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Abstract—In this paper we consider a stochastic agent 

model with herd behavior which is related to the construction 
of price processes as jump processes in continuous time which 
exhibit heavy-tailed increments. We analyze the model 
theoretically and by performing numerical simulations for a 
large number of agents and for different values of the 
aggregation parameter. We further discuss the approximation 
properties of a nonlinear mean field model, including the case 
that the aggregation parameter approaches the maximal value 
of 1 in dependence of the number of agents. The discussion is 
backed up by numerical simulations and the outcome is 
compared to existing results in the literature. 
 

I. INTRODUCTION 
OTIVATED by the statistical analysis of empirical    

market data, several models for price processes were 
considered in order to explain the presence of heavy tails of 
their short-time variations as deviations from the normal 
distribution  [5], [4]. The approach consists of agent-based 
models which exhibit a herd behavior. The many agents 
present in the market do not act independently, but 
coordinated, gathered in groups which share the same 
information. The variations of the price returns in one single 
trading step are then proportional to the size of the group 
which performs a buying or selling action. The model includes 
therefore a component which describes aggregation and 
fragmentation of the agent groups and another component, 
which is influenced by the trading actions, and describes the 
evolution of the price process.  

The approach presented in [5] considers N agents which are 
represented as vertices in a network. A vertex can be either 
isolated, or belonging to a connected component which 
describes a group of agents which act in a unitary way. The 
state jΦ  of the agent j  belongs to the set { }1,1,0 − , 

where 0 stands for inactive, 1−  for selling and 1 for buying. 
The dynamics of the network can be described as follows. 
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Initially all agents are isolated and inactive. At every (discrete) 
time-step an agent j  is selected at random. With probability 
a a trading action is performed, while with the complementary 
probability (aggregation parameter) a−1   an aggregation 
process takes place. 

In the trading step the state of the selected agent becomes 
active, taking with equal probabilities the values 1−  or 1+ , 
this behavior being followed instantaneously by all )( jn  
members of the group of agent j .  The returns as variation of 
the logarithm of the price process have in this case the form 

λ/)())(log())(log()( 11 jntPtPtR iii =−= ++ , where the 

parameter λ  describes the liquidity of the market. The trading 
step ends with the fragmentation of the whole group and with 
resetting all its agents into an isolated, inactive state. This 
happens since the jointly shared information has been used for 
the current trading action and any further activity of the 
involved agents has to start anew.  

During the aggregation step no trading action takes place, 
but instead another vertex k of the network is choosen 
uniformly and a link between the two vertices is added. This 
means that the two corresponding groups (if different) are 
merged together to form a group of size ).()( knjn +  In the 
mentioned reference, simulations with the numerical values 

44 105,3.0,1.0,01.0,10 ⋅=== λaN are performed in 
order to investigate the behavior of the distribution of the 
returns in dependence of the herding parameter .1/1 −= ah  

It was noticed that for values below a critical treshold *hh <  
the distributions obey a power-law with exponential cutoff, 
while for a more intense herding behavior *hh >  the profiles 
change qualitatively and exhibit heavy tails, which imply 
increased probabilities for market crashes.  

The paper [4] considers a nonlinear mean field version of 
the model above which is given by a system of coagulation 
equations with total fragmentation. Denote by )(kN  the 

number of all clusters of size k  and by NkNuk /)(= the 

corresponding density. Letting ∞→N we formally obtain 
the dynamics 
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In [4] the stationary solution { } 1≥kku of this system is 
computed explicitely and the returns are related to the 
distribution given by { } .1≥kku   The heavy-tailed property is 
verified by computing its variance and kurtosis, also in the 
case 0→a which means an extreme aggregation behavior of 
the system. 

The purpose of this paper is to construct an agent model 
with herd behavior based on continuous-time Markov jump 
processes (instead of discrete Markov chains as in [5] ) and to 
analyze the approximation properties of the mean field 
equations (1) for large N . Several properties of the model are 
observed by numerical simulations performed with up 
to 910=N  agents, among others also  the asymptotic 
convergence for large times towards the stationary solution 
computed in [4]. Both mentioned references consider in some 
sense the extreme aggregation behavior of the system, either 
by taking 2/1−= Na  (for 410=N ) as in [5], which is 
exactly the case which is pointed out to exhibit a different 
qualitative behavior, or by considering 0→a as in [4]. In 
this situation, where 0)( →= Naa as ∞→N  we 
investigate numerically if the behavior of the system 
(convergence to the equilibrium state or order of magnitude of 
the moments) is conserved within this limiting approach.  

