
 

 

  
Abstract — This paper presents a new class of monotone 

functions that can be computed from the Residue Number System 
(RNS) to the integers. On the basis of these functions new 
implementations are proposed for residue-to-binary conversion and 
magnitude comparison that are superior to traditional techniques, if a 
modulus of the kind 2k (k integer) is included in the set of RNS 
moduli. 
 

Keywords — Chinese Remainder Theorem, Magnitude 
Comparison, Multi-operand Modular Adder, Residue Number 
System, Residue-to-Binary Conversion.  

I. INTRODUCTION 

N the Residue Number System (RNS), the effective 
implementation of non-modular operations like residue-to-

binary conversion and magnitude comparison is mandatory. 
Residue-to-binary conversion is necessary for the use of RNS 
arithmetic units into general purpose computers, which are 
based on the binary number system. Magnitude comparison 
supports other logic operations that are complex in the RNS 
due to the difficulty in defining an order relation on quotient 
sets [12]. 
The main techniques for the implementation of non-modular 
operations use the Mixed-Radix Conversion (MRC) - which is 
strictly sequential, or the Chinese Remainder Theorem (CRT) - 
which is more attractive since it provides a parallel conversion 
formula [13].  
Other techniques have been proposed which use functions 
defined from the RNS to the integers. The 'diagonal function' 
exploits the observation that the integers in residue 
representation dispose themselves on diagonals when they are 
arranged in the multi-dimensional discrete space associated to 
the RNS [2, 3]. Unfortunately, although the 'diagonal function' 
is a powerful tool for magnitude comparison, it does not 
support residue-to-binary conversion [2,3].  
This paper introduces a new class of monotone functions that 
support effectively both magnitude comparison in RNS and 
residue-to-binary conversion. Through the paper an effective 
scheme for the computation of the new functions is presented 
and the superiority of the new implementations of magnitude 
comparison and residue-to-binary conversion with respect to 
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traditional techniques is demonstrated.  
The organisation of the paper is the following: Section 2 
introduces the new functions and presents the scheme to 
compute them directly from the RNS. Section 3 shows the new 
implementations of residue-to-binary conversion and 
magnitude comparison. The comparative analysis of the 
performance of the new techniques and the traditional 
approaches is reported in Section 4. Section 5 presents a case 
study. 

II.  MONOTONE FUNCTIONS OF THE RNS 

In the RNS based on the pairwise relatively prime moduli 
m1,m2,...,mN, an integer X∈[0,M-1] (M=m1⋅m2⋅…⋅mN) is  
uniquely  represented  by  the  N-tuple  (x1,x2,..,xN), where 
xi=Xmi  is the residue of X modulo mi , i=1,2,..,N [12]. Let 
be I⊂{1,2,..,N}, I≠∅, the function FI proposed in this paper is: 
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where [a] denotes the largest integer not exceeding a.  

Theorem 1 shows an effective scheme to compute FI(X) 
directly from the RNS representation of X. 

 
Theorem 1 :  

Let m1, m2,.., mN be the set of pairwise relatively prime 
moduli of the RNS, let I⊂{1,2,..,N}, I≠∅, and  

 

 

im

M=iM
 

      

  

∑
∈

=
Ii

iI MM

 

 

  

∑
∈

=
Ii Mi

INV

I
m

S
1

 

 

 
 

where  

A New Class of Monotone Functions of  the  
Residue Number System 

G. Pirlo, D. Impedovo 

I 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 9, Volume 7, 2013 802



 

 

IMim

1

 
 
is the multiplicative inverse of mi  modulo MI, i∈I [12].  If 
(x1,x2,..,xN) is the RNS representation of X∈[0,M-1], the value 
FI(X) can be computed as: 
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with  
 

J={1,2,…,N}-I   (hence I∪J={1,2,…,N} and I∩J=∅). 
 
 
Proof : See Figure 1. 
 

Moreover, the coefficients bk, k∈{1,2,…,N} are well defined 
if there exist the multiplicative inverses  
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This is true if and only if mj,Mj  and  mi,MI  are couples of 
relatively prime integers [1]. This is shown in Theorem 2. 

