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A Mathematical Model for HIV Apheresis

Rujira Ouncharoen, Siriwan Intawichai, Thongchai Dumrongpokaphan, and Yongwimon Lenbury

Abstract—In this paper, the continuous filtering and impulsive
filtering policies are incorporated in a mathematical model for the
interaction between HIV particles and CD4+T cells. In the case in
which a continuous virus filtering is used, we derive sufficient
conditions on the system parameters which guarantee that the
equilibrium points of the system are either locally asymptotically
stable or globally asymptotically stable. In the case in which an
impulsive virus filtering is used, we investigate the dynamical
behaviors of HIV and CD4+T cell in response to the impulsive
treatment and point out that there exists a viral free solution which is
globally asymptotically stable. Our results indicate that the period
and apheresis rate effect the eradication of the virus. Numerical
simulations are carried out to confirm our theoretical results.

Keywords—HIV-1 dynamics, CTLs immune response, impulsive

filtering model, stability.
I N recent years, the biological meanings, dynamical proper-
ties of HIV-1 infection models with or without time delays
and general theories on such dynamical systems have been
studied by many authors [1]-[12]. Viruses are intracellular
parasites that depend on the host cell to survive and duplicate.
The host cell can be damaged by the virus or by antibodies,
cytokines, natural killer cells, and T cells which are essential
components of a normal immune response to the virus. The
effective antiviral immune response depends on the amount of
virus present, the tissues infected and the chronicity of the
infection [13].

To explore the relation among antiviral immune response
which includes the appearance of HIV-specific Cytotoxic T
lymphocytes (CTLs) and antibodies, virus load and virus
diversity, many models include an intracellular delay [4]-[12]
which is introduced to account for the time between infection
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of a CD4+T-cell and production of new virus particles.
Furthermore, by a similar theoretical analysis on population
dynamical systems and epidemic models [14]-[16], it is shown
that time delays play an important role in the dynamical
properties of the HIV-1 infection models. The Holling type 11
function [14] is one of the response functions which is useful

in the dynamical systems and epidemic models. It is
characterized by a decelerating intake rate which follows from
the assumption that the consumer is limited by its capacity to
process food. This functional response is often modeled by a
rectangular hyperbola, for instance which assumes that
processing of food and searching for food are mutually
exclusive behaviors.

The filtering policy or apheresis is a medical technology in
which the blood of a donor or patient is passed through an
apparatus that separates out one particular constituent and
returns the remainder to the circulation. Apheresis has for
some time been used effectively in the treatment of hepatitis C
infection [17]-[18]. Apheresis is an extracorporreal blood
purification technique designed for the removal of HIV from
the plasma of patients.

In 2007, a model developed by T. Dumrongpokaphan et al.
[7] was adapted to consider the interaction between HIV
infection, CTLs cells and CD4+T cells when the virus particles
are filtered. In other words, we modeled the continuous
filtering policy as an effect of drug therapy [1], [4] in the same
manner as the continuous harvesting in predator-prey models
[19]-[22].

Apheresis in a medical term which can be refer to the
filtering action to control virus infection. In this work, we have
modified the model proposed by T. Dumrongpokaphan et al.
[7] to consider the interactions of HIV and CD4+T cells.
Motivated by recent works [21] and [23], where impulsive
harvesting policy was the effective method in the predator-
prey system, we consider continuous filtering and impulsive
filtering treatment on an HIV patient by studying two model
systems.

The paper is organized as follows. In the next section, the
main biological assumptions are formulated by using the
qualitative theory of ordinary differential equations. In Section
I11, we investigate the behavior of the system which models the
process of continuous virus filtering. In Section 1V, we
construct an impulsive system which models the process of
periodic filtering at fixed moments. By using comparison
techniques, we investigate the global asymptotic stability of
the viral free periodic solution and the conditions for the
persistence of the system. Finally, numerical results and a brief
discussion are provided.
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Il. MODEL FORMULATION () = A—mat) - ﬂlf:(_t);(ft)),
We denote the population densities of CDT cells, free
HIV, and CTLs cells at time, by z(t), v(t), andc(t), respec- Lt —T(t—T)
tively. The effect of the delay between the time a43DT cell v'(t) = Pe ’”Tm t#nT
is infected and the time it starts producing virus is incorporated —dv(t)e(t) — pao(t),
into our model. @)
We make use of the fractio 11(]2;83 as the virus d(t) = ru(t)e(t) — psc(t),
functional response [14], [19], and #'" as the term to z(tT) = x(t),
take into account the probability of cell production having  v(¢t*) (I —pou(t), pt=nT,n=12,..
survived from the timet — 7 to t. Then, the fraction ctt)y = <),
Be—“”w is used to represent the production,,  initi "
1+ az(t —7) P p Nwith initial conditions
rate of the virus particles in our model. These assumptions  (z(t),v(t), c(t)) = (p1(t), p2(t), p3(t)) € CF, @)
lead us to the following system of differential equations : v;(0) >0,:=1,2,3
) = A—malt) -8 (t)o(t) 7 whereCy” = C([—,0], RY) andz(tT),v(tT), ande(tt) are
1+ ax(t) the right limits of z(¢), v(¢) and c(t) at timet, respectively.
Heren is the set of all non-negative integefS s the filtering
o'(t) = 5e—lmw (1) period andu(0 < p < 1) represents the filtering effort.
1+az(t—r1)
—dv(t)c(t) — pav(t), lll. CONTINUOUS VIRUS FILTERING
, In this section, we discuss the existence of three equilibria
c(t) = ro(t)e(t) — psc(t), and prove that all solutions are positive and bounded. Clearly,
where, the initial conditionsz(6) = ¢1(6),0(0) — (2) always has a viral freg equilibriuddy (A/s1,0,0).
$2(0),c(0) = ¢3(0),¢:(0) > 0 are continuous of—,0), Letps = po +1, 2 = T + p1 — a4, and
:;(0) > 0,7 = 1,2,3, while A denotes the production rate of  AfemT
CD4™" T cells, 3 is the rate constant characterizing infection 0 pa(pr + aA)