The organization of this paper is as follows. In Section II. 
we introduce the model in continuous time based on Markov 
jump processes and compute some relevant quantities which 
also indicate the possible mean field approximation in the case 
of a very large number of agents. This infinite-dimensional 
system of differential equations is presented in Section III. 
within the more general context of coagulation-fragmentation 
equations. Inside this frame it poses difficult mathematical 
problems which at the moment are not solved: rigorous 
convergence of the stochastic model towards the mentioned 
equations, existence and uniqueness of solutions or 
convergence to equilibrium at large times. The results of the 
numerical simulations are presented in Section IV., while in 
Section V. we investigate the properties of the model in the 
situation of an extreme herding behavior. The Appendix 
contains basic facts about Markov jump processes in 
continuous time which are needed within this paper. 

The mathematical problems raised in this paper are not 
completely solved and are a challenge for future research. 
However, our theoretical considerations point out some 
important aspects and the results of the numerical simulations 
give plausible indications on the behavior of the system and on 
the formulation of its mathematical properties. 

II. THE AGENT MODEL AND THE ASSOCIATED PRICE PROCESS 

Consider a number of N agents which may be divided into 
several groups and the parameters ]1,0[∈a  and .0>σ  For 

k ∈  N denote by )(kN  the number of groups of size k  and 

by NkNuk /)(= the corresponding density. The state space 

of the Markov process consists of the pairs ),( Ru  with 

),...,,( 21 Nuuuu = with { }NiNiuk ,...,0|/ =∈  for all k , 

satisfying additionally ∑ =
k kku .1  The component R ∈R 

describes the log of the price process. The transitions of the 
Markov process and the corresponding rates are the following: 
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For Nji ,...,1, = where ie  is the i-th unit vector in RN and 

)5(.)1()1( 2
iijjiij uiajuiuaNK −−−= δ  

Relevant functionals of the ensemble of agents structured in 
groups are the moments of order r : 

).(:))(( tuktu kk
r

r ∑=Μ  Since the (finite) number of 

agents is always conserved, we have .1)(1 ≡Μ t  Taking into 
account this conservation property and assuming boundedness 
of )(2 tΜ  (independent on N ), since we are interested to 
approximate the dynamics (1), the probability of choosing one 
of the transition steps (2) and (3), i.e. a trading action is 
approaching a  for large .N  Conditioned by this, the 
probability that the chosen agent belongs to a group of size k  
is ./)( kkuNkkN =  The changes of the components of the 
Markov process model in this case the variation of the  

parameter R  by the increment Nk /σ , that is we take 

σλ /N= for the liquidity of the market, while the changes 
in the group structure illustrate the fragmentation of a group of 
size k  into isolated agents.  On the other hand, the probability 
of an aggregation step of type (4) is approximately .1 a−  
During this transition we choose first a group of size i  with 
probability proportional to ).(iiN  A second (different) group 

is then chosen with probability proportional to )( jjN  for 

ij ≠  and )1)(( −iNi  if ij = , and the two groups are then 
merged in order to obtain a group of size ji + . This 
reasoning explains the form of the rates in (5). The factors of 
N  in front of the transitions rates are necessary in order to 
obtain the correct time scaling. The waiting time t∆  between 
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two transition steps is exponentially distributed with parameter  
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Basics about the construction of continuous-time Markov 

jump processes, their characterization by infinitesimal 
generators and martingale calculus can be found in the 
Appendix. By formula (A.2) we obtain the dynamics 
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)6(),...,2( Nk =

with the martingales NitM i ,...,1),( =  and where 

krkk += '2 with { }.1,0∈kr  
We note that these stochastic equations contain as 

deterministic trend exactly the dynamics (1) which is perturbed 
by the martingale (trendless) terms )(tM i  and by some terms 

of order at most )/( NkO . In order that (1) yields a mean 
field approximation for the stochastic agent model as 

