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Abstract— Three-dimensional heat transfer characteristics and 
pressure drop of water flow in a set of rectangular microchannels are 
numerically investigated using Fluent and compared with those of 
experimental results. The full Navier-Stoke’s approach is employed 
for this kind of narrow channels for the water flow assessments. The 
complete form of the energy equation accompanying the dissipation 
terms is also linked to the momentum equations. The calculated 
Nusselt numbers in different conditions show a good agreement with 
experimental results. Afterwards, two metamodels based on the 
evolved group method of data handling (GMDH) type neural 
networks are then obtained for modelling of both pressure drop (DP) 
and Nusselt number (Nu) with respect to design variables such as 
geometrical parameters of microchannels, the amount of heat flux 
and the Reynolds number. It is depicted that the evolved GMDH type 
neural network in terms of simple polynomial equations successfully 
model and predict the outputs of the testing data. 
 

I. INTRODUCTION 
The increasing incorporation of electronic systems requires 

innovative, small scale and highly effective cooling techniques 
for the removal of a large amount of heat from a small area in 
order to avoid its temperature from rising significantly and 
operate electronic devise at an optimum temperature. Many 
techniques have been developed for controlling and removing 
the heat generated in such a case. Among them, the 
microchannel heat sink is of special interest. Microchannel 
heat sink is a structure with many micro scale channels of 
large aspect ratio built on the back of the microchip, and a 
liquid is forced through these passages to carry out the energy. 
The microchannel heat sink at first proposed by Tuckermann 
and Pease [1], they demonstrated that the microchannel heat 
sinks, consisting of micro rectangular flow passages, have a 
higher heat transfer coefficient in laminar flow regime than 
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that in turbulent flow through conventionally-sized devices. 
Since pioneering work of Tuckerman and Pease [1], many 
experimental, analytical and numerical investigations are 
reported [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12]. Peng and Wang 
[2] and Peng and Peterson [3] systematically examined the 
forced flow and heat transfer characteristics of water and 
binary mixtures flowing through rectangular microchannels. It 
was observed that laminar flow transition occurred at 
Reynolds number between 200 and 700. Those results showed 
that the flow velocity and heat transfer rate in the 
microchannels largely depend on both their geometry and the 
coolant type and properties [4]. Therefore, they may differ 
from those that are typical for macrochannels. The flow of 
water and various biological fluids in straight silicon 
microchannels with glass walls was studied by Wilding et al. 
[5]. It was shown that there is an about 50% increase in the 
Darcy friction coefficient as compared to the theoretical 
prediction. Similar results were obtained by Jiang et al. [6], 
who studied the flow of water through microchannels with 
rectangular and trapezoidal cross sections. The flow and heat 
transfer characteristics in microchannels could not be 
adequately predicted by the theories and correlations 
developed for macroscale channels. However, experimental 
results illustrate that continuity assumptions can be used, 
although there are different insights about the Navier–Stokes 
equations. Philips [7] indicated that thermal resistance smaller 
than 0.1 °C/(W/cm2) can be achieved in microscale channels. 
Federov and Viskanta [8] reported that the thermal resistance 
decreases with Reynolds number and reaches an asymptote at 
high Reynolds numbers. Accurate prediction of heat transfer 
coefficients also requires that thermal boundary conditions be 
correctly simulated [8, 9]. The design and optimization of such 
microchannel passages in a direct heat sink is important from 
an operational standpoint. Pressure drop considerations will 
determine the required pumping power. The microchannels 
are optimized using the flow channel dimensions as design 
variables in a range that can be fabricated. Knight et al. [13, 
14] presented an optimization scheme that included both 
laminar and turbulent flow. Another excellent report in the 
field of microchannel optimization can be seen in [15] 

