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Abstract—In this paper, the continuous filtering and impulsive 

filtering policies are incorporated in a mathematical model for the 

interaction between HIV particles and CD4+T cells. In the case in 

which a continuous virus filtering is used, we derive sufficient 

conditions on the system parameters which guarantee that the 

equilibrium points of the system are either locally asymptotically 

stable or globally asymptotically stable. In the case in which an 

impulsive virus filtering is used, we investigate the dynamical 

behaviors of HIV and CD4+T cell in response to the impulsive 

treatment and point out that there exists a viral free solution which is 

globally asymptotically stable. Our results indicate that the period 

and apheresis rate effect the eradication of the virus. Numerical 

simulations are carried out to confirm our theoretical results. 

 

Keywords—HIV-1 dynamics, CTLs immune response, impulsive 

filtering model, stability. 

I. INTRODUCTION 

N recent years, the biological meanings, dynamical proper-

ties of HIV-1 infection models with or without time delays 

and general theories on such dynamical systems have been 

studied by many authors [1]-[12]. Viruses are intracellular 

parasites that depend on the host cell to survive and duplicate. 

The host cell can be damaged by the virus or by antibodies, 

cytokines, natural killer cells, and T cells which are essential 

components of a normal immune response to the virus. The 

effective antiviral immune response depends on the amount of 

virus present, the tissues infected and the chronicity of the 

infection [13]. 

To explore the relation among antiviral immune response 

which includes the appearance of HIV-specific Cytotoxic T 

lymphocytes (CTLs) and antibodies, virus load and virus 

diversity, many models include an intracellular delay [4]-[12] 

which is introduced to account for the time between infection  
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of a CD4+T-cell and production of new virus particles. 

Furthermore, by a similar theoretical analysis on population 

dynamical systems and epidemic models [14]-[16], it is shown 

that time delays play an important role in the dynamical  

properties of the HIV-1 infection models. The Holling type II 

function [14] is one of the response functions which is useful  

in the dynamical systems and epidemic models. It is 

characterized by a decelerating intake rate which follows from 

the assumption that the consumer is limited by its capacity to 

process food. This functional response is often modeled by a 

rectangular hyperbola, for instance which assumes that 

processing of food and searching for food are mutually 

exclusive behaviors.  

The filtering policy or apheresis is a medical technology in 

which the blood of a donor or patient is passed through an 

apparatus that separates out one particular constituent and 

returns the remainder to the circulation. Apheresis has for 

some time been used effectively in the treatment of hepatitis C 

infection [17]-[18].  Apheresis is an extracorporreal blood 

purification technique designed for the removal of HIV from 

the plasma of patients.  

In 2007, a model developed by T. Dumrongpokaphan et al. 

[7] was adapted to consider the interaction between HIV 

infection, CTLs cells and CD4+T cells when the virus particles 

are filtered. In other words, we modeled the continuous 

filtering policy as an effect of drug therapy [1], [4] in the same 

manner as the continuous harvesting in predator-prey models 

[19]-[22].  

Apheresis in a medical term which can be refer to the 

filtering action to control virus infection. In this work, we have 

modified the model proposed by T. Dumrongpokaphan et al. 

[7] to consider the interactions of HIV and CD4+T cells. 

Motivated by recent works [21] and [23], where impulsive 

harvesting policy was the effective method in the predator-

prey system, we consider continuous filtering and impulsive 

filtering treatment on an HIV patient by studying two model 

systems. 

The paper is organized as follows. In the next section, the 

main biological assumptions are formulated by using the 

qualitative theory of ordinary differential equations. In Section 

III, we investigate the behavior of the system which models the 

process of continuous virus filtering. In Section IV, we 

construct an impulsive system which models the process of 

periodic filtering at fixed moments. By using comparison 

techniques, we investigate the global asymptotic stability of 

the viral free periodic solution and the conditions for the 

persistence of the system. Finally, numerical results and a brief 

discussion are provided. 
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II. MODEL FORMULATION

We denote the population densities of CD4+ T cells, free
HIV, and CTLs cells at timet, by x(t), v(t), andc(t), respec-
tively. The effect of the delay between the time a CD4+ T cell
is infected and the time it starts producing virus is incorporated
into our model.

We make use of the fraction
βx(t)v(t)
1 + ax(t)

as the virus

functional response [14], [19], ande−µ1τ as the term to
take into account the probability of cell production having
survived from the timet − τ to t. Then, the fraction

βe−µ1τ x(t− τ)v(t− τ)
1 + ax(t− τ)

is used to represent the production

rate of the virus particles in our model. These assumptions
lead us to the following system of differential equations :

x′(t) = A− µ1x(t)− β
x(t)v(t)
1 + ax(t)

,

v′(t) = βe−µ1τ x(t− τ)v(t− τ)
1 + ax(t− τ)

−dv(t)c(t)− µ2v(t),

c′(t) = rv(t)c(t)− µ3c(t),

(1)

where, the initial conditionsx(θ) = φ1(θ), v(θ) =
φ2(θ), c(θ) = φ3(θ), φi(θ) ≥ 0 are continuous on[−τ, 0),
φi(0) > 0, i = 1, 2, 3, while A denotes the production rate of
CD4+ T cells, β is the rate constant characterizing infection
of cells,d is the death rate constant of virus due to CTLs,r is
the rate constant of stimulation of CTLs by infective virus,a
is the saturation constant andµ1, µ2 andµ3 denote the natu-
ral death rate constants of CD4+ T cell, free virus and CTLs,
respectively.