,∞→N  it is necessary that the random fluctuations (the 
martingales) vanish in the limit. Moreover, by requesting that 
equations (1) make sense, the term 

∑∞

=
=Μ

1
2

2 )())((
k k tuktu  should be finite for the solution 

of this system, which implies that the terms containing 
Nuk k /2 will also vanish from the limiting dynamics. The 

mean field model (1) can be  therefore interpreted (at this stage 
at least formally) as the limit of some Markov processes as 
previously described. 

Using (A.3), since Ntu ≤Μ ))((2 we compute (given the 

initial condition xu =)0( ): 

)/1()]([ 2 NOtME kx =  for Nk ,...,2=  
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One can notice that the only critical term is 

∫ Μ
t

x dssuE
0

3 ))](([ which should be bounded from above by 

a quantity of order )(No  in order to obtain the convergence 
property also for the martingale part of the first component. 

By (A.1) we compute 
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When discussing the properties of the stochastic system, an 

upper bound of at most )(No  for ))](([ 2
2 tuEx Μ  would 

suffice to imply vanishing fluctuations of the 1u -component of 
the Markov process. 

A proof of this fact in the general case is open. However, in 
the following we will show that this statement holds at least for 
sufficiently large values of .a  Using Jensen's inequality and 

the conservation property ∑ =
k kku 1we compute 
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By Gronwall’s inequality we obtain the exponential bounds: 
)9().)1(2exp())](([ 2 taCtuEx −≤Μ

Inserting back into (8) we obtain an estimate of the type 

∫ ≤Μ
t

x tCdssuE
0

3 )('))](([  independent on N , and 

therefore vanishing fluctuations of the 1u  – component. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 10, Volume 7, 2013 847



 

 

 Note that in general the convergence to 0  in mean square 
of the martingale terms is not a sufficient condition for 
convergence of the Markov jump process towards the solution 
of a deterministic equation of type (1). For example, in the 
pure aggregation case 0=a , the solution of (1) may exhibit 
gelation, that is a loss of mass at infinity. More precisely, we 
have ∑ <

k k tku 1)(  for geltt > , this phenomenon being 

related to the explosion of the second moment ))((2 tuΜ , 
see [13], [6], [7]. Moreover, in the latter reference is shown 
that after the gelation time the deterministic limit dynamics of 
the stochastic model is different from the formal one, taking 
also into account the loss of mass in the system. At the level of 
the Markov process, where the mass is always conserved, this 
is illustrated by the appearance in finite time of a cluster of 
size )(NO which in the limit ∞→N disappears from the 
system at infinity due to the possible loss of mass induced by 
the vague convergence of measures [7]. The exponential 
bounds (9) for the second moment obtained for 3/2≥a (i.e. 
a situation of relatively small aggregation) imply however 
mass conservation in the limit equations and may allow the use 
of the methodology of [6] or [7] in order to prove a 
convergence result of the Markov process towards the mean 
field equations (1) as .∞→N  

A direct approach for a rigourous convergence proof for 
arbitrary values of a  (especially for 3/2<a ) using for 
example techniques as in [6] or [7] as well as a direct proof of 
an estimate of the type )())](([ 2

2 NotuEx ≤Μ by the tools 
listed in the Appendix fails, since the use of straightforward 
upper bounds does not capture the details (the correct sign) of 
the fragmentation dynamics. One should also take into account 
the ergodicity properties of the embedded Markov chain, 
which are ensured exactly by the fact that any two possible 
states are connected via the total fragmentation step through 
the state of completely isolated agents. This implies also the 
convergence for large times towards an invariant distribution 
and therefore probabilistic bounds for the moments of arbitrary 
order, at least in configurations which are not very far from 
equilibrium.  However, a rigorous proof of these facts is still 
open. For theoretical details on ergodic properties of Markov 
processes see for example [10]. 

