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Abstract— This paper is focused on an application of a self – 

tuning predictive controller for real – time control of a coupled drives 

apparatus laboratory model, which models a multivariable non-linear 

system. The controller integrates an on – line identification of an 

ARX model of a controlled system and a predictive control synthesis 

on the basis of the identified parameters. The model parameters are 

recursively estimated using the recursive least squares method with 

the directional forgetting. The control algorithm is based on the 

Generalised Predictive Control (GPC) method. The optimization was 

realized by minimization of a quadratic objective function. The 

predictive controllers design is based on a multivariable CARIMA 

model. Results of real-time experiments are also included.  

 

Keywords— Predictive control, adaptive control, multivariable 

systems, recursive identification, nonlinear systems.  

I. INTRODUCTION 

YPICAL technological processes require the 

simultaneous control of several variables related to one 

system. Each input may influence all system outputs. The 

coupled drives apparatus (Fig. 1) is a typical multivariable 

nonlinear system with significant cross – coupling. The design 

of a controller for such a system must be quite sophisticated if 

the system is to be controlled adequately. Simple decentralized 

PI or PID controllers largely do not yield satisfactory results. 

There are many different advanced methods of controlling 

multi-input–multi-output (MIMO) systems. The problem of 

selecting an appropriate control technique often arises. 

Perhaps the most popular way of controlling MIMO processes 

is by designing decoupling compensators to suppress the 

interactions (e.g. [1]) and the designing multiple SISO 

controllers (e.g. [2]). This requires determining how to pair the 

controlled and manipulated variables and that the plant has the 

same number of inputs and outputs. One of the most effective 

approaches to control of multivariable systems is model 

predictive control (MPC) [3], [4], [5], [6], [7], [8], [9] . An 

advantage of model predictive control is that multivariable 

systems can be handled in a straightforward manner. When 

using most of other approaches, the control actions are taken 
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based on past errors. MPC uses also future values of the 

reference signals.   

The aim of this contribution is implementation of the adaptive 

predictive controller handling constraints of the manipulated 

variable for control of the coupled drives apparatus laboratory 

model. The objective laboratory model is a nonlinear system 

with variable parameters. Self-tuning controllers [10], [11] are 

a possible approach to the control of this kind of system. The 

controller is then realized as self – tuning controller with 

recursive identification of the model of the process. The 

recursive least squares method with the directional forgetting 

is used in the identification part. 

Dynamic behaviour of the system is described in the 

neighbourhood of a steady state by a discrete linear model in 

the form of matrix fraction, which represents a MIMO transfer 

function model. It is an input – output model (“black box 

model”) which does not take into consideration an internal 

structure of the system. It is a model of the system behaviour 

and its parameters do not have any particular physical 

denotation. The model is used to generate system predictions. 

The simplest possible model which gives accurate enough 

predictions is used. 

The Generalised Predictive Control (GPC) method [12], [13] 

was applied. In the optimization part of the algorithm a 

quadratic cost function was used. A recursive algorithm which 

enables computation of predictions for arbitrary horizons was 

designed.  

II. DESCRIPTION OF THE APPARATUS  

The coupled-drives experimental laboratory model was 

designed to demonstrate simultaneous control of the tension 

and speed of material in a continuous process. It is based on 

experience with industrial control applications. Industrial 

coupled-drives systems are basic components of production 

lines, where material is manufactured in the form of a 

continuous strip. The material passes workstations, where its 

speed and tension are measured. The material speed and 

tension must be controlled within the defined limits. Practical 

examples are in the paper-making industry, strip metal and 

wire manufacturing. Electrical drives can be coupled together 

in many ways. The coupled-drives laboratory model represents 

the standard coupled-drives system, shown in Fig. 1  
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Fig. 1 Principles of the coupled-drives apparatus  

 

The apparatus consists of three pulleys mounted in a vertical 

panel to form a triangle. The two base pulleys are directly 

mounted on the shafts of two nominally identical drive motors 

(motor 1 and motor 2) and the apparatus is controlled by 

manipulating the drive torques of these motors. The third 

pulley, the jockey, rotates freely and is mounted on a pivoted 

arm. The drive motors are coupled by a continuous flexible 

belt, which also passes over the pivoted arm. The jockey 

pulley assembly, which simulates a material workstation, is 

instrumented to allow measurement of the belt speed and 

tension. The jockey pulley’s angular velocity and the belt 

tension are the system outputs. The belt tension is measured 

indirectly by monitoring the angular deflection of the pivoted 

tension arm to which the jockey pulley is attached. The 

deflection of the arm is then a measure of the tension in the 

belt. 