We investigate the behavior of the system which models the
process of continuous virus filtering as a medical treatment by
using the following system

x′(t) = A− µ1x(t)− β
x(t)v(t)
1 + ax(t)

,

v′(t) = βe−µ1τ x(t− τ)v(t− τ)
1 + ax(t− τ)

−dv(t)c(t)− µ2v(t)− ηv(t),

c′(t) = rv(t)c(t)− µ3c(t),

(2)

with initial conditions
(x(t), v(t), c(t)) = (ϕ1(t), ϕ2(t), ϕ3(t)) ∈ C+

3 ,
ϕi(0) > 0, i = 1, 2, 3,

whereC+
3 = C([−τ, 0], R+

3 ). The parameterη represents the
virus filtering coefficient.

For the discrete dynamics due to the impulsive virus filter-
ing as in the case of apheresis treatment, we construct an im-
pulsive system which models the process of periodic filtering
at fixed moments as follows.

x′(t) = A− µ1x(t)− β
x(t)v(t)
1 + ax(t)

,

v′(t) = βe−µ1τ x(t− τ)v(t− τ)
1 + ax(t− τ)

−dv(t)c(t)− µ2v(t),

c′(t) = rv(t)c(t)− µ3c(t),





t 6= nT

x(t+) = x(t),
v(t+) = (1− µ)v(t),
c(t+) = c(t),



 t = nT, n = 1, 2, ...

(3)

with initial conditions
(x(t), v(t), c(t)) = (ϕ1(t), ϕ2(t), ϕ3(t)) ∈ C+

3 ,
ϕi(0) > 0, i = 1, 2, 3 (4)

whereC+
3 = C([−τ, 0], R+

3 ) andx(t+), v(t+), andc(t+) are
the right limits ofx(t), v(t) and c(t) at time t, respectively.
Heren is the set of all non-negative integers.T is the filtering
period andµ(0 < µ < 1) represents the filtering effort.

III. CONTINUOUSVIRUS FILTERING

In this section, we discuss the existence of three equilibria
and prove that all solutions are positive and bounded. Clearly,
(2) always has a viral free equilibriumE0(A/µ1, 0, 0).

Let µ4 = µ2 + η, z =
βµ3

r
+ µ1 − aA, and

R0 =
Aβe−µ1τ

µ4(µ1 + aA)
Here,R0 is called the basic reproduction ratio of the model
(2). If R0 > 1 and c = 0 then (2) has an infected equi-

librium E1(x̄1, v̄1, 0), wherex̄1 =
µ4

βe−µ1τ − aµ4
and v̄1 =

e−µ1τ

µ4
(A− µ1x̄1).

If R0 > 1, c 6= 0, and −z +
√

z2 + 4aAµ1 >
2aµ1µ4

βe−µ1τ − aµ4
are satisfied, then (2) also has another infected

equilibriumE2(x̄2, v̄2, c̄2), where

x̄2 = (−z +
√

z2 + 4aAµ1)/2aµ1, v̄2 =
µ3

r
, and c̄2 =

(βe−µ1τ x̄2
1+ax̄2

− µ4)/d.
By the continuity of the initial functions the following can

be easily shown.

Proposition 1. Let the initial conditionsx(θ), v(θ), c(θ) ≥ 0
be continuous on[−τ, 0) andx(0), v(0), c(0) > 0. Then, the
solution of (2) satisfiesx(t), v(t), c(t) > 0 for all t > 0.

Next, we will carry out a stability analysis, in which the
following lemma will be used.

Lemma 2. [19] Consider the following equation:
du

dt
= au(t− τ)− bu(t),

wherea, b, τ > 0 andu(t) > 0 for t ∈ [−τ, 0].
(i) If a < b, then lim

t→∞
u(t) = 0.

(ii) If a > b, then lim
t→∞

u(t) = +∞.
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Theorem 3. If R0 < 1 then, the viral free equilibrium
E0(A/µ1, 0, 0) is globally asymptotically stable for anyτ ≥
0.

Proof: See [12]. ut
Letting

R1 =
Are−µ1τ (aA + µ1)(R0 − 1)
µ3µ4(aA(R0 − 1) + µ1R0)

we can prove the following result.

Theorem 4. If R0 > 1 and R1 < 1, then the infected

equilibrium E1(x̄1, v̄1, 0), where x̄1 =
µ4

βe−µ1τ − aµ4
and

v̄1 =
e−µ1τ

µ4
(A − µ1x̄1) is locally asymptotically stable for

τ ≥ 0.

Proof: See [12].
Next, we will state the conditions under which the system

(2) possesses a locally asymptotically stableE2.

Theorem 5. If R0 > 1 and

−z +
√

z2 + 4aAµ1 >
2aµ1µ4

βe−µ1τ − aµ4
,

the infected equilibriumE2(x̄2, v̄2, c̄2), where

x̄2 = (−z +
√

z2 + 4aAµ1)/2aµ1, v̄2 =
µ3

r
, and c̄2 =

(βe−µ1τ x̄2
1+ax̄2

− µ4)/d
is locally asymptotically stable forτ = 0.

Proof: The associated characteristic equation of (2) atE2 is

λ3 + (B1 + B2)λ2 + (B1B2 + B3)λ + B1B3

− (λ2 + µ1λ)B2e
−λτ = 0,

(5)

whereB1 = µ1 +
βv̄2

(1 + ax̄2)2
, B2 =

βe−µ1τ x̄2

1 + ax̄2
, andB3 =

µ3dc̄2. For τ = 0, the equation (5) becomes

λ3 + B1λ
2 + ((B1 − µ1)B2 + B3)λ + B1B3 = 0 (6)

By the Routh-Hurwitz criteria,E2 is locally asymptotically
stable forτ = 0. ut

When τ > 0, we assumeλ(τ) = φ(τ) + iω(τ), where
φ(τ), ω(τ) ∈ R. SinceRe(λ(0)) < 0, by continuity of
Re(λ(τ)), Re(λ(τ)) < 0 for values ofτ such that0 ≤ τ < τc

for someτc > 0. Therefore,E2 remains stable for these values
of τ.

