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Abstract- In this study, it has been discussed the 
comparision of nonparametric models based on prediction 
of GDP (Domestic Product) per capita prediction in 
Turkey. It has been considered two alternative situations 
due to seasonal effects. In the first case, it is discussed a 
semi-parametric model where parametric component is 
dummy variable for the seasonality. Smoothing spline and 
regression spline methods have been used for prediction 
of the semi-parametric models. In the second case, it is 
considered the seasonal component to be a smooth 
function of time, and therefore, the model falls within the 
class of additive models. The results obtained by semi-
parametric regression models are compared to those 
obtained by additive nonparametric. 
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I. INTRODUCTION 

It is considered the following basic model 

( ) ( ) ( ) ( ), 1,...,i i i iy t s t z t e t i n= + + =                    (1) 

where the it ’s are  uniformly spaced in [0,1], ( )is t  

denotes  the seasonal component, ( )iz t  represents the 

trend, and ( )ie t  represents the terms of error with zero 

mean and common variance 2
eσ . The model mentioned 

here can be written as, 

, 1,2,..., .i i i iy s z e i n= + + =                  (2) 

It is assumed that the following structure for the trend: 

( ) , 1,2,...,i i iz = f t + ε i n=                   (3) 

where f  is a smooth function in [0,1], and iε ’s are 

assumed to be with zero mean and common variance 2
εσ , 

and different from ie ’s. 

The basic aim is to estimate the functions f and s . 
The function f  is estimated as a smooth function, but the 
estimation of the function s  is different due to 
seasonality. Therefore, it is considered two alternative 
models for the estimation of s . Firstly, it is treated a 
semi-parametric model where parametric component is 
dummy variable for the seasonality. Secondly, it is 
discussed the seasonal component to be a smooth function 
of time, and use a nonparametric method. 

II.SEMİPARAMETRİC ESTIMATION 

It is assume that the seasonality is build as follows: 

1
*

1

( ) , 1,...,
r

i i k ki i
k

s s t D v i nβ
−

=

= = + =∑          (4) 

where r  is the number of annual observations ( r =12) 
and iv ’s are assumed to be with zero mean and 

common variance 2
vσ , and different from the errors in 

(2) and (3). *
kiD ’s are dummy variable that denotes the 

seasonal effects and kβ ’s are parametric coefficients. 

Dummy variables are denoted by *
ki ki riD D D= −  

(where 1kiD =  if .i  observation correspond to the 

kth  month of year, and 0kiD =  otherwise) for 
cancels the seasonal effects when a year is completed 
[5]. By substitution equations (4) and (3) in (2), it is 
obtained as 

1
*

1
( )

r

i k ki i i
k

y D f t uβ
−

=

= + +∑ ,                (5) 

where iu ’s are the sum of the random errors with zero 

means and constant variance 2 2 2 2
u e vεσ σ σ σ= + + . Eq. 

(5) in vector-matrix form can be written  

D= + +y f uβ        (6) 
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where D  is the ( 1)n r× −  matrix, so that 

{ } 1,...,*

1,..., 1

i nT
ki k r

D D
=

= −
= , ( )1 1,..., T

rβ β −=β , ( )1,...,
T

ny y=y , 

( )1( ),..., ( ) T
nf t f t=f ,  and  ( )1 2, ,..., T

nu u u=u . 

Therefore,  

1 0 . . . 0 1 1 0 . . .
0 1 . . . 0 1 0 0 . . .

.
.

.
0 0 . . . 1 1 0 0 . . .

TD

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

Model (5) is called as a semi-parametric model due to 
consist of a parametric linear component and only a 
nonparametric component. The basic purpose, it is 
estimation of the parameter vector β  and function f  at 
sample points 1,..., nt t . For this aim, it is considered two 
estimation methods that called as smoothing spline, and 
regression spline.  

