  was  defined,  which  allowed  to  map  a 
probability into a binary space. In this paper we want to verify 
the  impact  of  more  complex  fusion/mapping  rules  on  the 
discrimination capability of a biometric multi-factor system.

The reminder of this paper is organized as follow. Section II 
formulates  the authentication problem in terms of  biometric 
traits; Section III presents the different solutions applicable in 
a  fusion/mapping  scenario.  Section  IV  deals  with  the 
experimental  setup  and  the  results  obtained  by  using  the 
proposed  framework.  Eventually,  section  V  presents  the 
conclusions derived from this paper.

II.AUTHENTICATION PROBLEM IN BIOMETRY

A. Authentication problem

Biometric techniques involve a two stage procedure for a 
system to be able to  associate  an ID to a  subject.  As first, 
specific  parameters,  the  features,  are  extracted  from  a 
signature,  later,  a  statistical  model  is  enrolled  against  such 
features and stored in a specific facility along with an used ID. 
The model itself, also referred as a template, is used in order to 
provide  a  representation  of  biometric  statistical  properties, 
which  are  expected  to  contain  all  the  relevant  information 
required  to  detect  a  subject  among  a  cohort  of  people.  A 
second step is used for the authentication itself. Given a set of 
models with an associated ID, a biometric data set is requested 
during  any  new transaction  as  well  as  a  claimed  ID.  The 
features extracted from this data set are then compared to the 
declared ID.  In classical approaches,  if a template obtains a 
score  major  than  a  fixed  threshold  θ,  it  is  considered  the 
winner  template  and  the  declared  ID  as  the  one  actually 
belonging to the subject under analysis.
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Authentication  is  performed  by  means  of  similarity and 
typicality comparison.  Let F={ f i with i=1,... , n} be  the 
feature set acquired by a biometric device at a fixed sampling 
frequency,  and  Θ0 be  a  template,  a  similarity score  S0 is 
defined as:

(1)

where  P  is  the  probability  operator.  If  an  alternative 
template Θ1 exists, it is possible to estimate a second typicality 
score S1 and retrieve the normalized log-score (NLS) as:

(2)

Usually, Θ1 is named Universal Background Model (UBM) 
and it is generated by pooling together feature sets obtained 
from a reference database. This model is expected to provide a 
good  estimation  of  the  probability that  certain  features  can 
occur among different people. 

In  other terms  Θ0  accounts  for  the  similarity  between  a 
template and a person's biometric trait, while Θ1  assesses for 
the typicality of a certain feature, that is, its frequency among a 
wide group of people.

The typicality allows a system to weight the actual similarity 
between a template and a feature  set,  evaluating how much 
original a component of a biometric trait is. 

B. Feature sets

On-line  signature  recognition requires  the employment  of 
digitizing tablets. Such tools allow to record several temporal 
patters,  such  as:  the  pen  position  on  the  tablet  (x,y),  its 
pressure (p).

In [5], the authors have reviewed the signature process from 
a  physical  perspective.  Briefly,  the  whole  act  of  signature 
making can be reduced to the motion of a point in space (the 
pen  tip);  therefore,  the  signature  can  be  described  by  the 
classical  problem  of  a  material  point  moving  in  a  bi-
dimensional  space.  According  to  classical  equations  of 
mechanics, a material point moving on a generic path can be 
represented by a dynamic system, where the state is defined by 
the  vector  (x,  y,  δ, ẋ , ẏ , δ̇ ),  that  is,  point's  position  and 
instantaneous velocity (being δ the angular velocity), while the 
input is defined by the acceleration provided to it by external 
forces: ( ẍ , ÿ , δ̈ ). Moving from this model and by adding the 
pressure information, authors proposed the following feature 
vector: 

(3)

This  feature  vector  is  employed  again  in  this  paper, 
computing a vector for each data set acquired at 100Hz by a 
digitizing tablet.