However, optimization of such microchannels is, indeed, a 
multi-objective optimization problem rather than a single 
objective optimization problem that has been considered so far 
in the literature. Both the pressure drop and the Nusselt 
number of the flow and heat transfer in microchannels are 
important objective functions to be optimized simultaneously 
in such a real world complex multi-objective optimization 
problem. These objective functions are either obtained from 
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experiments or computed using very timely and high-cost 
computer fluid dynamic (CFD) approaches, which cannot be 
used in an iterative optimization task unless a simple but 
effective metamodel is constructed over the response surface 
from the numerical or experimental data. System identification 
techniques are applied in many fields in order to model and 
predict the behaviors of unknown and/or very complex 
systems based on given input–output data [16]. In this way, 
soft computing methods [17], which concern computation in 
an imprecise environment, have gained significant attention. 
The main components of soft computing, namely, fuzzy logic, 
neural network and evolutionary algorithms, have shown great 
ability in solving complex non-linear system identification and 
control problems. Many research efforts have been expended 
to use evolutionary methods as effective tools for system 
identification [18–23]. Among these methodologies, the group 
method of data handling (GMDH) algorithm is a self-
organizing approach by which gradually more complicated 
models are generated based on the evaluation of their 
performances on a set of multi-input, single output data pairs 
(Xi,yi) (i = 1,2,. . . ,M). The GMDH was first developed by 
Ivakhnenko [24] as a multivariate analysis method for 
complex systems modelling and identification. In this way, the 
GMDH was used to circumvent the difficulty of having a 
priori knowledge of the mathematical model of the process 
being considered. Therefore, the GMDH can be used to model 
complex systems without having specific knowledge of the 
systems. The main idea of the GMDH is to build an analytical 
function in a feed forward network based on a quadratic node 
transfer function [25] whose coefficients are obtained using 
the regression technique. 

In this paper, the compatibility and effectiveness of the 
Navier–Stokes and energy correlations in microscale channels 
is numerically verified using finite volume based on the 
experimental results of Tuckermann and Pease [1]. Next, 
genetically optimized GMDH type neural networks are used to 
obtained polynomial models for the effects of geometrical 
parameters of the microchannel, the amount of heat flux and 
the Reynolds number on both pressure drop and Nusselt 
number. 

II. MODELLING USING GMDH TYPE NEURAL NETWORKS 

By means of GMDH algorithm a model can be represented 
as set of neurons in which different pairs of them in each layer 
are connected through a quadratic polynomial and thus 
produce new neurons in the next layer. Such representation 
can be used in modeling to map inputs to outputs. The formal 
definition of the identification problem is to find a function f̂
so that can be approximately used instead of actual one, f  in 
order to predict output ŷ  for a given input vector 
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It is now possible to train a GMDH-type neural network to 
predict the output values 
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The problem is now to determine a GMDH-type neural 
network so that the square of difference between the actual 
output and the predicted one is minimized, that is 
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General connection between inputs and output variables 
can be expressed by a complicated discrete form of the 
Volterra functional series in the form of 
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Where is known as the Kolmogorov-Gabor polynomial 
[22-24]. This full form of mathematical description can be 
represented by a system of partial quadratic polynomials 
consisting of only two variables (neurons) in the form of 

2
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In this way, such partial quadratic description is 
recursively used in a network of connected neurons to build 
the general mathematical relation of inputs and output 

variables given in equation (4). The coefficients ia  in 
equation (5) are calculated using regression techniques [22, 
24] so that the difference between actual output, y, and the 

calculated one, ŷ  for each pair of ix , jx as input variables is 
minimized. Indeed, it can be seen that a tree of polynomials is 
constructed using the quadratic form given in equation (5) 
whose coefficients are obtained in a least-squares sense. In 

this way, the coefficients of each quadratic function iG are 

obtained to optimally fit the output in the whole set of input-
output data pair, that is 
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In the basic form of the GMDH algorithm, all the 
possibilities of two independent variables out of total  n  input 
variables are taken in order to construct the regression 
polynomial in the form of equation (5) that best fits the 
dependent observations iy( , i=1, 2, …, M) in a least-squares 
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sense. Consequently, 
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Using the quadratic sub-expression in the form of equation 
(5) for each row of M data triples, the following matrix 
equation can be readily obtained as 

YA =a (7) 

Where  a   is the vector of unknown coefficients of the 
quadratic polynomial in equation (5) 
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Is the vector of output’s value from observation. It can be 
readily seen that 

















=
22

2
2

2
22222

2
1

2
11111

1
1
1

MqMpMqMpMqMp

qpqpqp

qpqpqp

xxxxxx
xxxxxx
xxxxxx

A (10) 

The least-squares technique from multiple-regression 
analysis leads to the solution of the normal equations in the 
form of 

YAAA TT 1)( −=a (11) 

Which determines the vector of the best coefficients of the 
quadratic Eq. (5) for the whole set of M data triples. It should 
be noted that this procedure is repeated for each neuron of the 
next hidden layer according to the connectivity topology of the 
network. However, such a solution directly from normal 
equations is rather susceptible to round off errors and, more 
importantly, to the singularity of these equations.  