of cells,d is the death rate constant of virus due to CTLss  Here, R, is called the basic reproduction ratio of the model
the rate constant of stimulation of CTLs by infective viras, (2). If Rg > 1 andc = 0 then (2) has an infected equi-

is the saturation constant and, u» and 3 denote the natu- liprium Ey(Z1,701,0), wherez;, = # ando, =
ral death rate constants of CDT cell, free virus and CTLs, _, _ femiT —apy
respectively. ¢ (A — p1Tq).

We investigate the behavior of the system which models theuf R > le # 0, and —2 + /2% + dadp, >
process of continuous virus filtering as a medical treatment by 94, .
using the following system m are satisfied, then (2) also has another infected

equilibrium E5 (T2, U2, &), where
P) = A—pa(t) - g200D. = (o2 4 /T T dad)2am, s = M ande, —
1+ ax(t)’ 2 p1)/2ap, U2 v ande
(Be T 2 — pa) /d.
i e Tt =Tt —T) By the continuity of the initial functions the following can
V'(t) = PerT ———= 2) :
1+az(t—r1) be easily shown.
—dv(t)e(t) — pav(t) —no(t),
Proposition 1. Let the initial conditionsz (), v(6),c(0) > 0
d(t) = ro(t)e(t) — pac(t), be continuous off—7, 0) and z(0), v(0),¢(0) > 0. Then, the
solution of (2) satisfies(t), v(t), c(t) > 0 forall ¢ > 0.
with initial conditions i ili is. i i
(2(t) 0(0). () = (1(8), @2(8), 3(8)) € CF fo||§\f/i):§ Yéiqu:g \(/:v?lirg/eolzjste?istab|llty analysis, in which the

vi(0) >0,i=1,2,3,
whereCs™ = C([-7,0], R} ). The parameten represents the Lemma 2. [19] Consider the following equation:

virus filtering coefficient. % — au(t — ) — bu(t),

For the discrete dynamics due to the impulsive virus filtefyheg o, b, 7 > 0 andu(t) > 0for t € [—7,0].
ing as in the case of apheresis treatment, we construct an ing3) If 4 < b, then hm u(t) = 0.
pulsive system which models the process of periodic filtering i—00

If b, then 1 t) = .
at fixed moments as follows. (@) If a > tingou() 00
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Theorem 3. If Ry < 1 then, the viral free equilibrium Here, we are interested in determining whether there exists

Eo(A/u1,0,0) is globally asymptotically stable for any >  a critical delayr. > 0 so thatRe(\) > 0 for 7 > 7.. Now,

0. we will determine the conditions on the parameters to ensure
that F; is still stable by considering (5) as a complex variable

Proof: See [12]. O mapping problem.
Letting
R — Are M7 (aA + p1) (Mo — 1) Lemma 6. Let7T > 0. Suppose that the equation (8) has no
' uspa(aA(PRo — 1) + p1Ro) positive roots. Then, all roots of the equation (5) have negative
we can prove the following result. real parts.

Proof: Since (8) has no positive roots, any real numbes

Theorem 4. If Ry > 1 andR; < 1, then the infected .
0 ! not a root of (7). Hence, for any real numbgrthe valueiw is

Ha

equilibrium £1(z1,71,0), wherez; = Be=mT — apuy and not a root of (5), which implies that there is mpsuch that
—H1T .
5 = S (A — ) is locally asymptotically stable for M7e) = iw(7e), _
Ha From Theorem 5, we have that all roots of (5) have negative
720. real parts forr = 0. SinceRe(A(7)) is a continuous function
Proof: See [12]. of 7, we conclude that all roots of (5) have negative real parts

Next, we will state the conditions under which the systenfor 7 > 0- N _ oD
(2) possesses a locally asymptotically staje We next present the conditions under which (8) has a posi-
tive root or has no positive roots. To this end, we differentiate

Theorem 5. If 3y > 1 and (8) to obtain

—s oV dadi > g P'(k) = 3% + 2D1k + Dy, (©)
the infected equilibriunizy (s, 7, &), v%ere and observe thé.lt equatidx? + 2D,k + D, = 0, has the
3 - 13 - rootsK; and K :
To = (—z + /22 +4aAu1)/2ap1, vy = o andé, = K, = (-Di+ /D% —3D,)/3 and
(Be T 2 — pa) /d K, = (-Dy—+/D?-3D,)/3.

is locally asymptotically stable for = 0. We are led to the following lemma.