One  of  the  most  commonly  used  features  in  speaker 
recognition are Mel Frequency Cepstral Coefficients (MFCC) 
[6].  In  order  to  increase  the  discrimination  capability  of  a 
speaker recognition system, such features are associated with 
their first and second order derivatives in a manner similar to 
the procedure described for signatures. Moreover the first and 

second  order  derivatives  of  signal  energy  are  included  to 
incorporate  user  habits  related  to  loudness  modulation  in 
voice. MFCC are used to approximate the voice spectrum via 
discrete cosine transformation. In other terms by varying the 
number of MFCCs a more or less accurate representation of 
the speaker voice can be attained. State of art uses from 13 to 
19 MFCC. Thus,  each feature vector  accounts  for  41 to  59 
parameters. Each feature vector is extracted from a 20 to 30 
ms signal window (commonly overlapped Hamming windows 
are  used).  In  this  paper  20  ms  Hamming  windows  are 
employed,  extracting  13  MFCC  plus  their  derivatives  and 
energy derivatives,  leading to 41 parameters for  each signal 
window.

Additionally, the average energy value of each window is 
used in order to discriminate between silence and actual voice 
in  recordings.  Windows  are  grouped  by  means  of  a  2 
component GMM [7]. The windows belonging to the GMM 
component  with the  lower  average  energy  are  discarded  as 
silence, while the others are employed for model training.

C.Models

The so named UBM-GMM model is widely employed in 
this paper for both signature and voice.  This kind of model 
represents a special case of the Maximum A Posteriori (MAP) 
estimator for HMM parameters, described in [7].

In  order to compute a proper template,  Gaussian Mixture 
Models  (GMM)  are  commonly  used  (compare  [8]  among 
others).  Given  a  number  h of  multivariate  Gaussian 
distributions N(x,μj,Σj),  with  x being a vector  of iid random 
variables, a GMM based template is defined as:

(4)

where the covariance matrices are commonly constrained to 
diagonal form and weight coefficients (αj) are constrained to 
satisfy:

(5)

In order to properly compute a GMM based template, the 
unbiased estimators for each mean μj and covariance matrix Σj 

as well as the weights αj must be retrieved. A straightforward 
solution to this problem is the application of the well known 
iterative Expectation-Maximization (EM) algorithm.

Anyway,  the  classical  EM  algorithm  needs  a  relevant 
amount of data for its estimates to be accurate enough. As a 
matter of fact, common biometric traits do not provide such an 
amount of data and the overall system accuracy is degraded by 
this  lack.  By  applying  MAP  estimation  to  biometric  data, 
authors  of  [9]  have made their  system less  sensitive to  this 
issue.  The  procedure,  detailed  in  [9]  and  [7],  can  be 
synthesized  as  follow:  EM is  applied  to  compute  an  UBM 
model - which does not suffer of data lack, being generated by 
pooled data -, then the MAP algorithm is applied in order to 
derive templates from the specific subject's features. 

The  MAP  algorithm  interpolates  between  the  UBM 
parameters  and  the  template  parameters  as  computed  by 

S 0=
1
n
∑
i=1

n

P ( f i |Θ0)

NLS=log( S0

S1
)

f '=[x , y , δ , p ,v , δ̇ , ṗ , v̇ , δ̈ , p̈ ]

∫
−∞

∞

∑
j=1

h

α j N ( x ,μ j ,Σ j)dx=1

=∑
j=1

k

 j N  x , j , j

with  j∈ℝ ,∀ j constrained to ∑
j=1

k
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directly applying EM to the subject's features. Specifically, the 
MAP  procedure  interpolates  at  each  iteration  of  the  EM 
algorithm.  According  to  terms  defined  in  eq.  (3),  template 
parameters are estimated iteratively as:

(6)

where j accounts for the iterations of the EM algorithm and D(.) 

are diagonal relevance matrices. Each entry of D(.) defines a 
weight to be applied in the sum. Possible values for D(.) are 
proposed  in  [9]  and  [10];  namely in  [9]  an  a  priori  set  of 
weights is employed, while in [10] a more advanced adaptive 
method is presented. The a priori set is employed also in this 
paper and it is defined as: 

(7)

nk and r assume the same meaning defined in [9] and are 
independently  computed  for  each  dimension  of  the  feature 
space.  MAP is  widely used  in  speaker  recognition  and  the 
authors in [5] have successfully proposed the MAP approach 
for signature recognition tasks. Therefore, the templates used 
in this paper are based on the same computational model.

