
 

 

  
Abstract—The design process for analog network design is 

formulated as a dynamic controllable system. A special control 
vector is defined to redistribute the compute expensive between a 
network analysis and a parametric optimization. This redistribution 
permits the minimization of a computer time. The problem of the 
minimal-time network design can be formulated in this case as a 
classical problem of the optimal control for some functional 
minimization. This approach generalizes the design problem and 
generates an infinite number of the different design strategies inside 
the same optimization procedure. By this methodology the aim of the 
system design process with minimal computer time is presented as a 
transition process of a dynamic system that has the minimal 
transition time. The conception of the Lyapunov function of dynamic 
controllable system is used to analyze the principal characteristics of 
the design process. The different forms of the Lyapunov function 
were proposed to analyze the behavior of a design process. The 
special function that is a combination of the Lyapunov function and 
its time derivative was proposed to compare the different design 
strategies and to predict the strategy with the minimal computer 
design time. 
 

Keywords—Minimal-time system design, circuit optimization, 
control theory application, Lyapunov function. 

I. INTRODUCTION 

HE computer time reduction of a large system design is 
one of the sources of the total quality design 

improvement. This problem has a great significance because it 
has a lot of applications, for example on VLSI electronic 
circuit design. Any traditional system design strategy includes 
two main parts: the mathematical model of the physical 
system that can be defined by the algebraic equations or 
differential-integral equations and optimization procedure that 
achieves the optimum point of the design objective function. 
In limits of this conception it is possible to change 
optimization strategy and use the different models and 
different methods of analysis but in each step of the circuit 
optimization process there are a fixed number of the equations 
of the mathematical model and a fixed number of the 
independent parameters of the optimization procedure.  
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Besides the traditionally used ideas of sparse matrix 
techniques and decomposition techniques [1]-[9] some 
another ways were proposed to reduce the total computer 
design time [10]-[13]. 

The generalized approach for the analog system design on 
the basis of the control theory formulation was elaborated in 
some previous works, for example [14]. This approach serves 
for the minimal-time design algorithm definition. On the other 
hand this approach gives the possibility to analyze with a great 
clearness the design process while moving along the trajectory 
curve into the design space. 

The main conception of this theory is the introduction of the 
special control functions, which, on the one hand generalize 
the design process and, on the other hand, they give the 
possibility to control the design process to achieve the 
optimum of the design cost function for the minimal computer 
time. This possibility appears because practically an infinite 
number of the different design strategies that exist within the 
bounds of the theory. The different design strategies have the 
different operation number and executed computer time. On 
the bounds of this conception, the traditional design strategy is 
only a one representative of the enormous set of different 
design strategies. As shown in [14] the potential computer 
time gain that can be obtained by the new design problem 
formulation increases when the size and complexity of the 
system increase. However it is can be realized when the 
algorithm for the optimal design strategy is constructed in 
practice.  
 The main properties and the special conditions for the 
optimal design strategy construction are the first problems that 
need to be solved for the optimal algorithm searching.  

II. PROBLEM FORMULATION 
 

The design process for any analog system design can be 
defined in discrete form [14] as the problem of the generalized 
cost function ( )UXF ,  minimization by means of the system 
(1) with the constraints (2): 
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where NRX ∈ , ( )XXX ′′′= , , KRX ∈′  is the vector of the 

independent variables and the vector MRX ∈′′  is the vector 
of dependent variables ( MKN += ), ( )Xg j  for all j 

presents the network model, s is the iterations number, st is 

the iteration parameter, 1Rts ∈ ,  H ≡ H(X,U)  is the 

direction of the generalized cost function ( )UXF ,  
decreasing, U is the vector of the special control functions 

( )U u u um= 1 2, ,..., , where u j ∈ Ω ; { }Ω = 0 1; . The functions 

( )UXfi ,  for example for the gradient method are defined 
as: 
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equal to ( )x t dti − ; ( )η i X  is the implicit function 
( ( )x Xi i= η ) that is determined by the system (2). The 
generalized cost function ( )UXF ,  can be defined for 
example as: 
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where ( )XC  is the non negative cost function of the design 
process, and ( )UX ,ψ  is the additional penalty function: 
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 This formulation of the design process permits the 
redistribution of the computer time expense between the 
solution of problem (2) and the optimization procedure (1) for 
the function ( )UXF , . The control vector U is the main tool 
for the redistribution process in this case. Practically an 