Proof: 'I;he associated 2characterlstlc equation of (2yats Lemma 7. i) If a) D; < 0,D? — 3D, > 0 and P(K;) < 0,
A+ (B +2Bz))\ + (Bllfz + Bs)A+B1Bs  (5) orb)D, < 0andP(K;) < 0, are satisfied then, the equation
— (W HmA)Bee =0, (8) has a positive root.
B2 By = 567’“72’ andB; — i) If Di — 3D, < 0 are satisfied then, the equation (8) has
(1+ aZs) 1+ azy no positive root.

psdey. ForT = 0, the equation (5) becomes Proof: i) Ifa) ha | andic
3 9 roof: ¢) If a) is true, we can see thaf; is real andik; > 0.

A’ + BiA + ((By — p1) B2 + B3)A+ B1Bs =0 (6) From (8), forkx = 0, we have that’(0) > 0. SinceP(K;) <
By the Routh-Hurwitz criteriaFs; is locally asymptotically (), by the intermediate value theorem, (8) must have a positive
stable forr = 0. O rootK*. Ifb)is true, then we havg/D? — 3D, > |D,|. Itis

Whenr > 0, we assume\(r) = ¢(7) + iw(7), where  easy to see thak is real andk; > 0. Similarly to the case
¢(7),w(r) € R. Since Re(A(0)) < 0, by continuity of g) we then have a positive roat*.
Re(A(7)), Re(A(7)) < 0 for values ofr suchthad < 7 < 7, 2
for somer, > 0. Therefore E, remains stable for these values
of 7.

Supposere(A(7.)) = 0forsomer. > 0, andRe(\(7.)) <
0 for0 < 7 < 7, then the equilibriumEy may lose stability
atT = 7. or A = iw(7e).

whereB; = u; +

i1) SinceDy > % P'(k) = 0 has no real root and
D2
P'(0) = Dy > ?1 > 0.
This implies thatP is increasing on the set of real numbers.
Moreover, we observe that(x) does not vanish fok > 0

Substituting = iw(r.) in (5) and equating real parts and@nd thus, (8) has no positive roots. .
imaginary parts of the right hand side to zero, then we get Thus, we can write down the following theorem.
B1B; — (B1 + Ba)w® = By(pnwsinwr — w? coswr) Theorem 8. Suppose thaD? — 3D, < 0,9, > 1, and

(B1Bs + B3)w — w? = By(pyw cos wr + w? sinwr) 2a 11 g
Squaring and adding above equations, we have that Be=mT — iy
WS+ Dyw + Daw? + B2B2 = 0, @) the equilibrium pointEs(Z2, U2, ¢2) is locally asymptotically
stable forr > 0.

—z+ /22 +4aApu > , are satisfied. Then,

where, Dy = B?-2B; and
D, = B2?B2+ B2 - 12B2 - 2B?Bs. Proof: By Theorem 5, all real parts of eigenvalues of (5) are
To simplify equation (7), we set = w?, then (7) reducesto  negative forr = 0. By part(ii) of Lemma 7, (8) has no posi-
P(k) = &% + Dyk® + Dok + B2B2 = 0. @) tive roots. Lemma 6 ensures that all roots of (5) have negative
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realparts forr > 0. So, F, is locally asymptotically stable for IV. IMPULSIVE VIRUS FILTERING
7> 0. O
Next, we will provide the conditions on the parameters t%o
ensure that a Hopf bifurcation occurs. We denote, without loss
of generality, the positive roots of (8) by, 1, andx,. Equa-
tion (7), therefore, has six roots; = +,/k;, j =0,1,2.
For eachv;, we can writer in form

In this section, we start with giving some definitions, nota-
ns and lemmas which will be useful.

The smoothness properties piguarantee the global exis-
tence and uniqueness of solution of system (3). For details, see
[24]. The following lemma is obvious.

1 2k
7" =~ arccos © + o (10) Lemma 11. Suppose thak (t) = (z(t),v(t),c(t)) is a solu-
wi wi tion of (3) with X (0%) > 0, thenX (¢) > 0 for all ¢ > 0. And
where® — “1(3132“33)3 ’fl?f;’) (Bi+Bz—p) further X (t) > 0, forall t > 0 if X(0*) > 0.
2(w 1250 ’

j=0,1,2,andn = 0,1,2,3, ...
Now, let7. > 0 be the smallest of such](”) for which
¢(r.) = 0. Thus,

We will use an important comparison theorem on impulsive
differential equation [24].