D.Fusion and decision

Once a biometric trait is available, a feature set is extracted, 
and it is compared against the associated biometric templates. 
In other terms, given a feature stream for the  i-th trait, and a 
set  of  M  templates  Ti  ={Θ0,i,j,  j=1,...,M}, the  outcome of  a 
classical  authentication  problem constrained  in  the  i-th  trait 
subspace is defined as:

 
(8)

where S0,i,j is the S0 score obtained comparing the feature set 
with  the   Θ0,i,j template  and  θ is  the  application-dependant 
acceptance threshold, fixed during the framework enrollment. 
In  a  multi-factor  system  this  is  not  the  case;  indeed,  the 
winning template is defined by analyzing the outcome of an 
identity in the whole multi-factor domain: 

(9)

where  f(NLSi,j) is  a  function that  maps each set  of  NLS*,j 

scores obtained by the j-th identity in the ℝM  factor space, to 
a probabilistic value in ℝ .

Such a value contains the fusion of all the scores obtained 
by a given identity, when tested against the different features 
streams. The focus of this paper is on the definition of such a 
fusion function f(.).

III.THE FUSION AND MAPPING PROBLEM

A. Factors outcome refinement

State-of-the-art models and features are usually affected by 
some problems. Numerical models are either too complex to 
be perfectly calibrated with common amounts of data or too 
simple  to  perfectly  fit  real  situations.  Moreover,  known 
features  can  be  far  from  optimal  descriptors  of  a  given 
problem. In  other  terms, MAP generated  templates  can still 
suffer  in  terms  of  discriminatory  capabilities.  The  most 
common solution to this issues is to adopt a fusion stage which 
is able to merge and refine the outcomes of the subsystems. As 
first  a  simple  single  factor  system  is  analyzed  in  this 
paragraph,  in  order  to  point  out  how  to  attain  such  a 
refinement capability.

The underlying idea, proposed in [11], is to filter the NLS 
by means of  Artificial  Neural  Networks (ANN).  ANN have 
been widely used  in  order  to  introduce both prediction and 
automatic classification capabilities in software ([12][13][14] 
among others). Another way to employ ANN is to use them as 
a  mapping  function,  which  represent  the  goal  in  [11]  and, 
partially, in  this paper.

According to [11], an ANN can be employed as f(.) in order 
to reduce the average error of a multi-factor system. Authors in 
[15]  have  successfully  applied  this  approach  to  signature 
identification.  The  steps  required  in  order  to  solve  the 
refinement problem are briefly recalled:

1. a set of NLS is obtained during a controlled session, 
that  is  a simulated authentication session where the 
ID are known a priori. During this session NLS are 
retrieved  from   comparisons  where  the  winner  is 
either the actual ID of the tested feature stream, or, in 
case of error,  a wrong ID;

2. according to the fact that the winner is or is not the 
correct ID, a label is assigned to each NLS. Namely 
label  1 is  assigned  to  correct  ID,  label  0 to  wrong 
ones;

3. an ANN  is trained by minimizing the following cost 
function:

(10)

where NT is the number of correct IDs – computable 
as  the  numerosity  #1 of  1 labels-,  that  is  the 
comparisons  made  between  a  data  stream  and  a 
template belonging to the same subject,  while NI is 
the number of impostor comparisons (again #0), that 
is the number of wrongly assigned IDs. The NLS are 
feed into the ANN as input, while the relative labels 