infinite number of the different design strategies are produced 
because the vector U depends on the optimization procedure 
current step. The problem of the optimal design strategy 
search is formulated now as the typical problem for the 
functional minimization of the control theory. The functional 
that needs to minimize is the total CPU time T of the design 
process. This functional depends directly on the operations 
number and on the design strategy that has been realized. The 
main difficulty of this definition is unknown optimal 
dependencies of all control functions u j . It is necessary to 
find the optimal behavior of the control functions u j  during 
the design process to minimize the total computer design time. 
This problem can be solved by some approximate methods of 
the control theory [15]-[16]. 
 The idea of the system design problem formulation as the 
functional minimization problem of the control theory is not 
depend on the optimization method and can be embedded into 
any optimization procedures. The gradient method is used as a 
principal method in this paper. Nevertheless other 
optimization methods can be used successfully too. For 
example the right hand parts of the system (1) ( )UXfi ,  for 
the Newton method or Davidon-Fletcher-Powell (DFP) are 
defined by the next formulas:  
 

   ( ) ( )UXF
x

bUXf
k

N

k
iki ,,

1 δ
δ∑

=

−=       (6) 

 
   i K= 1 2, , ... , , 
 

  

( ) ( )

( ) ( ){ }Xx
t
u

UXF
x

buUXf

i
s
i

s

Ki

k

N

k
ikKii

η

δ
δ

+−
−

+

−=

−

=
− ∑
1

,,
1      (6') 

 
NKKi ,...,2,1 ++= , 

 
where ikb  is the element of the matrix ( ){ } 1,´´ −UXF for 
the Newton’s method and the element of the matrix B(X,U) 
for the DFP method. In the last case this element is defined by 
the following expression:  
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where  0B  is the unit matrix, ,...1,0=s  and 
 

sss XXR −= +1 , ( ) ( )sssss UXFUXFQ ,´,´ 11 −= ++ .    (8) 
 

The gradient method is used below for all examples as the 
principle optimization method.  

Now the process for analog network design is formulated as 
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a dynamic controllable system. The minimal-time design 
process can be defined as the dynamic system with the 
minimal transition time in this case. So, we need to find the 
special conditions to minimize the transition time for this 
dynamic system. These conditions can be defined as the basis 
for the optimal design algorithm construction. 

III. LYAPUNOV FUNCTION OF DESIGN PROCESS 
 On the basis of the analysis in previous section we can 
conclude that the minimal-time algorithm has one or some 
switch points in control vector where the switching is realize 
among different design strategies. As shown in [17] it is 
necessary to switch the control vector from the like modified 
traditional design strategy (MTDS) when all the components 
of the vector U are equal to 1, to the like traditional design 
strategy (TDS) when all the components of the vector U are 
equal to 0, with some adjusting. Some principal features of the 
time-optimal algorithm were determined previously. These 
are: 1) an additional acceleration effect that appeared under 
special circumstances [18]; 2) the start point special selection 
outside the separate hyper-surface to guarantee the 
acceleration effect [19]; at least one negative component of 
the start value of the vector X is needed in this case; 3) the 
most perspective strategies of the structural basis that serve for 
an optimal design process construction. The two first 
problems were discussed in [18]-[19]. The third problem is 
discussed in the present paper. 
 The main problem of the time-optimal algorithm 
construction is unknown optimal sequence of the control 
vector switch points during the design process. We need to 
define a special criterion that permits to realize the optimal or 
quasi-optimal algorithm by means of the optimal switch points 
searching. A Lyapunov function of dynamic system serves as 
a very informative object to any system analysis in limits of 
the control theory. We propose to use a Lyapunov function of 
the design process to detect the optimal algorithm, particularly 
for the comparison of the different design strategies on 
computer time. The Lyapunov function properties can help us 
to solve this problem. 
 There is a freedom of the Lyapunov function definition 
because of a non-unique form of this function. Let us define 
the Lyapunov function of the design process (1)-(5) by the 
following expression: 
 
      ( ) ( )∑ −=

i
ii axXV 2            (9) 

 
where ia  is the stationary value of the coordinate ix , in other 

words the set of all the coefficients ia  is the main objective of 
the design process. The function (9) satisfies all of the 
conditions of the standard Lyapunov function definition for   
the    variables    iii axy −= .     In    fact      the       
function  
 

          ( ) ∑=
i
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is the piecewise continue. Besides there are three 
characteristics of this function: i) V(Y)>0, ii) V(0)=0, and  
iii) ( ) ∞→YV  when ∞→Y . 