Concerning the price process ))(exp()0()( tRPtP = , we 
approximate its expectation and variance using Proposition 1 
in the Appendix, taking for f  the exponential of the R -
component of our process. We further assume that the Markov 
process is near equilibrium and that N  is very large, such that 
we can replace the moments which appear in the computations 
by the values corresponding to the stationary mean field model 
which are given explicitly in [4]. The numerical simulations 
from Section IV. suggest the validity of this approach. We 
obtain in this way for large N :  
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For 1=a , i.e. if all agents are isolated, we obtain the known 
values for the geometric Brownian motion. 

III. THE MEAN FIELD MODEL 
Equations (1) are a special case of coagulation equations with 
total fragmentation 
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for 1>k , where groups of sizes ji,  coalesce at rate 
),( jiK and groups of size k  fragment into k  single 

individuals at rate ak . In our model we assumed the 
multiplicative coalescent, that is CijjiK =),( . A similar 
model with constant kernel CjiK =),(  arises in the context 
of the paper [1], but also without a rigorous convergence proof 
of the stochastic processes towards the solution of the 
deterministic equations. 

The main difficulty lies in the presence of the total 
fragmentation term which, especially in the case of 
fragmentation of large clusters into isolated individuals, 
induces a strong irregularity in the dynamics of the problem 
which is hard to control mathematically. In may be hoped that 
the use of techniques for finite Markov chains can lead into the 
right direction. The existence of an invariant distribution for 
large times of the embedded finite Markov chain implies also 
convergence of the single components towards corresponding 
equilibrium values, since they are proportional to the 
probabilities of the total fragmentation events. This fact is also 
backed up by the numerical simulations from Section IV.. 

However, the considerations above apply in first instance 
only for the Markov process, not directly for the mean field 
model. For the latter, in the case CijjiK =),( , the 
equilibrium solution of (10) is computed in [4].  

The problem of the trend to equilibrium for general 
coagulation-fragmentation equations 
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for 1>k is solved only under additional assumptions on the 
fragmentation coefficients ),( jiF , which denote the rate of 
binary fragmentation of a cluster of size ji +  in two clusters 
of sizes i  and j . Existence, uniqueness and mass-
conservation results are given in [3]. A survey of these 
equations with further references can be found in [13]. Most 
papers on this topic deal with the binary fragmentation of 
clusters as described above. The paper [12] considers the case 
of multiple fragmentation, which includes also the situation 
relevant in this paper. However, existence and uniqueness 
results are shown only under the assumption 

)(),( jiCjiK +≤ which is the growth condition under 
which uniqueness is proved also in the pure coagulation case. 

The trend to equilibrium is strongly related to the detailed  
balance condition jiji QjifQQjiK += ),(),( for some 

positive constants iQ , which essentially describes the 
reversibility of the dynamics of coagulation of clusters of sizes 

ji, . That is, the flux of formation of ji + -clusters by 
coagulation of i -clusters and j -clusters equals the flux of 
formation these types of clusters by fragmentation from ji + -
clusters, see [2], [13]. Without this property the trend to 
equilibrium is proved only in special cases, under restrictive 
technical assumptions [8]. To the knowledge of the authors, 
the trend to equilibrium in the case of coagulation with 
multiple fragmentation, which includes also our model, has not 
been investigated rigorously up to now. 

IV. NUMERICAL SIMULATIONS 
In this section we discuss results of numerical simulations of 

the dynamics (2)-(4) for large N  using the techniques from 
[9] adapted to the present model. From the analysis performed 
in Section II. it turns out that certain estimates needed to prove 
convergence of the Markov processes towards the mean field 
model as ∞→N are problematic in the case of the 1u -

component, due to the presence of the second moment 2Μ in 
the corresponding equation. For this reason we will present in 
Figures 1 and 2 the results of numerical simulations for these 
functionals. The horizonatal dashed lines represent the 
equilibrium values of (1) )2/(11 au −= and of the second 

moment a/12 =Μ as computed in [4]. The computations are 

performed with 810=N agents for 
9.0,6.0,1.0,01.0=a for two different initial conditions: 

the monodisperse one, where 0)0(,1)0(1 == kuu for 

2≥k and a polydisperse one.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
In the case of 1u  (as well as for 2, ≥kuk which are not 

plotted here) one observes for all choices of the parameter a  a 
convergence towards the equilibrium values corresponding to 
the mean field model.  