7e = min{r\") > 0,0 <j < 2,n > 1}, (11)  Lemma 12. [24] Suppose thaty € PC[R™*, R] satisfies
Lettlng hl = WCBQ(H’ch - 2)7 h2 = BZ(TCWE + ,LL1),
+ hy sinw.T, — ha COS W, T, w(tt) < (>)dy ( ) bmt =nT,n €N,
Hg = 2(31 + Bg)wc
+ hi coSweTe + ho sinw,Te, wherep(t), q(t) € PC[R*, R],d, > 0, andb,, are constants.
we can prove the following theorem. Then
Theorem 9. For the time lagr, let the critical time lagr, and
We be defined as in (11), and suppose that the conditions w(t) 11 dnexp / p(s)ds)
2 . H c B o<nT <t
.) # M1w and—l;«éwg 1+M3)7
Sy W B H dyexp( (9)d9)q(8)d8
. . Wr(wr + Nl) (B1 + BQ)Wf — B1B3 s<nT<t (14)
i7) # d
w2 — i w2 — (B1Bs + Bs) + Z H nt1exp(
’LZZ) wf 75 u3 By 75 B1B; + Bg andwf — /A% 75 0, (tJ<nT<t nT<(n4+1)T<t
are true. Then the system of delay differential equations (1) / p(s)ds)]b
exhibits a Hopf bifurcation af.. T "
Proof: From (5), we have that Lemma 13. [24] Supposé/ € V. Assume that
d¢| (e —w2)Hy + 2N1wcH2)[
dr'" ' ;ug(l + ,ul)(lzqf + H3) DYV (t,y) < gt V(ty), t#nT, (15)
(we + mwe)(we — (B1B2 + Bs)+ Vit,ytt) < ¢v.(V(ty)), t=nT,
((B1 E Bo)w? — B1B3) (1 — we)]
2H1 2 whereg : R, x Ry — Ris continuousinnT, (n+1)T]x R
— Hy(ws — p3B1)— g ey + ) +
(H12+H22)[ ) andforu € Ry,n € N,
+
 Hywe(B1 + pi3)] lim  g(t,9) = g(nT",u)
By the conditions), i7) andiii), we have that (t,9)=(nT+ u)
exists, ¢, : Ry — Ry is non-decreasing. Let(t) be maxi-
Eh:n # 0. (12) " mal solution of the scalar impulsive differential equation
Hence, a Hopf bifurcation occurs whenpasses through the ,
critical valuer... 0 u (? = g(t,u(t)), t #nT,
Finally, from the above arguments, it is possible to state the U(((t)+)) = ¥n(u(t)), t=nT, (16)
u = Up,

following theorem.

Theorem 10. For system (2), with,. andw, defined asin (11), existing on[0,00). ThenV(0",y,) < wuo, implies that

5 . .
suppose they > 1,—z+ /2% + dadp; > 5 _;llmm 7 V(t,y(t)) <r(t),t >0, wherey(t) is any solution of (3).

- ) e T —apy
and the condition (i) of Lemma 9 hold. There exists auch Next, we will consider the Floquet theory [22] for a linear

that the equilibrium point; is stable for0 < 7 < 7. and  T*-periodic impulsive equation:
unstable forr > 7.

dx(t)
o = A(t)x(t), bk =12 (7
z(tt) = x(t)+ Brz(t) t=t.

Issue 9, Volume 7, 2013 813
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Then,base on [22] the following conditions are introduced: linearized equations read:
(H1) A(.) € PC(R,C™™)andA(t +T*) = A(t),

t € RwherePC(R,C™ ") is the set of all y'(t) = —py(t) — bA Az(t),
piecewise continuous matrix functions which ABe—ra fta t T
is left continuous at = t;, andC™*" is the 2(t) = (——)z(t — 1) — p2z(t),
set of alln x n matrices. W (t) = _”/132:8;)4 (19)
(H2) By € C™ ", det(I + By) # 0; ’
ty <tgs1 (k€ N), y(t+) = y(t)
(H3) There exists g € N such thatBy, = By, 2t = ( —’,u)z(t), t=nTon=12 .
e w(t) = w(t)
Let ¢(t) be a fundamental matrix of (17), then there exists a ’
unique non-singular matrixf € C™*™ such that [22] Next, we are going to fing(t), which is the fundamental solu-
tion matrix of (19). For # nT', we have that the characteristic
Pt +T%) = p(t)M, (18) equation is given by

AﬂeiulT — AT

By equality (18) there corresponds to the fundamental matrix (A + p1)(A — e+ p2)(A+ps)=0.  (20)

¢(t) the constant matrid/ which we call the monodromy ma- A+ ad

trix of (17) (corresponding to the fundamental matrix¢t)). SO, the eigenvalues ave = —uq and A3 = —pus. Next, we
All monodromy matrices of (17) are similar and have the samwill consider a solution of the equation

eigenvalues. The eigenvalugs -, ..., v, of the monodromy ABem7T |

matrices are called the Floquet multipliers of (17) [22]. - me_ T+ p2 = 0. (21)

Lemma 14. (Floquet theory [22]) Let conditiongH1)—(H3)  To find the location of the eigenvaluk,, we introduce the
hold. Then the linear T-periodic impulsive equation (17)is function

ABe T
11+ aA
Clearly, S(t) is a continuous and increasing function. We also
observe that

S(t)=t— e "+ g, t€R.