 Inconvenience of the formulas (9) or (10) is an unknown 
point a= ( )Naaa ,...,, 21 , because this point can be reached 
at the end of the design process only. We can use this form of 
the Lyapunov function if we already found the design 
solution someway. On the other hand, it is very important to 
control the stability of the design process during the 
optimization procedure. In this case we need to construct 
other form of the Lyapunov function that doesn’t depend on 
the unknown stationary point. Let us define two new forms of 
the Lyapunov function by the next formulas: 
 
 
            ( ) ( )[ ]rUXFUXV ,, =        (11) 
 
 

           ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

i ix
UXFUXV

2
,,        (12) 

 
where F(X,U) is the generalized cost function of the design 
process. The formula (11) can be used when the general cost 
function is non-negative and has zero value at the stationary 
point a. Other formula can be used always because all 
derivatives ixF ∂∂ /  are equal to zero in the stationary point 
a. So, the function V for both formulas has properties: 
V(a,U)=0, V(X,U)>0 for all X and at last, this function 
increases in a sufficient large neighborhood of the stationary 
point. Besides, the function V is the function of the vector U  
too, because all coordinates ix  are the functions of the 
control vector U. 
 We can define now the design process as a transition 
process for controllable dynamic system that can provide the 
stationary point (optimal point of the design procedure) 
during some time. The problem of the time-optimal design 
algorithm construction can be formulated now as the problem 
of the transition process searching with the minimal transition 
time. There is a well-known idea [20]-[21] to minimize the 
time of the transition process by means of the special choice 
of the right hand part of the principal system of equations; in 
our case these are the functions ( )UXfi , . It is necessary to 

change the functions ( )UXfi ,  by means of the control 
vector U selection to obtain the maximum speed of the 
Lyapunov function decreasing (the maximum absolute value 

of the Lyapunov function time derivative dtdVV /=
•

). 
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IV. STABILITY ANALYSIS 
 Normally the time derivative of the Lyapunov function is 
non-positive for the stable processes. The design process is 
stable if the Lyapunov function time derivative is negative. On 
the other hand, the direct method of Lyapunov gives the 
sufficient stability conditions but not necessary [20], so the 
process loses the stability (or not loses) if this derivative 
becomes positive. The stability of the different design 
strategies for a nonlinear network of transistor amplifier in 
Fig. 1 was analyzed by the Lyapunov direct method.  
 
 

 
 

Fig. 1 active nonlinear network 
 
 This circuit was analyzed for one, two and three stages 
separately. The Ebers-Moll static model of the transistor has 
been used for all examples. The Lyapunov function time 
derivative dV/dt is a negative for all trajectories on the initial 
part of the design process; i.e. all admissible strategies are 
stable at the beginning. It is supposed that the integration step 
is sufficiently small. However, when the current point of the 
trajectory gets to the ε -neighborhood of the stationary point 
a, some strategies can lose the stability because the time 
derivative of the Lyapunov function becomes positive. It 
means that all trajectories of this group do not guarantee the 
convergence from the ε -neighborhood. In fact, each of the 
trajectories of this group has own critical ε -neighborhood, 
which defines the maximum achievable precision. Another 
consideration is important too: the design process 
convergence slow down strongly before the ε -neighborhood 
reaching for all strategies of this group. It means that the 
derivative dV/dt is the negative but very small on the absolute 
value. The critical values of the ε -neighborhood of some 
design trajectories for the two-stage transistor amplifier are 
shown in Table I. 

The termination of the design process has been defined by 

means of the special criterion: the time derivative 
•

V  has 
positive value in the set of positive measure. The optimization 
process was provided on the basis of the formula (1) with 
variable step. As a result the significant variations of the 

derivative value 
•

V  have been observed. We average the 
derivative values for 30 integration steps to smooth these 
variations.  

TABLE I 
CRITICAL ε  VALUE FOR TWO-STAGE AMPLIFIER 

 
 
 The analysis of the results in Table 1 gives the next 
regularities: there is a correlation between processor design 
time and a critical ε -neighborhood. The processor design 
time is lesser for the strategies that have lesser critical ε -
neighborhood. We can regulate all of the strategies of Table 1 
in order of the computer time or in order of the critical ε -
neighborhood. The results of this regulation are presented in 
Table II. 
 