 
Theorem 2: 
  

Let m1, m2,.., mN be the set of pairwise relatively prime 
moduli of the RNS and I⊂{1,2,..,N}, I≠∅. Let  
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the following conditions are true:   

(a) mj and Mj  are relatively prime;  
(b) mi and MI are relatively prime. 

 
Proof:  See Figure 2. 

  
Example: For the RNS of moduli m1=37, m2=41, m3=43, 
m4=64, if I={2,4}, it results that MI=M2+M4=101824+65231= 
167055 and b(1)=9030, b(2)=8149, b(3)=27195, 
b(4)=122681. Now, let X=17435�(RNS)(12,23,19,7), we 
have:  
 
- from eq. 1: 
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- from eq. 2: 
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III.  MONOTONE FUNCTIONS FOR NON-MODULAR OPERATIONS 

IN THE RNS 

 
Let m1,m2,...,mN be the set of relatively prime moduli of the 

RNS and let be  
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The new implementations of  magnitude comparison and 
residue-to-binary conversion are reported in the following [4]. 

 
1) Magnitude Comparison.  
 
Let X,Y∈[0,M-1] be two integers whose RNS representation 
is X�(x1,x2,…,xN) and Y�(y1,y2,…,yN), respectively. From 
(1) we have X<Y ⇒ FI(X)<FI(Y) or (FI(X)=FI(Y) and xi<yi, 
i∈I). In fact, since  
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Proof of Theorem 1 
From  
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= (Appendix A,B) 
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Figure 1. Proof of Theorem 1 

_________________________________________________________________________________________________________ 
Proof of Theorem 2 
(a) Assuming that mj and Mj are not relatively prime, since  

Njjj mmmmmM ⋅⋅⋅⋅⋅⋅= +− ...... 1121 ,  
       a modulus mi must exist, i=1,2,..,N, i≠j, which is not relatively prime with mj. This contradicts the hypothesis. 

(b) Assuming that mi and MI are not relatively prime, it follows that three integers δβα ,,  exist so that βα ⋅=im  and δα ⋅=IM  

(with 1≠α ). Now, since  



















⋅+=== ∑∑∑

≠
∈∈∈

ik
Ik k

i
i

iIk kIk
kI m

M
m

m

M

m

M
MM

                                              

substituting βα ⋅=im  and δα ⋅=IM  in (3) we obtain 
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Thus, a modulus mk exists, k≠i, so that α  divides mk. This means that km  and im  are not relatively prime moduli. This contradicts 
the hypothesis.                                                                  

Q.E.D. 
_________________________________________________________________________________________________________ 

 
Figure  2: Proof of Theorem 2 
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it follows that if X<Y and FI(X)=FI(Y) it results that xi<yi , i∈I. 
Therefore, magnitude comparison can be performed as 
follows: 
 

STEP 1.  Compute FI(X) and FI (Y) 
 
STEP 2.  Compare FI (X) and FI (Y); if FI (X)= FI (Y) then 

compare xi and yi. 
 
 

2) Residue-to-binary Conversion.  
 
Let be I={i}, from (1) we have  
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it results:  
 

( ) iIi xXFmX +⋅=                       (3) 
 
If  the modulus mi is a power of  2, i.e. mi =2k  (k integer), the 
implementation of eq. (3) implies shift-left operation rather 
than ordinary multiplication and the binary representation of X 
is obtained by concatenating the binary representations of 
FI(X) (most significant bits of X) and xi (least significant bits 
of X). In this case X is obtained as follows: 

 
STEP 1.  Compute FI(X) , then do X=FI (X)∪ xi;  

(where FI(X)∪xi  is the concatenation of the binary 
representations of  FI(X) and xi). 

 
Example: For the RNS of moduli m1=37, m2=41, m3=43, 

m4=64, if  I={4},  it results that MI=M4=65231 and b(1)=3526, 
b(2)=3182, b(3)=10619, b(4)=47904. Now, let 

X=1119797�(RNS)(29,5,34,53) and Y=432163� 
(RNS)(3,23,13,35) we have:  

 
 

� Magnitude Comparison.  
 
Since FI(X)=17496 and FI(Y)=4714, from FI(X)>FI(Y) it 
follows that X>Y.  

 
 

� Residue-to-Binary Conversion.  
 