1. stable if and only if all multipliers;, (j = 1,2,3,...,n)
of (17) satisfy the inequalityy;| < 1, and moreover, to
those; for which|v,| = 1, there correspond simple ele-
mentary divisors;

lim S(t) = —oo0, lim S(t) = occ.

2. asymptotically stable if and only if all multipliers e feo

vi, (5 =1,2,3,...,n) of (17) satisfy the inequality;;| < Hence, the functior’ has a unique zero. Siné&* < 1, then

1; we have

AﬁefﬂlT
1+ aA

So, we can conclude that, < 0. The eigenvec-

Next, we investigate the global asymptotic stability of thdors corresponding to the eigenvalues, A; and A; are
viral free periodic solution and the conditions for the permat!,0,0), (wl41, 0) and (0,0,1), respectively, wherev =

S(0) = + p2 > 0.

3. unstable ify;| > 1, for somej = 1,2,3, ..., n.

nence of the system . Let,

A. Global Stability (11 + A2)(p1 + aA)

First, we determfilne the local asymptotically stability of the 1 w 0 et 0
viral free solution(—, 0, 0) of the system (3). Let P=10 1 0],L(t)= 0 et 0

H1 0 0 1 0 0 e mst
. ABe~#7 Therefore a fundamental solution matrix of (19) is given by
 pa(pr +ad)’ et et
) #(t) = PLy(t) = [ 0 erzt 0 }

Theorem 15. The viral free solution—, 0, 0) of the system 0 0 e hat

(3) is locally asymptotically stable provided tiét < 1 hold. where the exact expressionwé*>* is omitted.
Whent = nT, the linearization of the fourth, fifth and sixth

Proof: Definex(t) — y(t) + -, v(t) = =(t),e(t) — w(z). equations of (19) becomes
L

M1
Then, the system (3) can be expanded whennT in a Tay- y(ti) 1 0 0 y(t)
. . . ztt) | =10 (1—p) O z(t) (22)
lor series abou(ai), 0). Neglecting higher order terms, the () 0 0 1 w(t)
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. A . :
The stability of the solutlon(ﬂ—,o, 0) is determined by the
1

eigenvalues of

1 0 0
Ly =0 (1—p) 0 |6()
| 0 0 1
[ e—mT wer2T 0
= 0 (1 — p)erzT 0
0 0 e msT

Therefore, the characteristic equation is

(e

Then, we have the eigenvaluesiof aree=* 7, e~ #3T and

(1 — p)e*2T. Sincep; > 0 andyug > 0, obviously,le= 17| <

1 and|e~#sT| < 1. Since0 < p < 1 and); < 0, therefore
|(1—pu)e*2T| < 1. According to Lemma 14, the Flogent theory

(emmT — p)e2t — N (e T — ) =0

of impulsive differential equations, the solutigr—, 0,0) is
H1
locally asymptotically stable.

Consider the comparison system fas n, T, :

/
it

(t) Be T (

—p2vr(
vi(tT) = (1-pun

Since we have (23) and by Lemma 2,
hm v1(t) = 0.

Let( (t),v(t), c(t)) be the solution of (3) with initial value
v(0) = @2(0) > 0, (0 € [—7,0]), andwv; () be the solution of
(26) with initial valuev,(0) = p2(0) > 0, (0 € [—7,0]). By
the comparison theorem, we have

+e)v(t—1)

¥ ad (26)

+
Jt£nT
(t),t=nT,n=1,2,..

then we have

limsupv(t) < limsup v (t) = 0.

t—o00 t—o0

Incorporating into the positivity of(¢), we know that

—0. @7)

lim v(t)

t—oo

Therefore, for any, > 0 (sufficiently small), there exists an
integerny > ny such that(t) < ey for all ¢ > nyT. For the

Next, we need to show that the viral free solution of systerfirst equation in the system (3), we have

(3) is global attractive.

: . A
Theorem 16. If ;R* < 1 then the viral free solutiof—, 0, 0)
H1

of (3) is global attractive.

Proof: SinceR* < 1, we can choose, > 0 sufficiently small
such that

Bemm(

+e1) < pe (23)

u1 +aA

From the first equation in (3), we hawé(t) < A — pyz(t).
Consider the following comparison equation:

' ()

— A— s (0). (24)

Itis clear thaflim sup x4 (t) =

t—o00 1
Let (z(t),v(t), c(t)) be the solution of (3) with initial value
x(0) = ¢1(0) > 0. Forz;(t) be the solution of (24) with the

initial valuez1 () = ¢1(0) > 0. By the comparison theorem,

A

limsup z(t) < limsup z1(t) =
H1

t—o0 t—o0

)

Then,we have that there exists an integgr> 0 such that

A
.T(t) < l‘l(t) < ; + €1, t>nT. (25)
1

From the second equation and the fifth equation in (3) we ca

see that,
v (t) < ﬁe_“”('ul ) +e)v(t—1)
—,ugv(t) t#nT
o(tt) = — ), t=nT,n=1,2,..
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() > A—— — px(t), t>noT.