SupposeRe(λ(τc)) = 0 for someτc > 0, andRe(λ(τc)) <
0 for 0 ≤ τ < τc, then the equilibriumE2 may lose stability
at τ = τc or λ = iω(τc).

Substitutingλ = iω(τc) in (5) and equating real parts and
imaginary parts of the right hand side to zero, then we get
B1B3 − (B1 + B2)ω2 = B2(µ1ω sinωτ − ω2 cos ωτ)
(B1B2 + B3)ω − ω3 = B2(µ1ω cos ωτ + ω2 sin ωτ)
Squaring and adding above equations, we have that

ω6 + D1ω
4 + D2ω

2 + B2
1B2

3 = 0, (7)

where, D1 = B2
1 − 2B3 and

D2 = B2
1B2

2 + B2
3 − µ2

1B
2
2 − 2B2

1B3.

To simplify equation (7), we setκ = ω2, then (7) reduces to

P (κ) = κ3 + D1κ
2 + D2κ + B2

1B2
3 = 0. (8)

Here, we are interested in determining whether there exists
a critical delayτc > 0 so thatRe(λ) > 0 for τ > τc. Now,
we will determine the conditions on the parameters to ensure
thatE2 is still stable by considering (5) as a complex variable
mapping problem.

Lemma 6. Let τ > 0. Suppose that the equation (8) has no
positive roots. Then, all roots of the equation (5) have negative
real parts.

Proof: Since (8) has no positive roots, any real numberω is
not a root of (7). Hence, for any real numberω, the valueiω is
not a root of (5), which implies that there is noτc such that

λ(τc) = iω(τc),
From Theorem 5, we have that all roots of (5) have negative
real parts forτ = 0. SinceRe(λ(τ)) is a continuous function
of τ , we conclude that all roots of (5) have negative real parts
for τ > 0. ut

We next present the conditions under which (8) has a posi-
tive root or has no positive roots. To this end, we differentiate
(8) to obtain

P ′(κ) = 3κ2 + 2D1κ + D2, (9)
and observe that equation3κ2 + 2D1κ + D2 = 0, has the
rootsK1 andK2 :
K1 = (−D1 +

√
D2

1 − 3D2)/3 and
K2 = (−D1 −

√
D2

1 − 3D2)/3.

We are led to the following lemma.

Lemma 7. i) If a) D1 < 0, D2
1 − 3D2 > 0 andP (K1) < 0,

or b) D2 < 0 andP (K1) < 0, are satisfied then, the equation
(8) has a positive root.
ii) If D2

1 − 3D2 < 0 are satisfied then, the equation (8) has
no positive root.

Proof: i) If a) is true, we can see thatK1 is real andK1 > 0.
From (8), forκ = 0, we have thatP (0) > 0. SinceP (K1) <
0, by the intermediate value theorem, (8) must have a positive
rootK∗. If b) is true, then we have

√
D2

1 − 3D2 > |D1|. It is
easy to see thatK1 is real andK1 > 0. Similarly to the case
a), we then have a positive rootK∗.

ii) SinceD2 >
D2

1

3
, P ′(κ) = 0 has no real root and

P ′(0) = D2 >
D2

1

3
> 0.

This implies thatP is increasing on the set of real numbers.
Moreover, we observe thatP (κ) does not vanish forκ > 0
and thus, (8) has no positive roots. ut

Thus, we can write down the following theorem.

Theorem 8. Suppose thatD2
1 − 3D2 < 0, R0 > 1, and

−z +
√

z2 + 4aAµ1 >
2aµ1µ4

βe−µ1τ − aµ4
, are satisfied. Then,

the equilibrium pointE2(x̄2, v̄2, c̄2) is locally asymptotically
stable forτ ≥ 0.

Proof: By Theorem 5, all real parts of eigenvalues of (5) are
negative forτ = 0. By part(ii) of Lemma 7, (8) has no posi-
tive roots. Lemma 6 ensures that all roots of (5) have negative
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realparts forτ > 0. So,E2 is locally asymptotically stable for
τ ≥ 0. ut

Next, we will provide the conditions on the parameters to
ensure that a Hopf bifurcation occurs. We denote, without loss
of generality, the positive roots of (8) byκ0, κ1, andκ2. Equa-
tion (7), therefore, has six roots,ωj = ±√κj , j = 0, 1, 2.

For eachωj , we can writeτ in form

τ
(n)
j =

1
ωj

arccosΘ +
2kπ

ωj
, (10)

whereΘ = µ1(B1B2+B3)−B1B3+ω2
j (B1+B2−µ1)

B2(ω2
j +µ2

1)
,

j = 0, 1, 2, andn = 0, 1, 2, 3, ....
Now, let τc > 0 be the smallest of suchτ (n)

j for which
φ(τc) = 0. Thus,

τc = min{τ (n)
j > 0, 0 < j < 2, n ≥ 1}, (11)

Letting h1 = ωcB2(µ1τc − 2), h2 = B2(τcω
2
c + µ1),

H1 = B1B2 + B3 − 3ω2
c

+ h1 sin ωcτc − h2 cos ωcτc,
H2 = 2(B1 + B2)ωc

+ h1 cosωcτc + h2 sin ωcτc,
we can prove the following theorem.