Since the binary representations of FI(X)=17496 and 
x4=53 are 100010001011000 and 110101, respectively, it 
results that the binary representation of X=1119797 is 
100010001011000∪110101=100010001011000110101. 
Analogously, since the binary representations of 
FI(Y)=4714 and y4=35 are 1101001100000 and 100011, 
respectively, it results that the binary representation of 
Y=432163 is 
1101001100000∪100011=1101001100000100011. 

 

IV.  PERFORMANCE ANALYSIS 

Let m1,m2,...,mN be the set of relatively prime moduli of the 
RNS M=m1⋅m2⋅…⋅ mN and let X∈[0,M-1] be an integer whose 
RNS representation is X�(x1,x2,…,xN). 

 
 

� Mixed Radix Conversion (MRC).  
 
The MRC is based on the formula [13]: 
 

X=a1+m1a2+m1m2a3+…+m1m2…mN-1aN                       (4) 
 
where a1,a2,…aN are the Mixed Radix digits, which can be 
obtained recursively:  
 

a1=x1, a2=(X- a1)/m1,  … .                         (5) 
 
 
 

Table I. Performance Analysis 
 

  Time 
Complexity 

ROM R-to-B 
Conversion 

Magnitude 
comparison 

Serial  
Technique 

MRC  (see [13]) O(N) Ω(N) Y Y 

CRT   (see [13]) O(logN) Ω(N2) Y Y 
D    (see [2]) O(logN) Ω(N2) Not supported Y 
Dk   (see [3]) O(logN) Ω(N2) Not supported Y 

 
Parallel 

Techniques 

FI O(logN) Ω(N2) Y Y 
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� Chinese Remainder Theorem (CRT).  
 
The CRT is based on the conversion formula [13]: 
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� Diagonal Function (D).  
 
The 'diagonal function' of the RNS of moduli m1,m2,...,mN, is 
defined as [2]:  
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is the 'diagonal modulus' of the RNS  (Mi=M/mi, i=1,2,…,N) 
and ki is the multiplicative inverse of mi  modulo SQ).  

 
� Diagonal Function by reduction of the RNS space 

dimensionality (Dk).  
 
A more effective implementation of the 'diagonal function' can 
be obtained when we consider the set of moduli  

 
vm1=m1*m2*…*mi1,  vm2= 

=mi1+1*mi1+2*…*mi2, ... , vmj= 
=mij-1+1*mij-1+2*…* mij, … , vmk= 

=mik-1+1*mik-1+2*…*mik 
 

(where ∀p,q=1,2,...,k: ip,iq integers; p<q ⇒ ip<iq and ik=N) [3].  
For the set of  moduli  vm1,vm2,...,vmk, the 'diagonal function' 
Dk(⋅) is:  
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where (vx1,vx2,…,vxk) is the representation of X in the RNS of 
moduli vm1,vm2,...,vmk , that is : 
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Table I compares the different techniques. The MRC is based 
on a strictly sequential process (eqs.(4)-(5)). It has a time delay 
O(N) and its ROM requirement is O(N) [13]. The 
implementation of eqs.(2) (6),(7),(8) have a time complexity 
O(logN), since the addition of N values can be performed in 
parallel using a tree of adders. Since the RNS moduli are 
pairwise relatively prime, it follows that necessarily mi must be 
greater or equal than i , ∀i=1,2,…,N (for instance we have: 
m1≥2, m2≥3, m3≥5, m4≥7, and so on). Therefore, the total 
storage ROM is greater than (1+2+3+…+N)=Ω(N2) [5]. 
Moreover, the 'diagonal function' (D) and its improved 
implementation (Dk) do not support residue-to-binary 
conversion, whereas the CRT and the FI (for I={i} and mi=2k, 
k integer) support both magnitude comparison and residue-to-
binary conversion. 
 

V. A CASE STUDY 

Table II compares the parallel techniques for the RNS of 
N=4 moduli m1=37,m2=41,m3=43,m4=64 [9]: 

 
� L(l, a) denotes a look-up table of 2l locations with a-bit 

word length. It has a time delay equal to tL;  
 

� MOMA(N,  a) denotes a multi-operand modular adder for 
N operands with a-bit word length. It uses a tree of Carry 
Save Adders (CSA) and a Ripple Carry Adder (RCA) for 
final summation [7,9]. It requires (N+1)⋅ a full adders 
(FA) and its time delay is tMOMA(N,A)= θ(N)⋅tFA+2tRCA(a), 
where θ(N) is the minimum number of levels in the CSA 
tree with N operands  (for the case N=4 it results that 
θ(N)=2) [7], tFA is the time delay of a FA, tRCA(a) is the 
time delay of a RCA with a-bit word length. 