Singular value decomposition (SVD) is the method for 
solving most linear least square problems in which some 
singularities may exist in the normal equations. The SVD of a 
matrix, is a factorization of the matrix into the 
product of three matrices, a column orthogonal matrix

, a diagonal matrix  with non-negative 
elements (singular values) and an orthogonal matrix  
such that; 

 (12) 
 
The problem of optimal selection of the vector of the 
coefficients in equations (8) and (11) is firstly reduced to 
finding the modified inversion of the diagonal matrix W (in 
which the reciprocals of zero or near zero singulars (according 
to a threshold) are set to zero). Then, such optimal a is 
calculated using the following relation; 

 (13) 
 

Such parametric identification problem is part of the 
general problem of modelling when structure identification is 
considered together with the parametric identification problem 
simultaneously. In this work, a new encoding scheme is 
presented in an evolutionary approach for simultaneous 
determination of structure and parametric identification of 
GMDH type neural networks [26]. 

Stochastic methods are commonly used in the training of 
neural networks in terms of associated weights or coefficients 
that have successfully performed better than traditional 
gradient based techniques [26 and references therein]. The 
literature shows a wide range of evolutionary design 
approaches either for architectures or for connection weights 
separately in addition to efforts for them simultaneously. In 
most GMDH type neural networks, the neurons in each layer 
are only connected to neurons in its adjacent layer as was the 
case in Methods I and II previously reported in Ref. [25]. 
Taking this advantage, it was possible to present a simple 
encoding scheme for the genotype of each individual in the 
population as already proposed by the authors [25]. The 
encoding schemes in generalized GMDH type neural networks 
(GSGMDH) must demonstrate the ability of representing 
different lengths and sizes of such neural networks. 

 In a GS-GMDH type neural network, Figure 1, neuron Uad U 
in the first hidden layer is connected to the output layer by 
directly going through the second hidden layer. Therefore, it is 
now very easy to notice that the name of the output neuron 
(network’s output) includes UadU twice as UabbcadadU. In other 
words, a virtual neuron named UadadU has been constructed in 
the second hidden layer and used with Uabbc U in the same layer 
to make the output neuron UabbcadadU as shown in Figure 1. It 
should be noted that such repetition occurs whenever a neuron 
passes some adjacent hidden layers and connects to another 
neuron in the next 2nd, or 3rd, or 4th, or . . . following hidden 
layer. In this encoding scheme, the number of repetitions of 
that neuron depends on the number of passed hidden layers, , 
and is calculated as . It is easy to realize that a chromosome 
such as Uabab bcbc U, unlike chromosome Uabab acbcU for 
example, is not a valid one in GS-GMDH type networks and 
has to be simply re-written as UabbcU [26, 27]. 

The genetic operators of crossover and mutation can now 
be implemented to produce two offspring from two parents. 
The natural roulette wheel selection method is used for 
choosing two parents for producing two offspring. 
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Fig. 1 A generalized GMDH network structure of a 
chromosome. 

 
The crossover operator for the two selected individuals is 

simply accomplished by exchanging the tails of two 
chromosomes from a randomly chosen point as shown in 
Figure 2. 

 

Fig. 2 Crossover operation for two individuals in generalized 
GMDH type networks. 

 

 
It should be noted; that such a point could only be chosen 

randomly from the set   where n1

 

 is the 
number of hidden layers of the chromosome with the smaller 
length. It is very evident from Figures 2 and 3 that the 
crossover operation can certainly exchange the building blocks 
information of such generalized GMDH type neural networks 
so that the two types of generalized GMDH type and 
conventional GMDH type neural networks can be converted to 
each other, as can be seen from Figure 3.  

 
Fig. 3 Crossover operation on two generalized GMDH type 

networks. 