TABLE II 
STRATEGY REGULATION FOR TWO-STAGE AMPLIFIER 

 

 
 The places of each strategy, which defined by two different 
methods of regulation, are differed very small. This place is 
the same for two strategies (13 and 6). The one place 
difference is appeared seven times, the two places difference 
is appeared four times and the three places difference is 
appeared three times. The average value of this difference is 
1.5. We can consider that the correlation between a computer 
time and a critical ε -neighborhood is acceptable. From the 
other hand the critical ε -neighborhood values were obtained 
by the analysis of the Lyapunov function and its derivative. 
So, we can state that there is a close relation between the 
computer time and the properties of the Lyapunov function of 
the design process. 
 The analysis of the three-stage amplifier of Fig. 1 shows 
very similar results. The critical value of ε -neighborhood of 
some design trajectories for the three-stage transistor 
amplifier is shown in Table III. As for the first example we 

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of strategies                
regulated by the                 
computer tim 16 14 8 4 9 7 15 5 11 1 2 12 13 10 3 6
Number of strategies                
regulated by the       
    -neighborhood 8 4 16 14 5 15 7 9 1 2 12 11 13 3 10 6ε

N Control vector Iterations Computer Critical value of
U(u1,u2,u3,u4,u5) number time  (sec)     -neighborhood

1        ( 0 0 0 0 0 ) 3177 7.25 2.78E-08
2        ( 0 0 0 0 1 ) 3074 8.02 3.36E-07
3        ( 0 0 0 1 1 ) 11438 26.36 8.18E-07
4        ( 0 0 1 0 1 ) 799 1.16 9.38E-09
5        ( 0 0 1 1 0 ) 1798 2.61 1.61E-08
6        ( 0 1 0 1 1 ) 43431 76.89 3.16E-05
7        ( 0 1 1 0 0 ) 1378 2.25 1.67E-08
8        ( 0 1 1 0 1 ) 571 0.72 6.83E-09
9        ( 0 1 1 1 0 ) 1542 2.03 2.05E-08

10        ( 1 0 0 1 1 ) 11839 21.37 1.68E-05
11        ( 1 0 1 0 0 ) 2097 3.57 5.47E-07
12        ( 1 0 1 1 0 ) 6026 8.31 4.94E-07
13        ( 1 1 1 0 0 ) 6602 8.84 7.41E-07
14        ( 1 1 1 0 1 ) 935 0.71 1.33E-08
15        ( 1 1 1 1 0 ) 2340 2.31 1.62E-07
16        ( 1 1 1 1 1 ) 1502 0.38 1.09E-08

ε
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can formulate the rule – the  less  value  of  the  critical ε  - 
neighborhood  for some strategy provoke the less value of the 
computer time for this strategy. The regulations of all the 
strategies of Table III in order of the computer time and in 
order of the critical ε -neighborhood are presented in Table 
IV. The places of each strategy, which defined by two 
different methods of regulation, are differed small. The 
average value of this difference is 2.6. We can conclude that 
the Lyapunov function can serves as the informative source 
for the searching of the perspective strategies that have the 
minimal computer time. The additional useful information is 

in the Lyapunov function time derivative dtdVV /=
•

 
behavior. 
 

TABLE III 
CRITICAL ε  VALUE FOR THREE-STAGE AMPLIFIER 

 

 
 

TABLE IV  
STRATEGY REGULATION FOR THREE-STAGE AMPLIFIER 

 

 
 

V. STRUCTURAL BASIS ANALYSIS 
 There is a possibility to define more informative function 
as a time derivative of the Lyapunov function relatively the 

Lyapunov function: VVW /
•

= . In this case we can compare 
the different design strategies by means of the function W(t) 
behavior and we can search of the control vector optimal 
structure. 

 The results of the analysis of some nonlinear networks are 
presented below. Functions V(t) and W(t) were the main 
objects of the analysis and its behavior has been analyzed for 
some strategies that compose the structural basis of the 
general design methodology.  
 The behavior of the functions V(t) and W(t) for the 
network of Fig. 2 is shown in Fig. 3a, and Fig. 3b. 
 