 
� C(p) denotes a binary comparator with p-bit word length. 

It has a time delay equal to )( pCt . 
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Moreover, let ∆ be the delay of a NAND gate, the following 

delays are assumed: tL=∆, tFA=2∆, tRCA(a)=a⋅∆, )( pCt =4∆ (for 
8<p≤64) [9]. In Table II, as suggested in [3], the MRC is used 
in the Preparatory Step (PS) for computing Dk(X) (in order to 

obtain the values vx1= 1vmX
and vx2= 2vmX

). In this case  

the PS has a time delay of  tMRC=2∆ and it does not require 
extra hardware. 

From Table II it results that the new approach is superior to 
the approaches based on the 'diagonal function' since they 
support magnitude comparison only. The new approach is also 
superior to the CRT in terms of time delay (a 24% save for 
residue-to-binary conversion, a 23% save for magnitude 
comparison) and waste of hardware (a 27% save for FA and 
ROM).  

Finally, we remark that unlike other techniques that provide 
approximate methods for non-modular operation [6,8], the new 
functions support exact methods for residue-to-binary 
conversion and magnitude comparison without imposing 
severe constraints on the set of moduli, as other approaches 
[10,11,14]. 

VI.  CONCLUSION 

This paper presents a new class of monotone functions - 
defined from the RNS to the integers – that support parallel 
implementations of residue-to-binary conversion and 
magnitude comparison, if a modulus of the kind 2k (k integer) 

is included in the set of RNS moduli. The new 
implementations are superior both to the recent techniques 
based on the ‘diagonal functions’, which support magnitude 
comparison only, and to the Chinese Remainder Theorem 
(CRT), in terms of time delay and waste of hardware. 

APPENDIX 
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Table II: A Case Study 
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(for vm1=m1*m4=2368 
vm2=m2*m3=1763) 
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(for I={4})  
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(a=log2M=22 bit) 
SQ=376975 

(a=log2SQ=19 bit) 
SQ2=4131 

(a=log2SQk=13 bit) 
M I=65231 

(a=log2M I=16 bit) 
PS - Delay - - tMRC - 

ROM 4 L(6,22) 4 L(6,19) 4 L(6, 13) 4 L(6,16) 

FA (N+1) ⋅ 22=5*22=110 (N+1) ⋅19=5*19=90 (N+1) ⋅ 22=5*13=65 (N+1) ⋅ 16=80  
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Delay 
θ(N)⋅tFA+2tRCA(log2M)= 

=2⋅2∆+2⋅22∆=48∆ 
θ(N)⋅tFA+2tRCA(log2 SQ)= 

=2⋅2∆+2⋅19∆=42∆ 
θ(N)⋅tFA+2tRCA(log2SQk)= 

=2⋅2∆+2⋅13∆=30∆ 
θ(N)⋅tFA+2tRCA(log2 MI)= 

=2⋅2∆+2⋅16∆=36∆ 

Extra 
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---   --- 
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Delay 
tL+tMOMA(N, log2M)= 

=∆+48∆=49∆ 
  

tL+tMOMA(N, log2MI)= 

=∆+36∆=37∆ 

Extra 
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Delay 
2*(tL+tMOMA(N, 

log2M))+tc(log2M)= 

=2*(∆+48∆)+4∆=102∆ 

2*(tL+tMOMA(N, log2SQ)) + 
tc(log2SQ)= 

=2*(∆+42∆)+4∆=90∆ 

2*( tMRC+tL+tMOMA(N, 

log2SQk)) +tc(log2SQk)= 

2*(2∆+∆+30∆)+4∆=70
∆ 

2*(tL+tMOMA(N, 

log2MI))+tc(log2MI)= 

=2*(∆+36∆)+4∆=78∆ 

      

Not Supported Not Supported 
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