 
In addition, such crossover operation can also produce 

different lengths of chromosomes that, in turn, lead to 
different sizes of either the generalized GMDH type or 
conventional GMDH type network structures. Similarly, the 
mutation operation can contribute effectively to the diversity 
of the population. This operation is simply accomplished by 
changing one or more symbolic digits as genes in a 
chromosome to other possible symbols, for example, 
abbcadad to abbccdad

The incorporation of the genetic algorithm into the design 
of such GMDH type neural networks starts by representing 
each network as a string of concatenated substrings of 
alphabetical digits. The fitness, ( ), of each entire string of 
symbolic digits, which represents a GMDH type neural 
network to model the explosive cutting process is evaluated in 
the form; 

. It is very evident that the mutation 
operation can also convert a generalized GMDH type network 
to a conventional GMDH type network or vice versa. It should 
be noted that such evolutionary operations are acceptable 
provided a valid chromosome is produced. Otherwise, these 
operations are simply repeated until a valid chromosome is 
constructed.  

 
 (14) 

 
where E, the mean square of error given by equation (6), is 
minimized through the evolutionary process by maximizing 
the fitness . The evolutionary process starts by randomly 
generating an initial population of symbolic strings, each as a 
candidate solution. Then, using the aforementioned genetic 
operations of roulette wheel selection (crossover and 
mutation), the entire populations of symbolic strings is 
improve gradually. In this way, GMDH type neural network 
models with progressively increasing fitness, , are produced 
until no further significant improvement is achievable [26-27]. 

 

III. 2BPHYSICAL MODEL AND COMPUTATIONAL DOMAIN 
 A schematic view, physical, and computational domain of 

such microchannels is depicted in Figure 4, Figure 5, and 
Figure 6, respectively.  

Heat is removed primarily by conduction through the solid 
and then dissipated away by convection of the cooling fluid in 
the microchannel. The microchannel has been studied is made 
of silicon with thermal conductivity (k) of 148 W/m.K. At the 
bottom, a uniform heat flux of q" arises from an electric chip 
that is connected to the microchannel. At the top of the 
channels, there is a Pyrex plate which makes an adiabatic 
condition. The width of microchannels and the wall thickness 
are represented by Wc and Ws, respectively.  

The thickness of the silicon substrate through which the heat 
flux is transformed to the cooling fluid flowing in channels 
can be simply recognized as Ht-Hc, according to Figure 4. The 
total length and width of microchannels are Lh and Wt whose 
values of five different cases are in Table 1. Moreover, steady 
incompressible and laminar fluid flow and steady heat 
transfer, with negligible radiative heat transfer and constant 
solid and fluid property have been assumed in computations. 
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The inlet temperature of cooling water through the channels is 
20ºC. A microchannel in the center parts of the plate will be 
considered in current work. As a result of the symmetry of the 
rectangular channel, we will center the computational domain 
in a half channel as shown in Figure 6. 

 

 
Fig. 4 Schematic view of Microchannel. 

 
 

 
 

Fig. 5 Physical Model. 
 
 

TABLE 1 
FORE DIFFERENT CASES OF MICROCHANNEL 

D e s c r i p t i o n C a s e  0 C a s e  1 C a s e  2 C a s e  3 C a s e 4 

)(cmLt  2 2 1 .4 1 .4 1 .4 

)(cmWt
 1 . 5 1 .5 2 2 2 

)( mWc µ  6 4 6 4 5 6 5 5 5 0 

)( mWs µ  3 6 3 6 4 4 4 5 5 0 

)( mH t µ  489 489 533 430 458 

)( mH c µ  280 280 320 287 302 

Number of Channels  150 150 200 200 200 

 

3B  
 

Fig. 6 Computational Domain. 

IV. 4BGOVERNING EQUATION 
Assuming a laminar fully developed flow in rectangular 

channels in positive x-direction, the components of velocity 
satisfy  and  in terms of Cartesian 
coordinate system. The equation of motion is written as 
follows: 

 

 (15) 

 
As presented in Figure 4, a silicon wafer plate with a large 

number of microchannels is connected to the chip. A liquid is 
forced to flow through these channels to remove the heat. All 
microchannels are assumed to have a uniform rectangular 
cross-section with geometric parameters as shown in Table 1. 
For a steady-state, fully developed, laminar flow in a 
microchannel, the energy equation (with considering of the 
axial thermal conduction in flow direction and the viscous 
dissipation) for the cooling liquid takes the specific form: 