Theorem 9. For the time lagτ , let the critical time lagτc and
ωc be defined as in (11), and suppose that the conditions

i)
H1

H2
6= 2µ1ωc

ω2
c − µ2

1

and
H1

H2
6= ωc(B1 + µ3)

ω2
c − µ3B1

,

ii)
ωc(ωc + µ1)2

ω2
c − µ2

1

6= (B1 + B2)ω2
c −B1B3

ω2
c − (B1B2 + B3)

iii) ω2
c 6= µ3B1 6= B1B2 + B3 andω2

c − µ2
1 6= 0,

are true. Then the system of delay differential equations (1)
exhibits a Hopf bifurcation atE2.

Proof: From (5), we have that
dφ

dτ
|τ=τc =

((µ2
1 − ω2

c )H1 + 2µ1ωcH2)
ω2

c (1 + µ2
1)(H

2
1 + H2

2 )
[

(ω2
c + µ1ωc)(ω2

c − (B1B2 + B3)+
((B1 + B2)ω2

c −B1B3)(µ1 − ωc)]

− B2µ1

(H2
1 + H2

2 )
[H1(ω2

c − µ3B1)−
H2ωc(B1 + µ3)]

By the conditionsi), ii) andiii), we have that
dφ

dτ
|τ=τc

6= 0. (12)

Hence, a Hopf bifurcation occurs whenτ passes through the
critical valueτc. ut

Finally, from the above arguments, it is possible to state the
following theorem.

Theorem 10. For system (2), withτc andωc defined as in (11),

suppose thatR0 > 1,−z +
√

z2 + 4aAµ1 >
2aµ1µ4

βe−µ1τ − aµ4
,

and the condition (i) of Lemma 9 hold. There exists aτc such
that the equilibrium pointE2 is stable for0 < τ < τc and
unstable forτ > τc.

IV. IMPULSIVE VIRUS FILTERING

In this section, we start with giving some definitions, nota-
tions and lemmas which will be useful.

The smoothness properties off guarantee the global exis-
tence and uniqueness of solution of system (3). For details, see
[24]. The following lemma is obvious.

Lemma 11. Suppose thatX(t) = (x(t), v(t), c(t)) is a solu-
tion of (3) withX(0+) ≥ 0, thenX(t) ≥ 0 for all t ≥ 0. And
furtherX(t) > 0, for all t ≥ 0 if X(0+) > 0.

We will use an important comparison theorem on impulsive
differential equation [24].

Lemma 12. [24] Suppose thatw ∈ PC[R+, R] satisfies

w′(t) ≤ (≥)p(t)w(t) + q(t), t 6= nT,
w(t+) ≤ (≥)dnw(t) + bn, t = nT, n ∈ N,

(13)

wherep(t), q(t) ∈ PC[R+, R], dn > 0, andbn are constants.
Then

w(t) ≤ (≥)w(0)
∏

0<nT<t

dnexp(
∫ t

0

p(s)ds)

+
∫ t

0

∏

s<nT<t

dnexp(
∫ t

s

p(θ)dθ)q(s)ds

+
∑

0<nT<t

[ ∏

nT<(n+1)T<t

dn+1exp(

∫ t

nT

p(s)ds)
]
bn,

(14)

Lemma 13. [24] SupposeV ∈ V0. Assume that

D+V (t, y) ≤ g(t, V (t, y)), t 6= nT,
V (t, y(t+)) ≤ ψn(V (t, y)), t = nT,

(15)

whereg : R+×R+ 7→ R is continuous in(nT, (n+1)T ]×R+

and foru ∈ R+, n ∈ N,
lim

(t,ϑ)→(nT+,u)
g(t, ϑ) = g(nT+, u)

exists, ψn : R+ 7→ R+ is non-decreasing. Letr(t) be maxi-
mal solution of the scalar impulsive differential equation

u′(t) = g(t, u(t)), t 6= nT,
u(t+) = ψn(u(t)), t = nT,
u(0+) = u0,

(16)

existing on [0,∞). Then V (0+, y0) ≤ u0, implies that
V (t, y(t)) ≤ r(t), t ≥ 0, wherey(t) is any solution of (3).

Next, we will consider the Floquet theory [22] for a linear
T∗-periodic impulsive equation:

dx(t)
dt

= A(t)x(t), t 6= tk, k = 1, 2, ...

x(t+) = x(t) + Bkx(t) t = tk.
(17)
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Then,base on [22] the following conditions are introduced:
(H1) A(.) ∈ PC(R,Cn×n) andA(t + T ∗) = A(t),

t ∈ R wherePC(R, Cn×n) is the set of all
piecewise continuous matrix functions which
is left continuous att = tk, andCn×n is the
set of alln× n matrices.

(H2) Bk ∈ Cn×n, det(I + Bk) 6= 0;
tk < tk+1 (k ∈ N),

(H3) There exists aq ∈ N such thatBk+q = Bk,
tk+q < tk.

Let φ(t) be a fundamental matrix of (17), then there exists a
unique non-singular matrixM ∈ Cn×n such that [22]

φ(t + T ∗) = φ(t)M, (18)

By equality (18) there corresponds to the fundamental matrix
φ(t) the constant matrixM which we call the monodromy ma-
trix of (17) (corresponding to the fundamental matrix ofφ(t)).
All monodromy matrices of (17) are similar and have the same
eigenvalues. The eigenvaluesγ1, γ2, ..., γn of the monodromy
matrices are called the Floquet multipliers of (17) [22].