The continuous flexible belt couples the actions of motor 1 and 

motor 2. If a drive voltage to motor 1’s drive input is applied, 

then the speed and the tension in the belt will be changed and 

motor 2 will be rotated by the drag from motor 1. A similar 

result is achieved if a drive voltage is applied to motor 2’s 

drive input. Both motors change both outputs. This is the 

coupling. The system inputs and outputs interact and the whole 

system is a multivariable system. The manipulated variables 

are the inputs to the servomotors and the controlled variables 

are the belt tension and the angular velocity of the jockey 

pulley. The apparatus can be considered as a two-input–two-

output (TITO) system. 

The range of the input voltage of the motors is 0–10 V, the 

range of the angle of the jockey arm is –10° to 10°. 

The static characteristics of the apparatus were measured 

experimentally to determine the system linearity ranges. All 

the characteristics show non-linear behaviour: the belt tension 

characteristic is non-linear over the whole range because of 

belt oscillations. The static characteristics are shown in Fig. 2. 

The variable y1 denotes the angular velocity and the variable y2 

the tension of the belt. The variables u1 and u2 are the voltage 

inputs of the left (motor 1) and right (motor 2) drive motors. 

The non-linear behaviour is caused by slipping and oscillation 

of the belt. From Fig. 2, it is obvious that as the difference in 

motor speeds increases, the slipping and the oscillations 

become more apparent. 

 

 
Fig. 2 Static characteristics of the coupled-drives apparatus 

 

The step responses of the system were measured. The 

system was stabilized with 50% of the maximum drive 

voltages applied to both electric motors. Then, steps of 10% of 

the maximum drive voltage were applied to each motor 

separately. The responses are shown in Fig. 3 (a). The graphs 

in the first column are step responses of the angular velocity 

(y1) and the belt tension (y2) to the step applied to motor 1. 

Analogously, the second column shows responses to the step 

applied to motor 2. The shapes of the step responses are 

indeterminate. They were not then a ruling factor for assessing 

the model order, which is elaborated in later sections. 

Further measurements were performed to examine the 

degree of linearity of the dynamic characteristics (e.g., finding 

whether the time constants change with the input magnitude). 

An example of the results is shown in Fig. 3 (b). First, the 

system was stabilized at 20% of the maximum drive voltages 

of both servomotors and then steps of 20, 40 and 60% of the 

drive voltage were applied to motor 1. It was evident that the 

dominant time constant changed with the input magnitude in 

the different operational ranges. If 60% of the drive voltage 

was applied, the time constant was different from those for the 

two other step responses. Figure 3 (b) also proves a non-linear 

relation between the input and output. 
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Fig. 3 Step responses of the coupled-drives apparatus 

 

The measurements of the characteristics proved that the 

coupled-drives apparatus is a non-linear system with variable 

parameters. Self-tuning controllers are a possible approach to 

the control of this kind of system. The non-linear dynamics are 

described by a linear model in the neighbourhood of a steady 

state. 

A suitable model of the real object for control with self-tuning 

controllers is an input–output model. This is a standard 

approach for self-tuning controllers. Instead of the often 

tedious construction of a model from first principles and then 

calculating its parameters from plant dimensions and physical 

constants, a general model is chosen and its parameters are 

identified from data. The advantages of this kind of model are 

its simplicity and accuracy in the operational range in which 

the input–output dependence is measured. 

III. MATHEMATICAL MODEL OF THE CONTROLLED PROCESS 

A simplified analytical model of the coupled-drives 

apparatus, based on physics and the equipment construction 

where all the parameters have physical interpretations, is 

presented in [14]. The main disadvantage of this model is its 

high complexity. Some simplifications were also required 

during its derivation and some assumptions with limited 

accuracy were used. The laboratory model is a nonlinear 

system, as it was mentioned above. Self-tuning controllers are 

a possible approach to the control of this kind of system. The 

nonlinear dynamics are described by a linear model in the 

neighbourhood of a steady state. A suitable model of the real 

object for control with self-tuning controllers is an input–

output model. It is a model of the system behaviour and its 

parameters do not necessarily have physical interpretations. Of 

course, not all properties of the plant can be extracted from the 

data in this way, but when the dominant properties are 

modelled, the result is sufficient for controller design. The 

advantages of this kind of model are its simplicity and 

accuracy in the operational range in which the input–output 

dependence is measured.  