 
 

Fig. 2  two-node nonlinear passive network 
 

 

  
(a) 

 

  
(b) 

 
Fig. 3  behavior of the functions V(t) and W(t) for four design 

strategies during the design process for network in Fig.2;   
(a) – initial part of the design process,  

(b) – design process the whole with the final part in detail 
 

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of strategies                 
regulted by the                 
computer time 16 7 5 4 14 11 10 15 6 9 12 8 13 2 3 1
Number of strategies                 
regulated by the       
    -neighborhood 5 4 7 16 11 9 2 15 14 10 6 13 3 1 8 12ε

N Control vector  Iterations Computer  Critical value of
U(u1,u2,u3,u4,u5,u6,u7)  number  time (sec)       -neighborhood

1        ( 0 0 0 0 0 0 0 ) 9106 45.75 7.27E-07
2        ( 0 0 1 0 1 1 0 ) 1844 8.63 1.91E-07
3        ( 0 0 1 1 1 0 0 ) 3067 15.65 6.77E-07
4        ( 0 0 1 1 1 1 1 ) 647 1.87 4.73E-09
5        ( 0 1 1 0 1 0 1 ) 627 1.42 4.69E-09
6        ( 0 1 1 0 1 1 0 ) 1513 4.01 5.62E-07
7        ( 0 1 1 0 1 1 1 ) 643 1.21 9.07E-09
8        ( 0 1 1 1 1 1 0 ) 3229 7.31 7.54E-07
9        ( 1 0 1 0 1 0 1 ) 2069 4.06 1.43E-07

10        ( 1 0 1 1 1 0 1 ) 1657 2.53 2.13E-07
11        ( 1 1 1 0 1 0 1 ) 1477 2.09 1.33E-07
12        ( 1 1 1 0 1 1 0 ) 3931 6.48 9.21E-07
13        ( 1 1 1 1 1 0 0 ) 3626 7.85 6.25E-07
14        ( 1 1 1 1 1 0 1 ) 1793 2.03 2.12E-07
15        ( 1 1 1 1 1 1 0 ) 2345 3.51 2.08E-07
16        ( 1 1 1 1 1 1 1 ) 2149 0.61 7.59E-08

ε
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The nonlinear element has the following dependency 
( )2

2101 VVbyyn −+= . The vector X includes five 

components: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = . 

 The model of this network (2) includes two equations 
(M=2) and the optimization procedure (1) includes five 
equations. The objective function ( )C X  has been 
determined as the sum of the squared differences between 
beforehand-defined values and current values of the nodal 
voltages for two nodes with additional inequalities for some 
circuit elements. 
 The network in Fig. 2 is characterized by two dependent 
parameters (two nodes) and the control vector includes two 
control functions: U = ( )21 ,uu . 
 The structural basis of the design strategies includes four 
design strategies; 00, 01, 10, 11. The Lyapunov function was 
calculated by formula (11) for r=0.5. As we can see from Fig. 
3 the functions V(t) and W(t) can give an exhaustive 
explanation for the design process characteristics. Fig. 3a 
shows these functions behavior for the initial part of the 
design process (2% of the total design time). First of all we 
can conclude that the speed of decreasing of the Lyapunov 
function is inversely proportional to the design time. The 
minimal value of the Lyapunov function that corresponds to 
the maximum precision is approximately equal for all 
strategies and exactly is equal to 8.710-6, 1.710-5, 1.310-5, 
2.010-5 for the strategies 00, 01, 10, 11 accordingly. We can 
see from Fig. 3b that after the minimal value decision the 
Lyapunov function increases a little. This small increasing 
corresponds to the small positive value of the Lyapunov 
function time derivative. Later on this derivative aspire to 
zero and the Lyapunov function has a permanent value. 
 The relative design time for four design strategies is equal 
to 1, 0.44, 0.78 and 0.3 for the strategies 00, 01, 10, 11 
accordingly. This time was defined for the time point with the 
minimal value of the function V. As we can see from Fig. 3b a 
large absolute value of the function W(t) corresponds to a 
more rapid decreasing of the function V(t) and a smaller 
computer design time. 
 Another passive nonlinear network with three nodes (Fig. 
4) was analyzed below.   
 