Lemma 14. (Floquet theory [22]) Let conditions(H1)−(H3)
hold. Then the linear T-periodic impulsive equation (17) is

1. stable if and only if all multipliersγj , (j = 1, 2, 3, ..., n)
of (17) satisfy the inequality|γj | ≤ 1, and moreover, to
thoseγj for which |γj | = 1, there correspond simple ele-
mentary divisors;

2. asymptotically stable if and only if all multipliers
γj , (j = 1, 2, 3, ..., n) of (17) satisfy the inequality|γj | <
1;

3. unstable if|γj | > 1, for somej = 1, 2, 3, ..., n.

Next, we investigate the global asymptotic stability of the
viral free periodic solution and the conditions for the perma-
nence of the system

A. Global Stability
First, we determine the local asymptotically stability of the

viral free solution(
A

µ1
, 0, 0) of the system (3). Let

R∗ =
Aβe−µ1τ

µ2(µ1 + aA)
.

Theorem 15. The viral free solution(
A

µ1
, 0, 0) of the system

(3) is locally asymptotically stable provided thatR∗ < 1 hold.

Proof: Definex(t) = y(t) +
A

µ1
, v(t) = z(t), c(t) = w(t).

Then, the system (3) can be expanded whent 6= nT in a Tay-

lor series about(
A

µ1
, 0, 0). Neglecting higher order terms, the

linearized equations read:

y′(t) = −µ1y(t)− βA

µ1 + aA
z(t),

z′(t) = (
Aβe−µ1τ

µ1 + aA
)z(t− τ)− µ2z(t),

w′(t) = −µ3w(t),





t 6= nT

y(t+) = y(t),
z(t+) = (1− µ)z(t),
w(t+) = w(t),



 t = nT, n = 1, 2, ...

(19)

Next, we are going to findφ(t), which is the fundamental solu-
tion matrix of (19). Fort 6= nT , we have that the characteristic
equation is given by

(λ + µ1)(λ− Aβe−µ1τ

µ1 + aA
e−λτ + µ2)(λ + µ3) = 0. (20)

So, the eigenvalues areλ1 = −µ1 and λ3 = −µ3. Next, we
will consider a solution of the equation

λ− Aβe−µ1τ

µ1 + aA
e−λτ + µ2 = 0. (21)

To find the location of the eigenvalueλ2, we introduce the
function

S(t) = t− Aβe−µ1τ

µ1 + aA
e−tτ + µ2, t ∈ R.

Clearly,S(t) is a continuous and increasing function. We also
observe that

lim
t→−∞

S(t) = −∞, lim
t→∞

S(t) = ∞.

Hence, the functionS has a unique zero. SinceR∗ < 1, then
we have

S(0) = −Aβe−µ1τ

µ1 + aA
+ µ2 > 0.

So, we can conclude thatλ2 < 0. The eigenvec-
tors corresponding to the eigenvaluesλ1, λ2 and λ3 are
(1, 0, 0), (ω, 1, 0) and (0, 0, 1), respectively, whereω =

−βA

(µ1 + λ2)(µ1 + aA)
. Let,

P =




1 ω 0
0 1 0
0 0 1


 , L1(t) =




e−µ1t 0 0
0 eλ2t 0
0 0 e−µ3t


 .

Therefore a fundamental solution matrix of (19) is given by

φ(t) = PL1(t) =




e−µ1t ωeλ2t 0
0 eλ2t 0
0 0 e−µ3t




where the exact expression ofωeλ2t is omitted.
Whent = nT , the linearization of the fourth, fifth and sixth

equations of (19) becomes



y(t+)
z(t+)
w(t+)


 =




1 0 0
0 (1− µ) 0
0 0 1







y(t)
z(t)
w(t)


 (22)
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The stability of the solution(
A

µ1
, 0, 0) is determined by the

eigenvalues of

L2 =




1 0 0
0 (1− µ) 0
0 0 1


 φ(T )

=




e−µ1T ωeλ2T 0
0 (1− µ)eλ2T 0
0 0 e−µ3T


 .

Therefore, the characteristic equation is

(e−µ1T − λ)((1− µ)eλ2T − λ)(e−µ3T − λ) = 0

Then, we have the eigenvalues ofL2 aree−µ1T , e−µ3T , and
(1− µ)eλ2T . Sinceµ1 > 0 andµ3 > 0, obviously,|e−µ1T | <
1 and|e−µ3T | < 1. Since0 < µ < 1 andλ2 < 0, therefore
|(1−µ)eλ2T | < 1. According to Lemma 14, the Floqent theory

of impulsive differential equations, the solution(
A

µ1
, 0, 0) is

locally asymptotically stable. ut
Next, we need to show that the viral free solution of system

(3) is global attractive.

Theorem 16. If R∗ < 1 then the viral free solution(
A

µ1
, 0, 0)

of (3) is global attractive.

Proof: SinceR∗ < 1, we can chooseε1 > 0 sufficiently small
such that

βe−µ1τ (
A

µ1 + aA
+ ε1) < µ2 (23)

From the first equation in (3), we havex′(t) ≤ A − µ1x(t).
Consider the following comparison equation:

x′1(t) = A− µ1x1(t). (24)

It is clear thatlim sup
t→∞

x1(t) =
A

µ1
.

Let (x(t), v(t), c(t)) be the solution of (3) with initial value
x(θ) = ϕ1(θ) > 0. For x1(t) be the solution of (24) with the
initial valuex1(θ) = ϕ1(θ) > 0. By the comparison theorem,

lim sup
t→∞

x(t) ≤ lim sup
t→∞

x1(t) =
A

µ1
,

Then,we have that there exists an integern1 > 0 such that

x(t) ≤ x1(t) <
A

µ1
+ ε1, t > n1T. (25)

From the second equation and the fifth equation in (3) we can
see that,

v′(t) ≤ βe−µ1τ (
A

µ1 + aA
+ ε1)v(t− τ)

−µ2v(t), t 6= nT
v(t+) = (1− µ)v(t), t = nT, n = 1, 2, ...