A similar behavior is noted in the simulations of the second 
moment 2Μ  depicted in Figures 2 and 3. An estimate of the 

type ∫ ≤Μ
t

x NodssuE
0

2
2 )())](([ seems therefore to be 

likely to hold. In the case 01.0=a , with a strong 
aggregation behavior, the fluctuations of the second moment 
for 810=N  are still high, but the simulations performed with 

910=N  agents plotted in Figure 3 show that such a result 
may hold, provided a  is fixed and N  sufficiently large. (The 
case where 0→a in dependance of N  will be investigated in 
the next section). As problematic appear configurations far 
from equilibrium, where due to the accentuated aggregation 
behavior the second moment exhibits a strong increase. This 
growth leads to instable configurations, followed by a quick 

 
Figure 1: Evolution of u1(t) for different initial conditions and 
N=108 agents 

 
Figure 2: Evolution of M2(t) for different initial conditions and 
N=108 agents 
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and strog decay and large fluctuations. Exactly this regime 
turns out to provide difficulties for the theoretical estimates.  
 
 
 
 
 
 
 
 
 
 
 
 
 

We investigate next the behavior of the price process for  
different values of a starting always close to the equilibrium 
distribution of the agent system. This allows a better 
comparison of the influence of the aggregation parameter on 
the properties of the price process and eliminates possible 
influences due to the initial conditions. The results are plotted 
in Figure 4. The computation of the price process starts only at 

1=t , since at this time the agent system is near equilibrium, 
as shown in Figures 1, 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

For 1.0<a , due to the strong variations of the price 
process, it is more reasonable to plot the quantity 

))0(/)(log()( PtPtR = . We perform 10 independent 
simulations for every value of a , especially for values 

)10( 2−= Oa in order to trace possible qualitative differences 
in the behavior of the price process which may hint on a 
'catastrophic' behavior. Figure 5 shows that the statistics of the 
paths are basically the same for 810=N and 910=N  
agents, even for this small value of a . We may therefore 
assume that the properties of the price process are mainly 

influenced by a  and that a value of 810=N may be 
considered as sufficiently large in order to perform such an 
investigation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figure 6 we plot the quantity 

|])(|[maxˆ tRER Tta ≤= in dependance of a , which is the 
empirical mean of the maximum of the log of the price 
process. High values of this parameter will imply explosions or 
crash of the price process (as exponential function of )(tR ). 

We observe clearly that since 1.001.0 10RR ≈ , the values of 

1.0=a  and 01.0=a  belong to different regimes, the same 
fact being pointed out also in [5]. 

V. THE CASE OF EXTREME HERDING BEHAVIOR 
In this section we analyze the model in the case of an 

extreme aggregation behavior for 0)( →= Naa as 
∞→N . As pointed out in Section II., in order that the 

fluctuations of the 1u -component of the stochastic process 
vanish in the limit ∞→N , it is necessary to have the 

convergence property ∫ →Μ
t

x dssuE
N
a

0
3 .0))](([  

 
Figure 3: Evolution of M2(t) for a=0.01 and N=108 agents 

 
Figure 4: Evolution of P(t) for N=108 agents and σ=0.2 near 
equilibrium 

 
Figure 5: 10 realizations of R(t) for a=0.03, σ=0.2 

 
Figure 6: Ra=Ê[maxt≤T |R(t)|] 
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Additionally to the problem of convergence to some limit, a 
further question is if one can pass to the limit 0→a in the 
functionals of the equilibrium solution of (1) computed in [4] 
for fixed a : ),)2(2/()1(),2/(1 3

21 aauau −−=−=  
32

32 /)22(,/1 aaaa +−=Μ=Μ  (for quantities 
becoming infinite we look at their order of magnitude). 