 
 

 
 

Fig. 4  three-node nonlinear passive network 
 

 The nonlinear elements have been defined by following 

dependencies: ( )2
21111 VVbay nnn −⋅+= , ( )2

32222 VVbay nnn −⋅+= . 

The vector X includes seven components: 1
2
1 yx = , 2

2
2 yx = , 

3
2
3 yx = , 4

2
4 yx = , 15 Vx = , 26 Vx = , 37 Vx = . The model of 

this network (2) includes three equations (M=3) and the 
optimization procedure (1) includes seven equations. This 
network is characterized by three dependent parameters and 
the control vector includes three control functions: 
U= ( )321 ,, uuu . The behavior of the functions V(t) and W(t) 
for this network is shown in Fig. 5. 
 The structural basis of design strategies includes eight 
design strategies: 000, 001, 010, 011, 100, 101, 110 and 111. 
Fig. 5a shows the behavior of V(t) and W(t) functions for the 
initial part of the design process. We can conclude that the 
speed of decreasing of the Lyapunov function is inversely 
proportional to the design time for the network in Fig.4. The 
minimal value of the Lyapunov function that corresponds to 
the maximum precision is in the limits from 1.210-5 for 
strategy 000 to 5.910-5 for strategy 111. 
 
 

  
(a) 

 

  
(b) 

 
Fig. 5 behavior of the functions V(t) and W(t) for eight design 

strategies during the design process for network in Fig.4;   
(a) – initial part of the design process,  

(b) – design process the whole with the final part in detail 
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We can see from Fig. 5b that the Lyapunov function increases 
a little for some strategies after the minimal value decision. 
The relative design time for all design strategies is equal to 1, 
0.886, 0.569, 0.091, 0.129, 0.25, 0.131 and 0.105 for the 
strategies 000, 001, 010, 011, 100, 101, 110 and 111 
accordingly. This time was defined for the time point with the 
minimal value of the function V. Anew we can see from Fig. 
5b that a large absolute value of the function W(t) 
corresponds to a more rapid decreasing of the function V(t) 
and a smaller computer design time. The strategies 011, 100, 
110 and 111 have a large value of the function W(t) during all 
the design process till a small value of the function V(t). That 
is why these strategies have a relative little computer time. 

The four-node nonlinear circuit is analyzed below (Fig. 6) 
on basis of the proposed methodology.  

 

 
 

Fig. 6  four-node nonlinear passive network 
 
 

The problem includes five independent parameters 
( )54321 ,,,, xxxxx , where 1

2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 

4
2
4 yx = , 5

2
5 yx = , and four originally dependent 

parameters ( )9876 ,,, xxxx , where 16 Vx = , 27 Vx = , 38 Vx = , 

49 Vx = . The model of this network (2) includes four 
equations (M=4) and the optimization procedure (1) includes 
nine equations. The control vector includes four control 
functions: ( )4321 ,,, uuuuU = . The structural basis of 
design strategies includes 16 design strategies. The iterations 
number and computer time for all strategies of the structural 
basis are shown in Table V. The behavior of the functions 
V(t) and W(t) for this network is shown in Fig. 7. We can see 
that three design strategies number 8, 12, and 16 from the 
Table V have the minimal value of computer time. At the 
same time these strategies have a very specific behavior of the 
function W(t) (curves 8 from Fig. 7a and 4 and 8 from Fig. 
7b). The function W has a large value and increases during the 
initial part of the design process for these strategies. It means 
that the Lyapunov function decrease very fast for these 
strategies. As a result we have very small value of the design 
process computer time for these design strategies. On the 
other hand the strategies 1, 2, 3, 5, and 9 from Table V have 

the large computer time and at the same time its have the 
minimal value of the function W during the design process 
(curves 1, 2, 3, 5 from Fig. 7a, and curve 1 from Fig. 7b). 
 

TABLE V 
NUMBER OF ITERATIONS AND COMPUTER TIME 

FOR COMPLETE STRUCTURAL BASIS 
 

 
 

 
(a) 

 

 
(b) 

 
Fig. 7  behavior of the functions V(t) and W(t) for full 

structural basis of the design strategies for network in Fig.6;   
(a) – first eight design strategies, (b) – next design strategies 

N Control Iterations Total design
vector number time  (sec)

1  ( 0 0 0 0 ) 39875 8.62
2  ( 0 0 0 1 ) 78570 10.27
3  ( 0 0 1 0 ) 302865 13.51
4  ( 0 0 1 1 ) 120983 5.38
5  ( 0 1 0 0 ) 150885 21.92
6  ( 0 1 0 1 ) 44339 6.43
7  ( 0 1 1 0 ) 165593 7.19
8  ( 0 1 1 1 ) 52044 1.82
9 ( 1 0 0 0 ) 144446 17.14