{
μ j

+
=μUBM+ Dμμ j

-

Σ j
+
=ΣUBM+ DΣΣ j

-

α j
+
=αUBM+ Dαα j

-

auth={Θ0,i , j if NLS i , j> θ

Θ1, i otherwise

where NLS i , j= log( S 0,i , j

S1, i
)

and θ∈ℝ

auth={Θ0, j if f (NLS i , j)> θ

Θ1 otherwise

with f (NLS i , j)=ℝ
M
→ℝ

cost=−
1

N T
∑
i=1

N T

log2(1+ 1
exp(NLS i))

−
1

N I
∑
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N I

log2 (1+ exp (NLS j))

{
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DΣ=λ Σ I
Dα=λα I
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are used to correctly locate the network outcomes in 
to the two members of the right side of eq.(10).

The output  of the trained ANN is expected to be a well-
calibrated loglikelihood ratio (llr). According to the Bayesian 
theorem, llr are related to the probability of template matching 
by:

(11)

where Pprior is  a  prior  probability,  fixed to  0.5  in [11].  The 
proposed  topology for the ANN is  1-1-1,  with one input,  a 
hidden layer with a single hyperbolic tangent neuron and one 
linear output neuron. The hidden layer is used to saturate the 
result  in  order  to  limit  out  layers  in  scores.  The  presented 
ANN hereafter will be referred to as ANN-1.

Fig. 1 – topology of the ANN-1 for the refinement problem.

The final result is, therefore,  an unbiased predictor  of the 
probability of match between a feature stream and an ID. By 
substituting the llr  to  the NLS in equations (7)  and (8),  an 
optimal and, hopefully, unbiased decision can be attained.

B. Factors outcome fusion

In the recent past, the fusion stage was resolved by means 
of  naive fusion.  A naive fusion is obtained  by summing all 
NLS coming from the different factors. As pointed out, among 
others, by [16], this approach overestimate the real LLR due to 
unaccounted  correlation effects  between  factors.  More 
accurately,  each  output  can  be  correlated  to  others  by 
computing their  correlation matrix. A possible solution is to 
apply a pre-fusion stage which de-correlates data: as instance, 
PCA. PCA is a widely applied approach to data decorrelation 
and dimensionality reduction for machine vision and artificial 
intelligence  ([17][18]  among  others).  Historically,  the 
biometric community has followed a different approach.

In [19], a different fusion approach is presented which is 
named  logistic  regression.  Logistic  regression  is  used 
extensively  in  the  medical  and  social  sciences  as  well  as 
marketing  applications.  The  general  formulation  of  logistic 

regression is:

(12)

where  xi are  the  NLS,  ai are  their  respective  weights.  The 
logistic regressive fusion problem is focused on the definition 
of correct weights.

In [20] a numerical approach is proposed with the aim to 
provide a balanced solution. Such solution is responsible to 
account for all correlation effects, providing the correct weight 
to each output. According to [20] and [11], equation (11) is 
convex, thus a gradient descent approach can attain the global 
minimum of function. Thus the problem is formulated as:

(13)

Beside  the 
optimal fusion approach, [11] demonstrated that the obtained 
solution  cost  is  also  close  to  Cllr

min.  In  other  terms  solving 
problem (12) leads to simultaneous fusion and refinement of 
multi-factor systems. 

Fig. 2 – topology of the ANN-2 for the fusion problem.

There  is  a  main difference with respect  to the refinement 
topology  proposed  by  the  authors:  the  logistic  problem  is 
equivalent  to  an  ANN  with  topology  n-1,  with  a  sigmoid 
output  neuron.  The  exponential  term is  here  used  to  invert 
equation (10), where Pprior is assumed to be 0.5. In this case the 
cost function (9) can be filled with the inversion of eq.(11), as 
the ANN output already provides an estimation for P, therefore 
the resulting llr must be explicitly recomputed. The presented 
ANN hereafter will be referred to as ANN-2.