Estimation with smoothing spline: Estimation of the 
parameters of interest in equation (5) can be performed 
using smoothing spline. Mentioned here the vector 
parameter β  and the values of function f  at sample 

points 1,..., nt t  are estimated by minimizing the 
penalized residual sum of squares  

{ } ( )
1

2 2( )

1 0

( , ) ( ) ( )
n

T m
i i i

i
PSS y d f t f u duλ

=

= − − +∑ ∫fβ β             (7) 

where 2[0,1]f C∈  and id  is the ith  row of the matrix 

D . When the 0=β , resulting estimator has the form 

( )1 n
ˆ ˆˆ ( ),..., ( )f t f t Sλ=f = y , where Sλ  a known 

positive-definite (symmetric) smoother matrix that 
depends on λ and the knots 1,..., nt t  (see, [1]; [2]; [3]).  

For a pre-specified value of λ  the corresponding 
estimators for andf β  based on Eq. (5) can be obtained 

as follows [4]: Given a smoother matrix Sλ , depending 

on a smoothing parameter λ ,construct ( )D̂ I S Dλ= − . 
Then, by using penalized least squares, mentioned here 
estimator are given by  

( ) 1ˆ ˆ ˆT TD D D
−

= yβ                     (8) 

( )ˆ ˆS Dλ= −f y β                  (9) 

Evaluate some criterion function (such as cross validation, 
generalized cross validation) and iterate changing λ  until 
it is minimized.  
 
Estimation with regression spline: Smoothing spline 
become less practical when n  is large, because they use 
n  knots. A more general approach to spline fitting is 
regression spline. Smoothing spline require that many 
parameters be estimated, typically at least at many 
parameter as observations. A regression spline is a 
piecewise polynomial function whose highest order 
nonzero derivative takes jumps at fixed “knots”. Usually 
regression splines are smoothed by deleting nonessential 
knots.  When the knots have been selected, regression 
spline can be fit by ordinary least squares. For further 
discussion on selection of knots, see to Ruppert and 
Carroll, 2002.  

It is approximated ( )if t  in (5) by 

0 1
1

( ) ( , ) ... ( ) , 1,...,
K

p p
i i i p i k i k

k
f t f t t t b t i nγ γ γ γ κ +

=

= = + + + + − =∑  (10) 

where 1p ≥  is an integer (order of the regression spline 

and usullay chosen a priori), 1,..., Kb b  are independently 

and identically distributed (i.i.d) with 2(0, )bN σ , 

( )t t+ =  if 0t >  and 0 otherwise and 1 .... kκ κ< <  are 

fixed knots ( 1min( ) ,..., max( )i K it tκ κ< < < ).  

In matrix notation model (5) can be written as 

D Z= + +y bβ η     (11) 

Where 

1
1 1

1

1

1 . . .1 0 . . . 0 1 1 0 . . .
1 . . .0 1 . . . 0 1 0 1 . . .
. . ..
. . ..
. . ..
1 . . .0 0 . . . 1 1 0 0 . . .

n
p p

n

T

p p
n

t t
t t

D

t t

− −

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
 

1 1 1

1

( ) . . . ( )
. .
. .
. .

( ) . . . ( )

p p
K

p p
n n K

t t

Z

t t

κ κ

κ κ

+ +

+ +

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

( )1,...,
T

Kb b=b  is vector of coefficients and 

( ),..., T
nη η1η =  is a vector of the random error. 

Predicted value of ŷ  in (11) is given by  
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( )( )0 1 1 1 1 1 1̂
ˆˆ ˆˆ ˆ ˆˆ ... ... ,..., ,...,

T
p

i p i r K K Kt t D D Z Z b bγ γ γ β β−= + + + + + + +y . (12) 

Regression spline estimators  

( )( )0 1 1 1 1̂
ˆˆ ˆ ˆ ˆˆ ˆ ˆ, ,..., , ,..., ( ,..., )