10  ( 1 0 0 1 ) 105750 4.72
11  ( 1 0 1 0 ) 176329 8.02
12  ( 1 0 1 1 ) 26353 0.93
13  ( 1 1 0 0 ) 155509 6.71
14  ( 1 1 0 1 ) 312015 10.98
15  ( 1 1 1 0 ) 170710 4.39
16  ( 1 1 1 1 ) 52664 1.05
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 In Fig. 8 there is a circuit that has 6 independent variables 
as admittance y y y y y y1 2 3 4 5 6, , , , ,  (K=6) and 5 dependent 
variables as nodal voltages  V V V V V1 2 3 4 5, , , ,   (M=5) at the 
nodes 1, 2, 3, 4, 5.  
 
 

 
 

Fig. 8  five-node circuit topology.  
 
 
The nonlinear elements have next dependency: 

( )2
23111 VVbay nnn −⋅+= , ( )y a b V Vn n n2 2 2 4 2

2
= + ⋅ − . The vector X 

includes eleven components. The first six components are 
defined by means of the admittance as: 1

2
1 yx = , 2

2
2 yx = , 

3
2
3 yx = , 4

2
4 yx = , 5

2
5 yx = , 6

2
6 yx = . The others 

components are defined as nodal voltages: 17 Vx = , 

28 Vx = , 39 Vx = , 410 Vx = , 511 Vx = . The control 

vector U includes five components ( )54321 ,,,, uuuuuU =  
and the structural basis consists of 32 different design 
strategies. The iterations number and computer time for some 
strategies of the structural basis are shown in Table VI. The 
behavior of the functions V(t) and W(t) for this network is 
shown in Fig. 9. 
 
 

TABLE VI 
NUMBER OF ITERATIONS AND COMPUTER TIME 
FOR SOME STRATEGIES OF STRUCTURAL BASIS 

 

 

 
 

Fig. 9  behavior of the functions V(t) and W(t) for some 
strategies of the structural basis for network in Fig.8   

 
 
 It is clear that the design strategies number 4, 5, 7, and 8 
from the Table VI have the minimal value of computer time. 
The same strategies have a larger value of the function W(t) 
during the optimization process as we can see from Fig. 9. We 
can decide that due to this specific behavior of the function W 
the computer time for these strategies is lesser than for others. 
On the other hand the strategy 1 has the minimal value of the 
function W during the design process and that is why this 
strategy has a larger computer time value. 
 The next example corresponds to the active nonlinear 
circuit, one-stage transistor amplifier in Fig. 10.  
 
 

 
 

Fig. 10  one-stage transistor amplifier 
 
 
 In this case the vector X includes six components: 1

2
1 yx = , 

2
2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = , 66 Vx = . The model of 

this network (2) includes three equations (M=3) and the 
optimization procedure (1) includes six equations. The total 
structural basis contains eight different strategies. The control 
vector has three components in this case U= ( )321 ,, uuu  and 
the structural basis consists of eight design strategies.  
 The results of the analysis of complete structural basis of 
the design strategies are shown in Table VII. The behavior  of 

TABLE VII 

N   Control   Iterations   Total design
  vector   number   time  (sec)

1   ( 0 0 0 0 0 ) 33456 14.12
2   ( 0 0 0 0 1 ) 10837 5.63
3   ( 0 0 1 1 0 ) 15490 5.16
4   ( 0 1 1 1 0 ) 35567 3.91
5   ( 0 1 1 1 1 ) 28360 2.41
6   ( 1 0 1 1 0 ) 20756 4.18
7   ( 1 1 1 1 0 ) 36049 3.46
8   ( 1 1 1 1 1 ) 29002 1.21
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NUMBER OF ITERATIONS AND COMPUTER TIME 
FOR COMPLETE STRUCTURAL BASIS 

 
 
 
the functions V(t) and W(t) for all possible strategies of the 
structural basis is shown in Fig. 11. These graphs correspond 
to a time interval when all of the design strategies are finished.
 The strategies with control vector 101 and 111 have 
extremely large value of the relative derivative W(t) from the 
beginning of the design process and that is why the Lyapunov 
function is decreases very rapidly. The design time is very 
small for two these strategies and it is equal to 0.25 sec and 
0.08 sec accordingly. The strategies with the control vector 
001, 011 and 100 have the sufficient level of the function W 
during the analyzed interval and the relative design time is 
equal to 2.42 sec, 2.53 sec, and 5.87 sec accordingly. 
Nevertheless three other design strategies with the control 
vector 000, 010 and 110 have a large value of the computer 
time, especially the traditional design strategy with control 
vector 000. It occurs because the function W for these 
strategies decreases rapidly while the Lyapunov function had a 
relatively large value. After this the Lyapunov function 
decreases very slowly and the design time is very large for 
these strategies. 