C.Fusion and refinement

It  is  possible  to  reorganize  the  refinement  and  fusion 
problems into a common general schema. In order to explain 
this approach, the two problems have to be reviewed from an 
operator-based stand point.

1. A  linear  transformation  is  applied  in  the  fusion 
problem.  The  linear  transformation  is  just  the 
generalized form of the biasing applied as input into 
the hyperbolic tangent neuron of an ANN-1, as in  A.. 
Thus,  both  problems  start  with  the  same  operator, 
here named Σ1.

2. Σ1 is mapped by a sigmoid function in both problems. 
In the former (refinement) this function is applied as 
basis for the final soft thresholding. In the latter it is 
used  to  map  llrs  to  probabilities.  In  fact,  logistic 
regressive outputs are probabilities and not llrs. For 

log Pmatch

1− P match
=LLRlog P prior

1−P prior


Pmatch=
1

1+ e−g(x )

with :

g(x )=∑
i=0

n

ai xi being x0=1 by definition

⃗aopt
≡(a0,…, an)

opt
=argmin

a⃗∈ℝn+ 1

y (a⃗)
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the refinement problem this operator is here named Ψ, 
while it is named M for equation (11).

According to the previous description, both problems can 
be respectively reduced to the following operator chains: Σ1-M 
for  fusion  and  Σ1-Ψ for  refinement.  The  main  issue  with 
logistic regression is the missing saturation stage Ψ.

As a possible solution, we propose to plug the fusion stage 
into  the  refinement  problem,  removing  the  implicit  llr-to-P 
map  M.  In  this  paper  we  will  experiment  with  an  ANN 
topology, which resembles the one of eq. (12), but where the 
input is the multidimensional vector NLS i , j , and the output is 
a well-calibrated llr j , for each subject (fig.3).  The presented 
ANN hereafter will be referred to as ANN-3.

Fig. 3 – topology of the ANN-3 for refinement and fusion.

D. Map  from  multidimensional  probabilistic  space  to  
mono-dimensional binary space

The main aim of a multi-factor authentication system is to 
discriminate between genuine accesses and impostors, that is 
provide a binary decision to the authentication problem.

The  biometric  framework,  paired  with  an  ANN-3, is  a 
probabilistic system, which do not provide any real solution to 
the authentication problem; therefore, a post processing stage 
has to be designed in order to move into the binary space. The 
goal  is  to  allow an  ANN to  automatically setup  a  decision 
threshold, which will map the biometric framework outputs in 
to  the binary domain,  filling the gap  between biometry and 
authentication frameworks requirements.

The underlying logic is as follow: as first, llr  coming out 
from ANN-3  are  remapped  in  probabilities  as  per  eq.(12), 
later,  a  new  neuron  is  employed  to  define  a  probability
P1 /0∈[0,1] ,  that  is,  the  specific  probability  threshold for 

which  outcomes  of  eq.(12)  are  either  saturated  to  1  (true, 
accept identity) or floored to 0 (false, reject identity). In other 
terms,  we  propose  to  rework  the  neural  network  stack  as 
follow:
– the output of ANN-3 is feed in a non-biased sigmoid 

neuron. This neuron is responsible for mapping llr to P as per 
eq.(12);
– the output of the sigmoid neuron is feed into a step 

neuron,  which  is  responsible  to  set  a  final  hard  threshold
P1 /0∈[0,1] . 

The  final  ANN  stack  has  topology  n-1-1/1-1-1,  and  is 
composed by two networks: ANN-3 and the newly proposed 
2-neuron network,  hereafter referred to as ANN-4.

In this case, the training is composed by two serial steps:
• ANN-3 is trained by minimizing eq.(10);

• the trained output of ANN-3 is used to enroll ANN-4 
by means of  any one of  the classical  cost  function 
([21] among others).