It was necessary to determine a structure of the model in 

advance. The aim here was to find experimentally the simplest 

possible structure of the model. The parameters are identified 

during the process of recursive identification from the 

measured input and output signals.  

A general transfer matrix of a two-input–two-output system 

with significant cross-coupling between the control loops is 

expressed as  

 
   
   








zGzG

zGzG
z

2221

1211
G                                                         (1)       

     zzz UGY                                                                      (2) 

where  zU  and  zY  are vectors of the manipulated 

variables (inputs to the servomotors) and the controlled 

variables (tension and speed of the belt), respectively. 

      Tzyzyz 21 ,Y       Tzuzuz 21 ,U                              (3) 

It may be assumed that the transfer matrix can be 

transcribed to the following form of the matrix fraction: 

         11

1

1

1

111   zzzzz ABBAG                              (4) 

where the polynomial matrices    1

22

1

22 ,   zRzR BA  

represent the left coprime factorization of matrix  zG  and the 

matrices    1

221

1

221 ,   zRzR BA  represent the right 

coprime factorization of  zG . The model can be also written 

in the form 

       zzzz UBYA
11                                                           (5) 

The control algorithm was first designed for a model with 

polynomials of the first order. This model proved to be 

unsuitable for the coupled-drives process description and 

satisfactory control results were not achieved. Consequently, 

the algorithm was designed for a model with second-order 

polynomials. This model proved to be effective and 

sufficiently complex to describe the coupled-drives process, 

while enabling quite simple computation of the controller. The 

controller described below is based on this model. The model 
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has 16 parameters: 
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A widely used model in general model predictive control is 

the CARIMA model which we can obtain from the nominal 

model (5) by adding a disturbance model   

           zzzzzz SEΔCUBYA
1111                             (8) 

where  1zsE  is a non-measurable random disturbance that 

is assumed to have zero mean value and constant covariance 

and the inverted operator delta is an integrator. The matrix 

 1zC  will be further considered as 2x2 identity matrix. 

Application of this model enables to achieve an integral 

action. 

IV. DESIGN OF THE CONTROLLER 

The basic idea of MPC is to use a model of a controlled 

process to predict N future outputs of the process. A trajectory 

of future manipulated variables is given by solving an 

optimization problem incorporating a suitable cost function 

and constraints. Only the first element of the obtained control 

sequence is applied. The whole procedure is repeated in 

following sampling period. This principle is known as the 

receding horizon strategy. The computation of a control law of 

MPC is based on minimization of the following criterion 

     

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u
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j

jkjkkJ
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1

2
ue                                     (9) 

where e(k+j) is a vector of predicted control errors, Δu(k+j) 

is a vector of future increments of manipulated variables (for 

the system with two inputs and two outputs each vector has 

two elements), N is length of the prediction horizon, Nu is 

length of the control horizon and λ is a weighting factor of 

control increments.  

A predictor in a vector form is given by  

0
ˆ yuGy                                                                        (10) 

Where    is a vector of system predictions along the horizon 

of the length N, Δu is a vector of control increments, y0 is the 

free response vector. G is a matrix of the dynamics given as 
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where sub-matrices Gi have dimension 2x2 and contain 

values of the step sequence.  