 

 
(16) 

 
Where T, , and  are the temperature, thermal 

diffusivity and specified heat capacity of the cooling liquid, 
respectively. Based on presented computational domain, the 
adiabatic condition can be used along the channel symmetric 
center line: 

 

 (17) 

 
At the bottom of channels, a uniform heat flux of q" is 

imposed over the heat sink, and can be expressed as: 
 

 (18) 

Hear  is the thermal conductivity of the liquid coolant. 
Since the thermal conductivity of the glass is about two-order 
of magnitude lower than that the top boundary is insulated. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 10, Volume 7, 2013 875



 

This is a conservative assumption which will lead to slight 
underestimation of the overall heat transfer coefficient. This 
assumption yields: 

 (19) 

 

V. CFD SIMULATION AND COMPARISION WITH 
EXPERIMENTAL RESULTS 

In current work finite volume method of Patankar [32] is 
used to solve the continuity, momentum, and energy equations 
numerically. Since a detailed discussion of the FVM is 
available in Patankar [32], only a very brief description of the 
main features of this method is given here. In the FVM, the 
domain is divided into a number of control volumes such that 
there is one control volume surrounding each grid point. The 
grid point is located in the center of a control volume. The 
governing equation is integrated over each control volume to 
derive an algebraic equation containing the grid point values 
of the dependent variable. The discretization equation then 
expresses the conservation principle for a finite control 
volume just as the partial differential equation expresses it for 
an infinitesimal control volume. The resulting solution implied 
that the integral conservation of quantities such as mass, 
momentum, and energy is exactly satisfied for any control 
volume and of course, for the whole domain. The power-low 
scheme is used to model the combined convection diffusion 
effects in the transport equations. The SIMPLER algebraic of 
Patankar is used to resolve the pressure-velocity coupling. The 
resulting algebraic equations are solved using a line-by-line 
Tri-Diagonal matrix Algorithm.  

On the other hand, the results of the Tuckermann and 
Pease experiments [1] in terms of the amount of heat flux and 
thermal resistance, which can be simply computed using; 
 

 (20) 

are given in Table 2. In equation (20)  and  respects 
the maximum measured outlet and the inlet temperature of the 
cooling water, respectively, and q is the heat flux.  It is shown 
that sufficiently reasonable agreement exists in such 
comparison, and therefore, the full Navier–Stokes approach 
can be deployed for such microchannels flow and heat transfer 
computation with a hydraulic diameter of about 100 μm. In 
this way, the effects of geometrical parameters such as Ht/Dh 
and Hc/Dh

 

, the Reynolds number (Re) and heat flux (q) on 
both pressure drop (DP) and Nusselt number (Nu) can be 
numerically investigated. The Reynolds number (Re) and 
Nusselt number (Nu) are computed as: 

(21) 

and 
 

 (22) 

where the hydraulic diameter Dh is , ρ is the 
density of cooling water, μ is the viscosity of the cooling water 
and Vave is the average water flow velocity. The heat fluxes 

used in the computations are the same as given in Table  2 
involving four different values of 34.6, 181, 277, and 790 
W/cm2

 

 for six different water flow velocities of 0.5, 1, 2, 3, 4 
and 5 m/s to ensure the regime of flow in the different 
channels. Thus, 24 different cases can be obtained for pressure 
drop (DP) and 96 cases for Nusselt number (Nu). It should be 
noted that Nu is computed in nine different locations through 
the length of the channel and an average value is considered 
for Nu of a particular case. Thus, 96 runs are needed to 
establish the input–output data table for Nusselt number for 
the four different geometric cases, four different values of heat 
flux and six different values of flow velocity. Consequently, 
such input–output data table, obtained from experimentally 
validated Navier– Stokes computations (24 for DP and 96 for 
Nu), can now be used for a meta-modelling approach (e.g. a 
GMDH type neural network model). 