We analyze the model numerically for α−= Na near the 
equilibrium. In Figure 7 we note a qualitatively different 
behavior for 5.0=α  (left) and 6.0=α  (right). For 

5.0=α  we observe convergence of the components 

ku towards the equilibrium values ku of (1), while for 

6.0=α  these seem to be only expected values. Moreover, 
for both values of α it turns out that the formula for 3Μ  

computed for a  independent on N does not give the correct 
order of magnitude in our situation. For 5.0−= Na we notice 
that Na /3Μ  (the formal limit being 2), while for 

6.0−= Na we obtain a stochastic process with values of 
magnitude )1(O , the formal limit being ∞ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Further experiments with different values of α show that 

5.0=α  is a treshold value. We compare therefore the results 
of 10 independent simulations for 4.0=α and 6.0=α near 
equilibrium for different values of N . We note that for 

4.0=α we have convergence towards 1u and 2u and that 

0/3 →Μ Na , while for  both values of α  we note that at 

equilibrium we have only 1))](([ˆ
2 ≈Μ tuEa , but not a 

convergence of ))((2 tuaΜ  towards 1. Moreover, for 
6.0=α  we note that the equilibrium values are also only 

expected values and that the limit process may not be 
deterministic.  
 
Figure 8 illustrates these remarks. For 4.0=α  and 6.0=α  
we compare the results of 10 independent simulations on the 
following quantities: 221 ,, Μauu and Na /3Μ .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More precisely, in the four graphics we compare in the same 
coordinate system:  
 

- the standard deviation of the stochastic processes from 
the equilibrium value 1u for different values of α and 
N .  

 
- 10 realization paths of 2u  for different α 's and 

910=N . 
 

- the standard deviation of 2Μa from the mean 1 for 
different values of α  and N .  

 

- NEa /][ˆ
3Μ for different values of α  and N  

(empirical mean based on 10 simulations).  
 
The conclusions are respectively: 
 

 
Figure 7: One realization of aM3/N  (top) and u1 (bottom) for 
N=109 agents and α=N-0.5 (left) and α=N-0.6 (right) 

 
Figure 8: Different behavior for α=0.4 and α=0.6 
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- for 4.0=α  we notice convergence towards 1u while 
for 6.0=α  this value is only an expectation and the 
fluctuations do not vanish.  

 
- the same remark as above can be made also for 2u  

(see also Figure 9 for 6.0=α  and 8.0=α . 
 

- for all values of α and N  we note that the 
fluctuations of 2Μa  do not vanish and are of about 
the same order of magnitude. 

 

- for 4.0=α  we have that 0/][ˆ
3 →Μ NEa and the 

fluctuations decrease with increasing N . For 

6.0=α the quantity NEa /][ˆ
3Μ is of magnitude 

)1(O and the fluctuations for 810=N  and 
910=N  are practically the same. Further 

simulations with 8.0=α  shown in Figure 9 sustain 

the hypothesis that )1(/][ˆ
3 ONEa =Μ  for 

5.0>α  and )1(o  for 5.0≤α . 
 

 
 
 
 
 
 
 
 
 
 
 
 

In order to construct a price process we assume a more 
general scaling of the dynamics than in (2), (3), namely the 
transitions and the corresponding rates are given by: 

( ) 





 ++−→ )(,1, 1 NkRe

N
ke

N
uRu k ση       at rate  

)12(
2
1

kNaku  

( ) 





 ++−→ )(,1, 1 NkRe

N
ke

N
uRu k ση       at rate 

)13(
2
1

kNaku  

 
while (4) remains unchanged. The liquidity of the market ist 
therefore taken as 1))(( −= Nσηλ . By the tools in the 
Appendix we compute 

∫ Μ⋅=
t

xx dssuE
N
aNNtRVar

0
3

2 )14(.))](([))(())(( ησ

If the convergence ∫ →Μ
t

x dssuE
N
a

0
3 0))](([  holds, in 

order to obtain a nontrivial process )(tR with finite variance, 
one has therefore to choose the scaling )(Nη adapted to the 
convergence speed of the mentioned term. For 

5.0−= Na numerical simulations indicate a slow, logarithmic 
order if convergence. Otherwise, if we have 

∫ =Μ
t

x OdssuE
N
a

0
3 )1())](([  as in the numerical 

simulations for α−= Na with 5.0>α , we have to choose 
1)( −= NNη . 