Consider the following comparison equation:

dht) = A= 22 (o) (28)
Let (x(t),v(t), c(t)) be the solution of (3) with initial value
x(0) = ¢(0) > 0, andzz(t) be the solution of (40) with the

a
initial value x5 (0) =
we have that

©(#) > 0. By the comparison theorem,

Aa — fes

liminf 2(¢) > liminf 24(t) =
iminf z(t) > im in x2(t) e

t—o0
Thereforethere exists an integer, > n; such that

Aa — fes

#(t) 2 () > =

— €3, t > noT (29)
Note thate,, e3 are arbitrary small, it follows from (25) and
(29) that

lim z(t) = —
t—o0 () /1/1

It follows from (27) that there existss > ny such thaw(t) <
eo for all t > n3T. For the third equation in (3), we have

(30)

A (t) < (rex — p3)e(t), t > ngT.

(E]onsider the following comparison equation:

ci(t) = (rea — pa)ei(t). (31)

It easy to see the}ﬁm c1(t) = 0.
Let (z(t),v(t), c(t)) be the solution of the system (3) with
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initial valuec(d) = ¢3(8) > 0, andc;(t) be the solution of Wt X) = e Mot —1) + (1 — pu(t) + iic(t)
the system (31) with initial value, (6) = ¢3(6) > 0. By the C W X) — polt) < W X)
comparison theorem, we have Now. we have_the s;vlstem HORE) = ’

liinsup cft) < 1iltmsup a(t)=0. DYW(t, X) < Ae=*7 — W (t, X),t #nT (34)
o o W(tt, X) < W(t,X),t =nT.

Incorporating into the positivity of(t), we know that By Lemma 12 and fort > 0, we have

lim ¢(t) = 0. (32) t
e WO < W[ e
Together with equations (27), (30), and (32), we g&t —
. . . +/ exp( / —&ds))Ae M7 ds,
—, v(t) — 0 andc(t) — 0 which proves its global attraction. Ao-rnr
b = W(0)e ¢ + ¢

€

Now, we already have the local asymptotically stability of
the viral free solution and its global attraction. Therefore, th&o,we can see that
global asymptotically stability of the viral free solution of sys- y;; )¢t Ae7mm AemhT
tem (3) is proved. We can now state the following theorem. 3

Therefore, W(t) <

bounded from above. According to the definition 16f(¢),
it is known that there exists a constahf > 0, such that
B. Persistence z(t) < M,v(t) < M,c(t) < M for all ¢t large enough. The
O

ast — oo.

1T
_ A . Hence, W(t) is uniformly
Theorem 17. If ;&* < 1 then the viral free solutiof—, 0, 0)

is globally asymptotically stable for system (3).

In this section, we say the virus is not eradicated if th@00f is completed.
virus population persists above a certain positive level for sugorollary 20. Denote
ficiently large time. The endemicity of the virus can be well
. . . Ae M7
captured and studied through the notion of persistence. M, — (35)
min{j, po, 13}

Definition 18. The system (3) is said to be persistent if ever¥ )
solution (z(t), v(t), c(t)) with initial condition (4) of system Xe:x t) < Mi,o(t) < M]} an(:c(t):? ]{Wl’ fﬂolr each So'““ﬁn
(3) satisfies ) = (z(t),v(t), c(t)) of system (3) for alt large enough.
Denote
0 <liminfz(t) < limsupz(t) < oo _ r
t—oo t—o0 * — /,Lg(ﬂg T Mld) .
0 <liminfo(t) < limsupo(t) < oo
t—oo t—00 . . .
0 < htm infe(t) < limsupe(t) < oo Theorem 21. The system (3) is persistent provided that
— t—o00

R* > 1, and R, < 1.
We now prove the uniform ultimate boundedness of the so-

lutions of (3). Proof: We will prove the theorem by several steps. By

Corollary 20, without loss of generality, we suppose that

Theorem 19. There isM > 0 such thatz(¢) < M, v(t) <  (z(t),v(t),c(t)) is any solution of system (3) with initial val-
M, c(t) < M for each solutionsX (¢) = (z(t),v(t),c(t)) of uesz(0) > 0,v(0) > 0 andc(0) > 0 and suppose that
(3), for all large . z(t) < My, v(t) < My, ande(t) < M, forall¢ > 0. We

will show that for anyty > 0, there exist amn, > 0 such that
z(t) > m, forall t > to. From the first equation of system (3)
1

Proof: Define a functiori¥V (¢, X) as

andv(t) < Mi, we have thaty'(t) > A — pix(t) —

Wt X)=eMTz(t—71)+0v(t) + gc(t). (33) . i i ]
r Considerthe following comparison equation for> to,

Whent # nT, calculating the right derivative df/’ it follow M .
that a"(t) = (A - & =) = (t). (36)
DTW(t,X)=e "M (A -zt — 1)) — pov(t)

_ %c(t) It is easy to see th?lﬁm x*(t) = M.