Fig. 4 – topology of the ANN stack for the 
multidimensional mapping.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Data-sets and models

In  order  to  test  our hypotheses,  the myIDea,  the Speaker 
Recognition  and  the  22-Language  databases  have  been 
employed  [22][23][24].  The  myIDea  signature  data  set  is 
composed  by  3537  signatures  collected  from  73  different 
subjects. Each subject has been acquired in different sessions, 
collecting up to five genuine signatures per session. 1173 of 
these signatures have been employed to train the UBM model. 
Other  samples  have  been  used  to  generate  the  attempted 
accesses to a given facility.

The  Speaker  Recognition  (v.1.1)  corpus  consists  of 
telephone  speech  from  about  500  participants  [23].  Each 
participant has recorded speech in twelve sessions over a two-
year period. All of the data in the corpus were collected over 
digital  telephone lines (8khz 8-bit ulaw files). Some of these 
speakers have been employed in order to simulate the voice of 
people attempting to access a biometrically controlled facility.

The  22-Language  database  (v.1.2)  consists  of  telephone 
speech from 22 languages (Eastern Arabic,  Italian,  Russian, 
English among others),   containing fluent continuous speech 
[24]. All of the data in this corpus were collected over digital 
telephone lines (8khz 8-bit ulaw files) too. The voices in the 
22-Language database have been employed to train an UBM 
for the speech factor.

The experiment proposed in this paper has been conducted 
by using chimeric data. A biometric chimera is a set of biodata 
obtained  by grouping biometric  traits  belonging to  different 
people. In such a way, even if a multi-modal database doesn't 
exist,  it  is  possible to generate  fake authentication sessions. 
Researchers  have  warned  [25]  about  the  overestimation  of 
discrimination capabilities induced by the usage of chimeric 
data.  The  authors  are  aware  of  this  issue,  nonetheless  we 
consider  that  the  provided  results  still  provide  insightful 
information about the strength obtainable by merging different 
biometric traits.

The  chimeric  data  have  been  obtained  by  associating  a 
given  identity  IDs,i of  the  signature  database  with  one  IDv,j 

coming from the Speaker Recognition database. Given a pair 
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(i,j) of identities randomly extracted from the two databases, a 
new chimera Ck={IDs,i, IDv,j} is introduced into the ID list.

The proposed identification experiment involves the usage 
of 38 chimeras. 19 of them are used to train the ANN stack 
described in III.D, while the others are used for validation, that 
is, to simulate the effective performance of the system during 
its runtime. The chimeras have been generated by randomly 
selecting a number of ID without repetition, in such a way it is 
granted that  a  given random ID (.),(.) is  not  present  in two or 
more chimeras.

During training, a template  Θc={Θs,Θv} composed by two 
GMM (one for signature and one for voice) has been retrieved 
from one session of each chimera. Later, 8 additional sessions 
per user have been employed for training the ANN.

 By  cross  comparing  the  different  sessions  against  each 
other, a total of 152 target accesses have been computed, as 
well  as  2682  fraudulent  accesses.  A target  comparison is  a 
comparison where the  h-th chimera Ch claims an identity Ch, 
while a fraudulent access is one where Ch claims an identity Ct 

with t≠h. These comparisons have been performed in order to 
evaluate  both  system  resistance  to  attackers  and  system 
discriminatory capabilities.

The comparisons have been carried on independently for the 
two biometric factors,  by using eq.(2);  the result  is a set  of 
2834  bi-dimensional  vectors ⃗NLS i ,  with  i defining  the  i-th 
attempted  access. As  described  in  III.A,  these  vectors  have 
been assigned a label of 1 or 0 according to the rule:

(14)

the ANN training has been conducted via the well known 
stochastic gradient descent algorithm [26].

Validation has been obtained by processing the other half of 
the  chimeras.  Namely,  each  factor  has  been  processed 
independently in order to retrieve new ⃗NLS vectors, then those 
vectors have been processed by the trained ANN, obtaining a 
label (0/1).