Consider the comparison system fort > n1T, :

v′1(t) = βe−µ1τ (
A

µ1 + aA
+ ε1)v1(t− τ)

−µ2v1(t), t 6= nT
v1(t+) = (1− µ)v1(t), t = nT, n = 1, 2, ...

(26)

Since we have (23) and by Lemma 2, then we have
lim

t→∞
v1(t) = 0.

Let (x(t), v(t), c(t)) be the solution of (3) with initial value
v(θ) = ϕ2(θ) > 0, (θ ∈ [−τ, 0]), andv1(t) be the solution of
(26) with initial valuev1(θ) = ϕ2(θ) > 0, (θ ∈ [−τ, 0]). By
the comparison theorem, we have

lim sup
t→∞

v(t) ≤ lim sup
t→∞

v1(t) = 0.

Incorporating into the positivity ofv(t), we know that

lim
t→∞

v(t) = 0. (27)

Therefore, for anyε2 > 0 (sufficiently small), there exists an
integern2 > n1 such thatv(t) < ε2 for all t > n2T. For the
first equation in the system (3), we have

x′(t) ≥ A− βε2
a
− µ1x(t), t > n2T.

Consider the following comparison equation:

x′2(t) = A− βε2
a
− µ1x2(t). (28)

Let (x(t), v(t), c(t)) be the solution of (3) with initial value
x(θ) = ϕ(θ) > 0, andx2(t) be the solution of (40) with the
initial valuex2(θ) = ϕ(θ) > 0. By the comparison theorem,
we have that

lim inf
t→∞

x(t) ≥ lim inf
t→∞

x2(t) =
Aa− βε2

aµ1
.

Therefore,there exists an integern2 > n1 such that

x(t) ≥ x2(t) >
Aa− βε2

aµ1
− ε3, t > n2T (29)

Note thatε2, ε3 are arbitrary small, it follows from (25) and
(29) that

lim
t→∞

x(t) =
A

µ1
. (30)

It follows from (27) that there existsn3 > n2 such thatv(t) <
ε2 for all t > n3T. For the third equation in (3), we have

c′(t) ≤ (rε2 − µ3)c(t), t > n3T.

Consider the following comparison equation:

c′1(t) = (rε2 − µ3)c1(t). (31)

It easy to see thatlim
t→∞

c1(t) = 0.

Let (x(t), v(t), c(t)) be the solution of the system (3) with

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 9, Volume 7, 2013 815



initial valuec(θ) = ϕ3(θ) > 0, andc1(t) be the solution of
the system (31) with initial valuec1(θ) = ϕ3(θ) > 0. By the
comparison theorem, we have

lim sup
t→∞

c(t) ≤ lim sup
t→∞

c1(t) = 0.

Incorporating into the positivity ofc(t), we know that

lim
t→∞

c(t) = 0. (32)

Together with equations (27), (30), and (32), we getx(t) →
A

µ1
, v(t) → 0 andc(t) → 0 whichproves its global attraction.

ut
Now, we already have the local asymptotically stability of

the viral free solution and its global attraction. Therefore, the
global asymptotically stability of the viral free solution of sys-
tem (3) is proved. We can now state the following theorem.

Theorem 17. If R∗ < 1 then the viral free solution(
A

µ1
, 0, 0)

is globally asymptotically stable for system (3).

B. Persistence
In this section, we say the virus is not eradicated if the

virus population persists above a certain positive level for suf-
ficiently large time. The endemicity of the virus can be well
captured and studied through the notion of persistence.

Definition 18. The system (3) is said to be persistent if every
solution (x(t), v(t), c(t)) with initial condition (4) of system
(3) satisfies

0 < lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) < ∞
0 < lim inf

t→∞
v(t) ≤ lim sup

t→∞
v(t) < ∞

0 < lim inf
t→∞

c(t) ≤ lim sup
t→∞

c(t) < ∞

We now prove the uniform ultimate boundedness of the so-
lutions of (3).

Theorem 19. There isM > 0 such thatx(t) ≤ M, v(t) ≤
M, c(t) ≤ M for each solutionsX(t) = (x(t), v(t), c(t)) of
(3), for all large t.

Proof: Define a functionW (t,X) as

W (t,X) = e−µ1τx(t− τ) + v(t) +
d

r
c(t). (33)

Whent 6= nT , calculating the right derivative ofW it follow
that
D+W (t,X) = e−µ1τ (A− µ1x(t− τ))− µ2v(t)

− dµ3

r
c(t),

Let ξ = min{µ1, µ2, µ3} and choose0 < h < ξ. Let M0 > 0
such that
D+W (t,X) + hW (t,X) ≤ Ae−µ1τ − (ξ − h)W (t,X)
whent = nT , we get

W (t+, X) = e−µ1τx(t− τ) + (1− µ)v(t) +
d

r
c(t)

= W (t, X)− µv(t) ≤ W (t,X)
Now, we have the system

D+W (t, X) ≤ Ae−µ1τ − ξW (t, X), t 6= nT
W (t+, X) ≤ W (t, X), t = nT.

(34)

By Lemma 12 and fort ≥ 0, we have

W (t) ≤ W (0)exp(
∫ t

0

−ξds)

+
∫ t

0

(exp(
∫ t

s

−ξds))Ae−µ1τds,

= W (0)e−ξt +
Ae−µ1τ

ξ
.