The first task was computation of predictions for arbitrary 

prediction and control horizons. Dynamics of the coupled 

drives process requires horizons of length where it is not 

possible to compute predictions in the simple straightforward 

way. Recursive expressions for computation of the free 

response and the matrix G in each sampling period had to be 

derived. There are several different ways of deriving the 

prediction equations for matrix fraction models. Some papers 

make use of Diophantine equations to form the prediction 

equations (e.g. [15]). In [16] matrix methods are used to 

compute predictions. We derived a method for recursive 

computation of both the free response and the matrix of the 

dynamics by direct use of the CARIMA model. Its difference 

equations without the unknown term can be expressed as: 
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These equations can be written in a matrix form 
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It was necessary to compute three step ahead predictions in 

a straightforward way by substituting of previous predictions 

to later predictions. The model order defines that computation 

of one step ahead prediction is based on three past values of 

the system output. It is possible to divide computation of the 

predictions to recursion of the free response and recursion of 

the matrix of the dynamics. The free response vector can be 

expressed as: 
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All the elements P(i,j) i=1…3, j=1…4 have to be directly 

computed to initialize the recursion. The next row of the 

matrix P is repeatedly computed on the basis of the three 

previous predictions until the prediction horizon is achieved. 

As an illustrative example it is given the computation of the 

next element of the first column: 
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                                                                                         (20) 

The recursion of the matrix G is similar. The next element 

of the first column is repeatedly computed and the remaining 

columns are shifted. This procedure is performed repeatedly 

until the prediction horizon is achieved. If the control horizon 

is lower than the prediction horizon a number of columns in 

the matrix is reduced. The technique is apparent from the 

equations (20) and (21). 
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The criterion (9) can be written in a general vector form  

    uuwywy  TT
J ˆˆ                                            (22) 

where w is a vector of the reference trajectory.  The 

criterion can be modified using the expression (10) to 

uHuug  TTJ 2                                                         (23) 

where the gradient g and the Hess matrix H are defined by 

following expressions 

 wyGg  0

TT
                                                                 (24) 

GGH
T                                                                             (25) 

In case of the coupled drives apparatus, the actuators have a 

limited range of action. The voltages applied to the motors can 

vary between fixed limits. MPC can consider constrained input 

and output signals in the process of the controller design [17]. 

This is one of the major advantages of predictive control. 

General formulation of predictive control with constraints is 

then as follows  

uHuug
u




TT2min                                                        (26) 

owing to 

buA                                                                                (27) 

The inequality (27) expresses the constraints in a compact 

form. In our case of the constrained input signals particular 

matrices can be expressed as 
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Forms of the matrices for an arbitrary control horizon are as 

follows 
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The optimization problem is then solved numerically by 

quadratic programming in each sampling period. The first 

element of the resulting vector is then applied as the increment 

of the manipulated variable.  

V. SYSTEM IDENTIFICATION 

The control algorithm was applied as a self-tuning controller 

(as discussed in sections 1 and 3). Self-tuning control is based 
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on the online identification of a model of a controlled process. 

Each self – tuning controller consists of an on – line 

identification part and a control part.  

Various discrete linear models are used to describe dynamic 

behaviour of controlled systems; see for example the overview 

in [18]. The most widely applied linear dynamic model is the 

ARX model. Usually the ARX model is tested first and more 

complex model structures are only examined if it does not 

perform satisfactorily. However, the ARX model matches the 

structure of many real processes. The parameters can be easily 

estimated by a linear least-squares technique. It is suitable also 

for the proposed predictive controller, because the parameters 

of the incremental CARIMA model are equal to the parameters 

of the ARX model in our case when the matrix   is the identity 

matrix.  

The ARX model describing the TITO process is defined as  

       
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Θ

Θ
                                                 (30) 

where es1(k), es2(k) are non-measurable disturbances. 

Parameter vectors are specified as follows: 

   432143211 b,b,b,b,a,a,a,ak
T

Θ
                                      (31) 

   876587652 b,b,b,b,a,a,a,ak
T

Θ
 

The data vector is 
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The aim of the identification is a recursive estimation of 

unknown model parameters Θ  on the basis of the inputs and 

the outputs considering the time moment k tk, {y(i), u(i), i = k, 

k - 1, k - 2, ..., k0} (where k0  is an initial time of the 

identification). We are looking for a vector Θ̂  minimizing the 

criterion 
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where 
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When using the least squares method, the influence of all 

measured input and output samples to the parameter estimates 

is the same. This is inconvenient for the identification of 

nonlinear systems, where changes in the identified parameters 

are expected. Tracking of changes of the parameters can be 

achieved using exponential forgetting. This technique ensues 

from the assumption that new data describe the dynamics of an 

object better than older data, which are multiplied by smaller 

weighting coefficients. However, if the identified plant is 

insufficiently activated, the input and output signals are steady 

(this situation is typical for closed control systems), and the 

exponential forgetting factor can cause numerical instability of 

the identification algorithm. A possible solution of this 

problem is the application of adaptive directional forgetting 

[19]. This technique changes the forgetting factor according to 

the level of information in the data. In view of the parameter 

changes in the nonlinear coupled-drives apparatus and the 

expected insufficient activation of the controlled system, the 

recursive least squares method with adaptive directional 

forgetting was applied. Then we minimize a modified criterion 
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k ieJ

0

22Θ                                                          (35) 

where 10 2 is the exponential forgetting factor. 