B. System training and validation

In order  to generate the ⃗NLS vectors,  a template for each 
chimera must be enrolled. As explained in section II, template 
enrollment is performed via MAP, which, on its turn, requires 
a given base model, commonly the UBM. As a consequence, a 
necessary  condition  to  boostrap  the  process  is  to  define  a 
correct UBM for each factor. The present work requires two 
UBM: one for speech and one for signatures. 

UBM  are  obtained  via  the  EM  algorithm  by  training  a 
GMM against  a  set  of  pooled  features,  coming respectively 
from  the  myIDea  database  and  from  the  22-Language 
database.  The  only  mandatory  input  required  by  the  EM 
algorithm is the number of components of the GMM, that is, 
the  model  size.  In  [27]  has  been  shown  how  model  size 
predictors  such as  the Minimum Description Length do  not 
apply to diagonally constrained GMM (the kind of GMM used 
in  this  paper)  and,  therefore  an iterative  a  posteriori  sizing 
procedure  is  required.  Usually,  this  implies  the  following 
steps:

1. define a tentative size for the UBM and enroll it 
via EM;

2. use the tentative UBM to enroll all the templates 
with MAP, given an adaptation strategy;

3. perform a batch of comparisons, with both target 
and fraudulent accesses;

4. define  an  optimal  acceptance  threshold  θ,  for 
which the equal error rate (EER) configuration is 
attained, for the given UBM size [27];

5. repeat steps from 1 to 4 with different sizes, until 
the obtained EER is minimized.

Usually progressively increasing or decreasing powers of 2 
are  used  as  tentative  sizes.  In  this  paragraph we report  the 
different levels of equal error rates reached by different sizing 
for both the signature and voice UBM. Referring to eq.(6), the 
MAP  adaptation  strategy  employed  in  this  paper  is  the 
following for both speech and signature:

(15)

In  other terms only UBM means are  adapted  by using a 
relevance  factor  of  16.  This  very  common strategy  can  be 
found in a  number of  papers  focusing on MAP enrollment, 
noticeably it is used in [9].

Tab. 1- most relevant sizing results for the signatures UBM

System size EER [%]

signatures 512 5%

signatures 1024 1%

signatures 2048 2.5%

Tab. 2 - most relevant sizing results for the voice UBM

System size EER [%]

voice 256 12%

voice 512 11%

voice 1024 16%

According to Tab.1 and 2, which report the most relevant 
results  of  the  sizing  procedure,  the  optimal  size  for  the 
signature UBM is 1024, with an EER of 1%, while the optimal 
sizing of the voice UBM is here fixed at 512, with an EER of 
11%. The higher EER in the voice system with respect to the 
signature one is caused by the highest variability of the voice 
features,  which  generate  a  more  complex  scenario  for  any 
biometric technology.

Once  the  optimal  UBM  size  is  defined,  along  with  the 
associated  models,  a  template  is  trained  for  each  subject, 
which is composed by two GMM: one MAP enrolled from the 
voice  UBM  and  the  other  one  MAP  enrolled  from  the 
signature UBM.

The given models are tested against feature stream coming 
from each session of each chimera, generating both target and 
fraudulent accesses. The result of these comparisons is plotted 
in fig.(5).

label={ 1 if Ch claimed identity Ch

0 if Ch claimed identity C t ,with t≠h

{
Dμ=λμ I

DΣ=0
Dα=0

where λμ , k=nk /(nk+ 16)
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Fig. 5 – NLS vectors coming from signature  (x axis) and speech (y 
axis) comparisons. Blu dots represent target accesses while red ones 

represent fraudulent accesses.