So,we can see that

W (0)e−ξt +
Ae−µ1τ

ξ
→ Ae−µ1τ

ξ
ast →∞.

Therefore, W (t) ≤ Ae−µ1τ

ξ
. Hence, W (t) is uniformly

bounded from above. According to the definition ofW (t),
it is known that there exists a constantM > 0, such that
x(t) ≤ M, v(t) ≤ M, c(t) ≤ M for all t large enough. The
proof is completed. ut
Corollary 20. Denote

M1 =
Ae−µ1τ

min{µ1, µ2, µ3} (35)

thenx(t) ≤ M1, v(t) ≤ M1 andc(t) ≤ M1, for each solution
X(t) = (x(t), v(t), c(t)) of system (3) for allt large enough.

Denote
R∗ =

r

µ3(µ2 + M1d)
.

Theorem 21. The system (3) is persistent provided that

R∗ > 1, and R∗ < 1.

Proof: We will prove the theorem by several steps. By
Corollary 20, without loss of generality, we suppose that
(x(t), v(t), c(t)) is any solution of system (3) with initial val-
ues x(0) > 0, v(0) > 0 and c(0) > 0 and suppose that
x(t) ≤ M1, v(t) ≤ M1, andc(t) ≤ M1 for all t ≥ 0. We
will show that for anyt0 > 0, there exist anmx > 0 such that
x(t) ≥ mx for all t > t0. From the first equation of system (3)

andv(t) < M1, we have that,x′(t) > A − µ1x(t) − βM1

a
.

Considerthe following comparison equation fort ≥ t0,

x′∗(t) = (A− βM1

a
)− µ1x

∗(t). (36)

It is easy to see thatlim
t→∞

x∗(t) =
Aa− βM1

aµ1
.

SinceR∗ > 1, we have that, according to Lemma 13, there
exists at1 > 0 such that for allt > t1,

x(t) ≥ x∗(t) >
Aa− βM1

aµ1
− ε1 = mx > 0, (37)
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Next, we will show that for anyt0 > 0, there exists anmv >
0 such thatv(t) ≥ mv for all t > t0. By x(t) > mx and
Corollary 20,x(t) ≤ M1, c ≤ M1, then the second equation
of system (3) can be rewritten as follows:

v′(t) ≥ βe−µ1τmx

1 + aM1
v(t− τ)− (µ2 + M1d)v(t).

We have that

v′(t) ≥ q(t)− pv(t), t 6= nT
v(t+) = (1− µ)v(t), t = nT

(38)

where p = µ2 + M1d > 0 and

q(t) =
βe−µ1τmx

1 + aM1
v(t− τ).

By Lemma 12, we can see that

v(t) ≥ (1− µ)v(0)exp(
∫ t

0

(−p)ds)

+
∫ t

0

[(1− µ)exp(
∫ t

s

(−p)dθ)q(s)]ds

≥ (1− µ)e−pt[v(0) +
∫ t

0

epsq(s)ds].

Sinceq(t) > 0, there exists at2 > 0 and anε2 > 0, such that

0 < ε2 < lim inf
t→∞

q(t) for all t ≥ t2.

Therefore,

v(t) > (1− µ)e−pt[v(0) +
∫ t

0

epsε2ds]

> (1− µ)e−pt[v(0) + ε2(
ept − 1

p
)]

> (1− µ)e−pt[v(0)− ε2

p
] + (1− µ)

ε2

p

which implies thatv(t) > (1− µ)
ε2

p
> 0 ast →∞.

Letmv = (1−µ)
ε2

p
=

(1− µ)ε2

µ2 + M1d
. So,we havev(t) > mv

for all t > t2.
SinceR∗ < 1 and(1− µ)ε2 ≤ 1, for ε2 is arbitrary small,

we can see that

mv =
(1− µ)ε2

µ2 + M1d
≤ 1

(µ2 + M1d)
<

µ3

r
.

Next, we will show thatlim inf
t→∞

c(t) > 0 Sincemv <
µ3

r
andfrom the third equation of system (3) we have thatc′(t) >
(rmv −µ3)c(t). Consider the following comparison equation:

c′2(t) = (rmv − µ3)c2(t). (39)

It is easy to see thatc2(t) = c2(0)e(rmv−µ3)t. Incorporating
the positivity ofc(t), we know that

lim
t→∞

c2(t) = 0. (40)

By the comparison theorem, we have

lim inf
t→∞

c(t) > lim inf
t→∞

c2(t) = 0.

Thus, we have proved thatlim inf
t→∞

c(t) > 0. Hence, the proof

is complete. ut

V. NUMERICAL RESULT

In what follows, we present five figures to illustrate the
main theoretical results in Section III and two figures to con-
firm Section IV.
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Figure 1: For A = 1, β = 0.015, a = 0.0005, d = 1, r = 1.5, µ1 =
0.01, µ2 = 0.7, µ3 = 0.05, η = 0.8, τ = 5 and x(0) = 5, v(0) =
10, c(0) = 5, R0 = 0.9059 < 1 satisfying the conditions in Theorem 3, and hence,
E0(100, 0, 0) is globally asymptotically stable forτ ≥ 0 : a) Time series ofx, v and
c, b) three dimensional phase portrait ofx, v andc.
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Figure2: For A = 1, β = 0.15, a = 0.00005, d = 1, r = 0.05, µ1 =
0.01, µ2 = 0.8, µ3 = 0.755, η = 0.7, τ = 5 and x(0) = 9, v(0) =
0.5, c(0) = 0.5, R0 = 9.4650 andR1 = 0.0376 satisfying the conditions in
Theorem 4,E1(10.5182, 0.5675, 0) is locally asymptotically stable forτ ≥ 0: a)
Time series ofx, v andc, b) three dimensional phase portrait ofx, v andc.
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Figure 3: With A = 0.18, β = 0.15, a = 0.05, d = 1, r = 0.1, µ1 =
0.01, µ2 = 0.01, µ3 = 0.0755, η = 0.05, τ = 5 and x(0) = 1, v(0) =