The vector of parameters is updated according to the 

following recursive expression 
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Where 

       1111  kkkk T  C                                        (37) 

is an auxiliary scalar and 

       11ˆ1ˆ  kkkyke T Θ                                         (38) 

is a prediction error. If   01 k , then the square 

covariance matrix C is updated according to following 

expression 
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Where 
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If   01 k then 

   1 kk CC                                                                     (41) 

The directional forgetting factor is computed in each 

sampling period according to the expression 
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are auxiliary variables. 
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VI. EXPERIMENTAL EXAMPLES 

The model was connected with a PC equipped with a 

control and measurement PC card. Matlab and Real Time 

Toolbox were used to control the system. 

An approximate sampling period was found on the basis of 

measured step responses so that 10 samples would cover the 

important part of the step response. The sampling period was 

tuned experimentally and the best value was T0 = 0.25 s. 

The tuning parameters that are lengths of the prediction and 

control horizons and the weighting coefficient λ were also 

tuned experimentally. There is a lack of clear theory relating to 

the closed loop behavior to design parameters. The length of 

the prediction horizon, which should cover the important part 

of the step response, was set to N=15. The length of the 

control horizon was also set to Nu=15. The coefficient λ was 

taken as equal to 2. 

Figures 4 and 5 show time responses of the control when the 

initial parameter estimates were chosen without any a priori 

information. The reference trajectories contain frequent step 

changes in the beginning of experiments to activate input and 

output signals and improve the identification. The manipulated 

variables u1 and u2 are the inputs to the drive motors 1 and 2. 

The output y1 is the angular velocity and the output y2 is the 

tension of the belt.  

In subsequent experiments, the initial parameter estimates 

were set to the values obtained at the end of the previous 

experiment. The initial conditions of the recursive 

identification were also modified by reducing the diagonal 

elements of the square covariance matrix that represent 

variances of the identified parameters. The reference 

trajectories were chosen to have the same values at the 

beginning as they had at the end of the previous experiments. 

This is because the system is nonlinear and the identified 

parameters were valid only for particular steady states. Time 

responses of these experiments are shown in Figs 6 and 7.  

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

t(s)

y
1
,w

1

0 20 40 60 80 100 120 140 160 180 200
-0.1

0

0.1

0.2

0.3

t(s)

y
2
,w

2

 
Fig. 4 Control of the coupled drives apparatus 
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Fig. 5 Control of the coupled drives apparatus– manipulated 

variable 
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Fig. 6 Control of the coupled drives apparatus-experiment with 

steady parameters 
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Fig. 7 Control of the coupled drives apparatus-experiment with 

steady parameters-manipulated variable 
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VII. CONCLUSION 

Model predictive self-tuning controller was proposed and 

verified by control of nonlinear time varying system. The 

adaptive control strategy was applied especially due to 

nonlinear behaviour of the controlled system. 

It is necessary to recognize that self-tuning controllers do 

not work satisfactorily in the initial adaptation phase if the 

initial parameter estimates are chosen without a priori 

information. However, the most important property for 

practical use of self-tuning controllers is their performance 

after the adaptation phase. The performance of the controller 

in the adaptation phase was significantly improved by 

choosing the initial parameter estimates with a priori 

information. 

General principles were elaborated on a specific system 

with two inputs and two outputs that is often applicable in 

industrial practice. Control law based on specific model was 

derived in the form of self-contained expressions that is 

especially useful for practical applications of control on 

common industrial devices. An advantage of the proposed 

strategy lies in its simplicity and applicability. The control 

tests executed on the laboratory model provided very 

satisfactory results, even though its nonlinear dynamics were 

described by a linear model.  
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