The  horizontal  and  vertical  zero  crossing  lines  of  fig.5 
define the boundaries of log-likelihood values (llr). A negative 
llr implies a mismatch between the claimed ID and the feature 
stream,  on  the  opposite,  a  positive  llr  confirms  a  match 
between the ID and the features. Analyzing raw NLS vectors, 
where ANN-1 is not applied yet, the most of the comparisons 
show a coherent behavior between the two factors: almost all 
the fraudulent trials (red dots) belong to the negative domain
ℝ- xℝ- ,  while the majority of target trials (blu dots) lies in
ℝ+ xℝ+ . In some cases the two factors provide inconsistent 

behavior,  generating  NLS  vectors  in  the  second  and  fourth 
quadrant.  The  highest  percentage  of  inconsistencies  is 
noticeable  in  the  fourth  quadrant,  where  a  lot  of  voice 
comparisons (y axis) show a mismatch where a match should 
be proved instead.  This is  in line with the predicted  higher 
EER of the voice factor  compared to the signature one.  By 
training  ANN-3,  a  new  set  of  values  is  computed,  which 
should be considered a set  of well-calibrated llr:  results are 
shown in fig. 6.

Fig. 6 – well-calibrated llr obtained with ANN-1 during the training 
session. The outcomes have been obtained by feeding raw NLS 

vectors of fig.5 into an network, whose topology resembles the one 
described in section III.C.

As shown in fig.6, a good separation between fraudulent and 
target  trials  is  attained  by  means  of  ANN-3,  leading  to  a 
limited amount of errors. Moreover the effect of the hyperbolic 
tangent  and  the  linear  out  layer  are  depicted,  showing  a 
relevant  number  of  trail  clustered  in  proximity  of  the 
boundaries automatically defined by ANN-1 (-17 and 14). 
ANN-3 results are a good predictor of what can be expected 
training  the  actual  ANN  stack  required  by  the  framework: 
indeed,  ANN-4  simply  applies  the  Bayesian  theorem  and 
defines the optimal separation threshold required  to saturate 
the outputs to 0 and 1.
First  row of  table  3  shows the  training  errors  obtained  by 
training the actual network stack of section III.D and mapping 
llr into binary values. 
Analogously,  by  re-applying  both  template  generation 
procedure and the cross comparison to the validation set and 
by  processing  it  by  means  of  the  trained  stack,  the  errors 
shown in the second row of table 3 are attained. This last row 
defines the actual reliability of the proposed system as meant 
during its usage in a real scenario.

Tab. 3 – training and validation errors for the proposed framework

Phase False rejection 
[%]

False acceptance 
[%]

training 0,25% 0%

validation 0,35% 2%

V. CONCLUSION

The following paper deals with features and models for a 
biometry-based  multi-factor  authentication  framework.  The 
proposed  solution  approaches  biometry  both  as  something 
users know (signature make process) and something they are 
(voice  as  correlate  of  vocal  tract  anatomy)  and  approaches 
probabilistic  biometric  models  as  tools  for  strong 
authentication.  The  underlying  idea  is  to  enforce 
authentication  without  the  usage  passwords  and/or  other 
authentication gadgets, while the aim is to experiment neural 
networks as a way to map the multidimensional probabilistic 
space generated by the multi-factor biometric system into the 
mono-dimensional binary space required by the authentication 
process.

An ANN stack has been proposed, which is composed by 
two  stages:  the  first  one  attempts  to  correctly  fuse  the 
probabilistic  information  coming  from  the  two  subsystems 
(signature and voice), mapping it into a set of well-calibrated 
log-likelihoods  (llr),  while  the  second  maps  llr  into 
probabilities (according to he Bayesian theorem) and saturates 
them in order to generate a binary outcome. By using this stack 
it is possible to solve the map problem and obtain an automatic 
authentication  system  from  biometric  data.  The  presented 
experiment shows a potential error of 0.35% in terms of false 
rejection and a potential error of 2% in false acceptance.

One  relevant  aspect  which deserves  attention  and  further 
investigation is the usage of chimeric data: as pointed out in 
[25]  they  tend  to  underestimate  actual  errors.  Therefore 
additional  commitment  must  be  devoted  in  retesting  the 
framework with real multi-modal data.
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