Summarizing the results of our numerical simulations, we 
notice that if )(Naa =  goes to 0  with a convergence order 

of at most )( 2/1−NO , the stochastic processes still converge 
to constant equilibrium values, while if the convergence is 
faster than )( 2/1−NO , we do not have a deterministic limit. 

In all analyzed cases with a  of the form α−= Na , the 
quantity 2Μa has the expected value 1, but the fluctuations 
around this mean do not vanish. An interesting mathematical 
problem is therefore to formulate and to prove a convergence 
result to some limiting dynamics if ∞→N  and 

0)( →= Naa  slower than 2/1−N . The numerical 

simulations indicate deterministic values for ku but a 

stochastic behavior for 2Μa , which is a term appearing in the 
first equation of (1). 

VI. CONCLUSIONS 
Our theoretical and numerical analysis of the model for herd 
behavior of agents in financial markets confirms on the one 
hand the known properties already reported in the existing 
literature. Moreover, we additionally point out some (for the 
moment) unsolved mathematical problems, such as the 
rigorous investigation of the approximation properties of the 
stochastic processes by the mean-field model for a large 
number of agents, convergence towards equilibrium in the 
mean field equations, the behavior of the model and the 
scaling of the price dynamics in the case of an extreme herding 
behavior 0)( →= Naa . Based on numerical simulations 
we are able to give some hints on the validity of these 
conjectures, which turn out to be challenging research topics 
for the future. 
 
 
 

 
Figure 9: u2 and aM3/N for a=N-0.5 and N=109 
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APPENDIX 
Basics of Markov Jump Processes in Continuous Time 
 
For our purpose it is sufficient to assume here a discrete state 
space ⊆E Rn.  Let 0),( ≥ttX be a continous-time Markov 
jump process with  state space E  and let ', xx  be two 

possible states. Let )(' tq xx→ be the corresponding transition 

kernel, that is the probability of being in state 'x  after t  time 
units, conditioned by the current state x . The infinitesimal 
transition rate 'xxR →  is then defined by 

t
tqR xx

txx
)(lim: '

0'
→

→→ = . 

The infinitesimal generator Λ of the Markov jump process 
0),( ≥ttX  is an operator acting on the bounded continuous 

test functions )(ECb∈ϕ  by 

∑
→

→−=Λ
'

' ,))()'(()(
xx

xxRxxx ϕϕϕ  

where the sum is taken over all possible transitions 'xx → . 
 
Useful in the calculus with Markov jump processes turns out to 
be their martingale characterization given by the Dynkin-
formula: 

)1.()())(())0(())((
0

AtMdssXXtX
t

∫ +Λ+= ϕϕϕϕ  

Where )(tMϕ  is a martingale with respect to the filtration 

associated to the Markov process )(tX . 
 
As a special case we obtain the following: define →EF : Rn 
by ∑ → →−=

' ')'()(
xx xxRxxxF  and assume that 

∞<−∑ → →' '|'|
xx xxRxx  holds. We then have that for 

Ni ,...,1=  the processes 

∫−−=
t

iiii AdssXFXtXtM
0

)2.())(()0()()(

are martingales and that the pair 0))(),(( ≥ttMtX  is a 
Markov process. The bounded smooth functions depending 
only on the second component: 1)(),( bCmfmzf ∈≡ (Rn) 

are in the domain of its infinitesimal generator Α and we have: 

∑
→

−−+−=Α
'

)()'((),(
xx

mfmxxfmxf  

.)(')'( 'xxRzfxx →−−  
We further have: 
 
Proposition 1. 
If 1Cf ∈ (Rn) is nonnegative with absolutely continuous first 
derivative and positively (semi-)definite second derivative, 

then the conditional expectation ))](([ tMfEx  given 

xX =)0(  can be computed by 

∫ Α+=
t

xx dssMsXfEftMfE
0

))](),(([)0()](([  

□ 
Of interest in our case is the choice 2)( immf = . We have in 
this case  

∫ ∑
→

→−=
t

xx
xxiixix AdsRxxEtME

0 '
'

2'2 )3.(.])([)]([

For further details on this subject see [11]. 
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