) — 00 apy

Leté = min{m’z%ﬂg} and choos@ < h < ¢. Let My > 0 SinceR* > 1, we have that, according to Lemma 13, there
such that exists at; > 0 such that for alt > ¢;,
DTW(t, X) +hW(t,X) < AemmT — (£ — h)W(t, X) Aa — BM
whent = nT, we get x(t) = " (t) > T L e =my >0, (37)
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Next, we will show that for anyty > 0, there exists am,, >
0 such thatv(t) > m, for all t > t,.

By z(t) > m, and

V. NUMERICAL RESULT
In what follows, we present five figures to illustrate the

Corollary 20,z(t) < My, c < My, then the second equation main theoretical results in Section 11l and two figures to con-

of system (3) can be rewritten as follows:

, ﬁe—ﬂﬂ'mw 3 B
v'(t) > mv(t 7) — (u2 + Myd)v(t).
We have that
V() > q(t)—po(t), t#nT (38)
ott) = (1-pu(t), t=nT
where p= u2+M1d>O and
Be™#
alt) = Fraap vt =7

By Lemma 12, we can see that

o(t) = (1 po(0)exp( / (—p)ds)

t t
+ [ 10 = wems( [ pav)as)as
0 s
t
> (1 —p)e Pu(0) +/ eP?q(s)ds].
0
Sinceq(t) > 0, there exists & > 0 and are; > 0, such that
0<er < litminfq(t) forall t > to.

Therefore,

o(t) > (1f,u)e*pt[v(0)+/0 ePoeqds]

> (1- pe ! [(0) + ex(C— )]
> (1- )e—pt[vm)—eﬁw]{l— )2
a p ! p

whichimplies thatu(t) > (1 — u) 22 > 0 ast — cc.
p

g2 _ (1—pley
Letm, = (1— = . So,we havev(t) > m,
(I—p)— D T Md (t)

forall t > t,.

SinceR, < 1and(1 — p)ex < 1, foreq is arbitrary small,

we can see that

_ (A —pes _ 1 M3
v M2+M1d_

< .
(/1,2 +M1d) T

Next, we will show thathmmf c(t) > 0 Sincem,, < @

andfrom the third equation of system (3) we have tb(at)
(rmy, —

ch(t) = (rmy, — ps)ea(t). (39

It is easy to see thab(t) = cy(0)e"™>~#3)t, Incorporating

the positivity ofc(t), we know that
tlim co(t) = 0. (40)
By the comparison theorem, we have

litm inf ¢(t) > 1itm inf e (t) = 0.

Thus, we have proved thh‘ttn inf ¢(t) > 0. Hence, the proof

is complete. O
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us3)c(t). Consider the following comparison equation:

firm Section IV.

a)
b)
80
— x() 9
— V(1) c(t)
“ —a|
s 80
% T e V3 o At

Figurel: Fora = 1,8 = 0.015,a = 0.0005,d = 1,7 = 1.5, u1
0.01,pu2 = 0.7,pu3 = 0.05,7 = 0.8,7 = 5 andz(0) = 5,v(0) =
10, ¢(0) = 5, Rp = 0.9059 < 1 satisfying the conditions in Theorem 3, and hence,
E( (100, 0, 0) is globally asymptotically stable far > 0 : a) Time series of, v and

¢, b) three dimensional phase portrait:afv andc.

a)

b.)
10 03
— X(t)
A Y A
— c(t)
05 1 12
0 100 t 200 300 v 03 9 10X(%)

Figure2: Fora = 1,8 = 015 a = 0.00005,d = 1,r = 0.05, 1
0.01, po 0.8,u3 = 0.755,n = 07 T =5 andm(O) =9, v(O)
0.5, ¢(0) 0.5, Rop = 9. 4650 and R = 0.0376 satisfying the conditions in
Theorem 4,F1(10.5182,0.5675, 0) is locally asymptotically stable for > 0: a)
Time series oft, v andc, b) three dimensional phase portrait:afv andec.

a) —0 b.)