0.5, c(0) = 0.5, R0 = 4.0552,−z +
√

z2 + 4aAµ1 >
2aµ1µ4

βe−µ1τ − aµ4
, and

D2
2−3D2 < 0 satisfying the conditions in Theorem 8,E2(1.5648, 0.7550, 0.1471)

is locally asymptotically stable forτ ≥ 0: a) Time series ofx, v, andc, b) three dimen-
sional phase portrait ofx, v andc.
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Figure 4: With A = 100, β = 0.15, a = 0.005, d = 1, r = 2, η =
0.5, µ1 = 0.1, µ2 = 0.01, µ3 = 0.05, τ = 1 andx(0) = 993.8, v(0) =
0.024, c(0) = 22, D2

1 − 3D2 = 17.0462, D2 = −0.6558 and P (K1) =
−1.2806, there exists aτc such thatτ ∈ (0, τc) as predicted in Theorem 10. Hence,
E2(993.7565, 0.0250, 22.0873) is asymptotically stable. a1)- a3) time series of
x, v, c, respectively, b) three dimensional phase portrait ofx, v andc.
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Figure 5: For the same parameters as in Figure 4, exceptτ = 10 andx(0) =

993.8, v(0) = 0.024, c(0) = 8.5, while D2
1 − 3D2 = 2.9275, D2 = −0.6558

andP (K1) = −0.0872, there exists aτc such thatτc < 10 as predicted in The-
orem 10, and oscillation occurs. a1)-a3) Time series ofx, v, c, respectively, b) three
dimensional phase portrait ofx, v andc.
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Figure6: With A = 5, β = 0.0015, a = 0.0001, d = 1, r = 1.5, µ1 =
0.01, µ2 = 0.7 andµ3 = 0.755. Forτ = 5 andµ = 0.5 andx(0) = 50, v(0) =
100, c(0) = 50, R∗ = 0.9706 as predicted in Theorem 17,E0(500, 0, 0) is global
asymptotically stable. a) Time series ofv, b) three dimensional phase portrait ofx, v and
c.
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Figure7: With A = 10, β = 1.5, a = 0.0005, d = 1, r = 1, µ1 = 1, µ2 = 1
andµ3 = 1, τ = 0.5, µ = 0.5 andx(0) = 3.5, v(0) = 0.9, c(0) = 3. while,
R∗ = 9.0527 > 1, R∗ = 0.1415 < 1, the system is persist as predicted in Theorem
21. a) Time series ofx, v andc, b) three dimensional phase portrait ofx, v andc.

VI. CONCLUSION

In this paper, a more general HIV filtering model (2) with
time delay is considered. In the model, a Holling type-II func-
tional response, instead of the mass action response, is used
to describe the growth rate of cells, and the delay between the
time a cell is infected and the time it starts producing new virus
is taken into account. Then, a detailed analysis on the local
asymptotic stability of the equilibria of the HIV filtering infec-
tion model is carried out. It is shown that, whileR0 < 1, the
viral free equilibriumE0 is globally asymptotically stable for
any time delay so that the virus always dies out. IfR0 > 1, E0

becomes unstable while the infected equilibrium point emerges
as the unique equilibrium point and becomes locally asymptot-
ically stable forτ ≥ 0.

The infected equilibrium point can be determined from
given parameters and can be separated into different cases. If
R0 > 1, andc̄1 = 0, E1 of (2) exists, and whenR1 < 1, E1 is
locally asymptotically stable forτ ≥ 0 as shown in Theorem
4.

If R0 > 1,−z +
√

z2 + 4aAµ1 >
2aµ1µ4

βe−µ1τ − aµ4
, andE2

is locally asymptotically stable forτ ≥ 0 if D2
1 − 3D2 < 0, as

proved in Theorem 8. By Theorem 10, there exists aτc such
that a Hopf bifurcation occurs whenτ passes through the crit-
ical valueτc, so thatE2 is stable for0 < τ < τc and becomes
unstable forτ > τc.

Therefore, if the viral free equilibrium pointE0 loses its
stability and the infected equilibrium pointE1 or E2 exists,
the virus will start spreading. Either that infected equilibrium
point is asymptotically stable or the periodic solution occurs,
there will be a balance between the populations of CD4+ T
cells, HIV, and the cytotoxic-T-lymphocyte (CTL).

In the impulsive system which models the process of pe-
riodic virus filtering at fixed moments, we investigated the
global asymptotic stability of the viral free solution and the
conditions for the persistence of the system. ThresholdR∗

has been established. Theorem 17 implies that the virus pop-
ulation will vanish and the disease will die out provided that
R∗ = 0.9706 < 1. The equilibrium pointE0 of (3) is globally
asymptotically stable.

The epidemiological implication of Theorem 21 is that the
virus population will persist and the disease will become en-
demic provided thatR∗ = 9.0527 > 1 andR∗ = 0.1415 < 1.
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In the real world, complete eradication of HIV population
is generally not possible, eventhough it is biologically or eco-
nomically desirable. A good virus control program should re-
duce the virus population to acceptable levels .
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