TABLE 2 
 THERMAL RESISTANCE COMPARISION 

Case 
 
 

 
 Error (%) 

Experimental Numerical 
0 34.6 0.277 0.253 8.5 

1 34.6 0.280 0.246 12.1 

2 181 0.110 0.116 5 

3 277 0.113 0.101 8.10 

4 790 0.090 0.086 3.94 

 

VI. 6BMODELLING OF NU AND ∆P USING GMDH TYPE 
NEURAL NETWORK 

 
The input-output data pairs used in such modeling involve two 
different data tables obtained from CFD simulation discussed 
in section V. The first table consists of four variables as 
inputs, namely, dimensionless geometrical parameter of 
microchannel (HRtR/DRhR, HRcR/DRhR), Reynolds number (Re), and 
heat flux (q), and one output which is Nu. The second table 
consists of three variables as input, namely, HRtR/DRhR, HRcR/DRhR and 
Re as inputs and another output which is ΔP. The first table 
consists of a total 96 pattern numbers and second table consist 
of 24 patterns, which have been obtained from the numerical 
solutions to train and test such GMDH type neural networks. 
However, in order to demonstrate the prediction ability of the 
evolved GMDH type neural networks, the data in both input-
output data tables have been divided into two different sets, 
namely, training and testing sets. The training set, which 
consists of 80 out of 96 input-output data pairs for Nu and 20 
out of 24 input-output data pairs for ΔP, is used for training 
the neural network models using the method presented in 
section II. The testing set, which consist of 16 unforeseen 
input-output data samples for Nu and four for ΔP, during the 
training process, is merely used for testing to show the 
prediction ability of such evolved GMDH type neural network 
models. The GMDH type neural networks are now used for 
such input-output data to find the polynomial models of Nu 
and ΔP with respect to their effective input parameters. In 
order to design genetically such GMDH type neural networks 

)/( 2 WKcmR)( 2cm
Wq
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described in section 2, a population of 25 individuals with a 
crossover probability (Pc) of 0.7 and mutation probability 
(Pm) 0.08 has been used in 200 generations for Nu and a 
population of 20 individuals with a Pc=0.7 and Pm=0.08 has 
been used in 250 generations for ΔP. The structures of the 
evolved two hidden layer GMDH type neural network for Nu 
and ΔP are shown in Figures 5, and 6 corresponding to the 
genomes representation of (abbcbccd) and (acbbaabc) for Nu 
and ΔP respectively. For the Nu representation, a, b, c and d 
stand for Ht/Dh, Hc/Dh, q and Re respectively. For the ΔP 
representation, a, b and c stand for Ht/Dh, Hc/Dh

 

, Re 
respectively.  

 
 

Fig. 5 Evolved structure of generalized GMDH type network for 
Nusselt number. 

 

 
 

Fig. 6 Evolved structure of generalized GMDH type network for 
pressure drop 

 
 
The corresponding polynomial representation for Nu is as 
follows: 
 

  
(23-a) 

  
(23-b) 

  
(23-c) 

  
(23-d) 

  (23-e) 

  

(23-f) 

 
Similarly, the corresponding polynomial representation of 

the model for ΔP is in the form of: 
 

  

(24-a) 

 

  
(24-b) 

  
(24-c) 

  
(24-d) 

  
(24-e) 

 
The very good behavior of such GMDH type neural network 
model for Nu is also depicted in Figure 7 both for training and 
testing data. Such behavior has also been shown for training 
and testing data of ΔP in Figure 8. It is clearly evident that the 
evolved GMDH type neural network in terms of simple 
polynomial equations successfully model and predict the 
output of testing data that have not been used during the 
training process. 
  

 

 
Fig. 7 Variation of Nusselt number with input data. 
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Fig. 8 Variation of pressure drop with input data. 

VII. CONCLUSION 
In this work the heat transfer in four geometric types of 

microchannel heat sinks has been investigated. The numerical 
results have been obtained for thermal resistance and the 
Nusselt number and showed a good agreement with 
experimental data. The Nusselt number is found to increase 
with increasing the aspect ratio. The results also gave the 
required assurance of using the full Navier-Stokes approach 
for the microchannels with hydraulic diameters about 100 μm. 
Genetic algorithms have been successfully used for optimal 
design of generalized GMDH type neural networks models of 
heat transfer and flow characteristics of microchannels. Two 
different polynomial relations for Nusselt number and pressure 
drop have been found by evolved GS-GMDH type neural 
networks using some experimentally validated CFD 
simulations for input–output data of the microchannels. The 
very good behavior of such polynomials has been shown.  
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