3 o V(t) 0.4

— o) o(t)
0.2

2

1]

15
v(t) 3
0 300 T 600 900 05 571 x(H)
Figure 3: with A = 0.18,8 = 0.15,a = 0.05,d = 1,r = 0.1, 43 =
001;1,2:OOlug:0070577—000T—oand$(0): v(0) =
A 2
0.5,¢(0) = 0.5, Ro = 4.0552, —z + /22 + daAu; > &, and

BeH1T — apy
D§ —3D» < 0 satisfying the conditions in Theorem B (1.5648, 0.7550, 0.1471)
is locally asymptotically stable for > 0: a) Time series ok, v, andc, b) three dimen-
sional phase portrait of, v andc.
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a -
al. a2, 5 — b
93.8 0255 4 .
(1) R y ot
2l 24.
393.7) 0245| 22
1 b
0 30 T 600 0 0 200 400 { 600 800 1000 VO x(
b.) _
22 Figure7: with A = 10,8 = 1.5,a = 0.0005,d = 1,7 = 1,41 = 1,y = 1
a3, andps = 1,7 = 0.5, p = 0.5 andz(0) = 3.5,v(0) = 0.9,¢(0) = 3. while,
222 o) R* = 9.0527 > 1, R, = 0.1415 < 1, the system is persist as predicted in Theorem
21. a) Time series of, v andc, b) three dimensional phase portraitafv andc.
c(t 2
22
0.028 VI. CONCLUSION
0 30 T 600 V() 0024 gg37 X(t) 9938

Figure4: with A = 100,38 = 0.15,a = 0.005,d = 1,r = 2,7

In this paper, a more general HIV filtering model (2) with
time delay is considered. In the model, a Holling type-II func-

0.5, 11 (:)0.1,;@ = 0015 = 0.05,7 = 1andz(0) = 993,8,v(o§ tional response, instead of the mass action response, is used

0.024,¢(0) = 22, D] — 3D> = 17.0462, Dy = —0.6558 and P(K = .

—1.2806, there exists é—c such %hatr € (0,7c) as2 predicted in Theorem 101. Hence, to describe the grOWth rate of cells, and the delay between the

E2(993.7565, 0.0250, 22.0873) is asymptotically stable. al)- a3) time series of time a cell is infected and the time it starts producing new virus

v ¢ fespectively, b) three dimensional phase portrait of andc. is taken into account. Then, a detailed analysis on the local

asymptotic stability of the equilibria of the HIV filtering infec-

tion model is carried out. It is shown that, whil, < 1, the

viral free equilibriumFEy is globally asymptotically stable for
az) any time delay so that the virus always dies oufi{f > 1, Fy

0.0252| becomes unstable while the infected equilibrium point emerges

as the unique equilibrium point and becomes locally asymptot-
V(D) ically stable forr > 0.
0.0248|

The infected equilibrium point can be determined from
given parameters and can be separated into different cases. If
Ro > 1, ande; = 0, E; of (2) exists, and whefR; < 1, E is
locally asymptotically stable for > 0 as shown in Theorem

4,

If Ro > 1, —2++/2%2 +4aAp; > _ 2appa

Be T — ajiy

is locally asymptotically stable far > 0if D? —3D, < 0, as
proved in Theorem 8. By Theorem 10, there exists auch
that a Hopf bifurcation occurs whenpasses through the crit-
ical valuer,, so thatF, is stable fol0 < 7 < 7. and becomes
unstable forr > ..

Therefore, if the viral free equilibrium poink, loses its
stability and the infected equilibrium poirdf; or E, exists,
the virus will start spreading. Either that infected equilibrium
point is asymptotically stable or the periodic solution occurs,
there will be a balance between the populations of €04
cells, HIV, and the cytotoxic-T-lymphocyte (CTL).

a. m In the impulsive system which models the process of pe-
riodic virus filtering at fixed moments, we investigated the
global asymptotic stability of the viral free solution and the
conditions for the persistence of the system. Threstdid

has been established. Theorem 17 implies that the virus pop-
ulation will vanish and the disease will die out provided that
R* = 0.9706 < 1. The equilibrium pointEy of (3) is globally

5200 { 5600

,andFEy

5200 5600

Figure 5: For the same parameters as in Figure 4, exeept 10 and z(0) =
993.8, v(0) = 0.024, ¢(0) = 8.5, while D? — 3Dy = 2.9275, Dy = —0.6558
and P(K;) = —0.0872, there exists a. such thatr. < 10 as predicted in The-
orem 10, and oscillation occurs. al)-a3) Time series 0b, c, respectively, b) three
dimensional phase portrait ef v andc.

54
0 0.004 t oo 0012 0 0 = X(t)

Figure6: with 4 = 5,8 = 0.0015,a = 0.0001,d = 1,7 = 1.5, 41 =
0.01, u2 = 0.7andus = 0.755. Forr = 5andy = 0.5 andz(0) = 50, v(0) = i

100, ¢(0) = 50, R* = 0.9706 as predicted in Theorem 1E, (500, 0, 0) is global asymptotlgally _Stabl_e' . . . .
asymptotically stable. a) Time serieswfb) three dimensional phase portraitafv and The epidemiological implication of Theorem 21 is that the

. virus population will persist and the disease will become en-
demic provided tha®R* = 9.0527 > 1 andR, = 0.1415 < 1.
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In the real world, complete eradication of HIV population

MathematicsVol. 201, 2007, pp. 356—-366.

is genera”y not possible, eventhough it is biologically or ecol?l] Y.Z. Pei, L.S. Chen, C.G. Li,"Continuous and impulsive harvesting

nomically desirable. A good virus control program should re-

duce the virus population to acceptable levels .
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