 
 

 
 

Fig. 11  behavior of the functions V(t) and W(t) for all 
strategies of the structural basis for network in Fig.10  

 
Other example corresponds to the two-stage transistor 
amplifier in Fig.12. 

 
 

Fig. 12  two-stage transistor amplifier 
 
 This network is characterized by five dependent parameters 
and the control vector includes five control functions: 
U=(u u u u u1 2 3 4 5, , , , ). The structural basis consists of 32 
design strategies. The results of the analysis of some design 
strategies from the structural basis for the iterations number 
and computer time are shown in Table VIII. The behavior of 
the functions V(t) and W(t) that correspond to the data of the 
Table VIII is shown in Fig. 13. 
 

TABLE VIII 
NUMBER OF ITERATIONS AND COMPUTER TIME 
FOR SOME STRATEGIES OF STRUCTURAL BASIS 

 
 
 

 
 

Fig. 13 behavior of the functions V(t) and W(t) for some 
strategies during the design process for network in Fig.12 

N   Control   Iterations   Total design
  vector   number   time  (sec)

1   ( 0 0 0 ) 7683758 518.22
2   ( 0 0 1 ) 45900 2.42
3   ( 0 1 0 ) 1151505 60.14
4   ( 0 1 1 ) 47464 2.53
5   ( 1 0 0 ) 109784 5.87
6   ( 1 0 1 ) 4753 0.25
7   ( 1 1 0 ) 303579 14.83
8   ( 1 1 1 ) 4940 0.08

N    Control   Iterations  Total design
   vector   number   time (sec)

1   (0 0 0 0 0) 165962 299.56
2   (0 0 0 0 1) 337487 737.55
3   (0 0 1 0 0) 44118 68.87
4   (0 0 1 0 1) 14941 19.06
5  (0 0 1 1 1) 21971 22.03
6   (0 1 1 0 1) 4544 4.56
7   (1 0 1 0 1) 2485 1.65
8   (1 0 1 1 1) 7106 3.57
9  (1 1 1 0 1) 2668 1.32

10   (1 1 1 1 1) 79330 10.11
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These graphs correspond to a time interval when the majority 
of the design strategies are finished. The strategies 6, 7, 8 and 
9 have a large value of the relative derivative W at the 
beginning of the design process. This property provides 
extremely fast decreasing of the Lyapunov function. We can 
see that just these strategies 6, 7, 8 and 9 have the design time 
lesser than other strategies. The strategies 4, 5 and 10 have an 
average value of the function W in the initial part of the 
design process and these strategies have an average value of 
the design time. At last, the strategies 1, 2, and 3 have a large 
design time and just these strategies have a very fast 
decreasing of the function W during initial part of the design 
process when the Lyapunov function had a relatively large 
value. After this the Lyapunov function decreases very slowly 
and the design time for these strategies is large. 
 We can state that the large absolute values of the function 
W(t) on the initial part of the design process provoke the less 
computer time.  
 So, the main feature of the analyzed examples can be 
formulated by the next manner: the behavior of the Lyapunov 
function V and the relative time derivative W with confidence 
determine the design time. It means that it is possible be 
guided by means of these functions to predict the computer 
design time for any design strategy. We could analyzed the 
functions V(t) and W(t) behavior for the initial time interval 
only for the different strategies and on the basis of this 
analysis we can predict the strategies that have a minimal 
computer design time. 

VI. CONCLUSION 
The problem of the minimal-time design algorithm 

construction can be solved adequately on the basis of the 
control theory. The design process in this case is formulated 
as the controllable dynamic system. The Lyapunov function 
of the design process and its time derivative include the 
sufficient information to select more perspective design 
strategies from the infinite set of the different design 
strategies that exist in the generalized design methodology. 
The special function W(t) was proposed to predict the 
structure of the time optimal design strategy. This function 
serves as a principal criterion to compare the different design 
strategies. The best strategy that has the minimal computer 
time at the same time has the largest value of the function 
W(t) at the beginning of the circuit optimization process. 
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