T

p r kb bγ γ γ β β− =fβ= ,  of ( )fβ,  are 

defined as the minimizer of 

 { }2 2

1 1

( , ) ( )
n K

T
i i i k

i k
PSS y d f t bλ

= =

= − − +∑ ∑fβ β ,    (13) 

where 0λ >  is a smoothing parameter as in (7). As 
λ →∞ , the regression spline converges to a pth  
degree polynominal fit. As 0λ → , the regression spline 
converges to the ordinary least squares (OLS) fitted 
spline. For a pre-specified value of λ  the corresponding 
estimators for and fβ  based on Eq. (12) can be 
obtained as follows [6]: 

( ) 1
1 1ˆ ˆˆ TX X X

−
− −= ∑ ∑ yβ ,    (14) 

where,  2 2ˆ ˆ ˆ( ), 1,2,...,T
b iZZ diag i nησ σ∑ = + = , 

( )2 1
1

ˆˆ ˆˆ ˆˆ( ,..., )T T
k bb b Z Dσ −= = ∑ −f y β              (15) 

The smoothing parameter (penalty parameterλ ) and the 
number of knots K  must be selected in implementing the 
regression spline. However, λ  plays a more important 
role. See Ruppert (2002) for a detailed discussion of the 
knot selection. The solution can be obtained by S-Plus 
software.  

III. NONPARAMETRIC ESTIMATION 

In the previous section it was used semi-parametric 
model for estimation of the parameters in (5). However, 
there are situations in which a dummy variable 
specification does not capture all fluctuations because of 
the seasonal effects. For this reason, in this section it is 
considered a more general case for seasonal component 
as follows: 

( ) , 1,...,i i is g t i nν= + =                (16) 

where g  is an [0,1] and g∈ 2[ , ]C a b , 'i sν are 
denote the terms of random error with zero mean and 
common variance 2

νσ . By substitution of the equations 
(3) and (16) in (2), it is obtained as 

( ) ( ) , 1,...,i i i iy g t f t u i n= + + = ,            (17) 

where 'iu s  are the terms of random error with zero 

mean and constant variance 2 2 2 2
u e vεσ σ σ σ= + + . 

Model (17) mentioned above has a fully 
nonparametric model because of the parametric 
component is missing. These models are called additive 
nonparametric regression models. In order to estimate 

model (17), it can be generalized the criterion (7) and 
(17) in an obvious way. Estimator of the model (17) is 
based on minimum of the penalized residual sum of 
squares [7] 

{ } ( ) ( )
1 1

2 22 ( ) ( )
1 2

1 0 0

( ) ( ) ( ) ( ) ( )
n

m l
i i i

i

PSS y f t g t f u du g u duλ λ
=

= − − + +∑ ∫ ∫f, g    (18) 

The first term in (18) denotes the residual sum of 
the squares (RSS) and this term penalizes the lack of fit. 
The second term multiplicand by 1λ  is denote the 

roughness penalty for the f  and the third term 

multiplicand by 2λ  is denote the roughness penalty for 
g . Firstly, eq. (18) can be written as 

( ) 1 2, ( ) ( )T T T
f gPSS K Kλ λ= − − − − + +f g y f g y f g f f g g      (19) 

Here fK  is a penalty matrix for f  and gK  is a penalty 

matrix for g . Then, by differentiating according to f  
and g , it is obtained as follow: 

( )
1

,
2( ) 2 f

PSS
Kλ= − − − +

f g
y f g f

f
               (20) 

( )
2

,
2( ) 2 g

PSS
Kλ= − − − +

f g
y f g g

g
               (21) 

Afterwards, by making (20) and (21) equal to zero, the 
estimators of f  and g  are defined by  

( ) ( ) ( )
1

2

1
1

1

2

ˆ ( ) ( ) ( )

ˆ

f

g

I K S

I K S

λ

λ

λ

λ

−

−

= + − = −

= + − = −

f y g y g

g y f y f
          (22)          

IV. AN APPLICATION: PREDICTION OF TIME 
SERIAL GDP IN TURKEY 

For the purpose of illustration let us analyze a data set, 
known as the GDP for Turkey. Data related to variables 
used in this study consists of monthly time series which 
starts January, 1984 and ends December 2001, 
comprising = 216 n  observations. Mentioned here 
variables are defined as follow:  
gdp   :  Gross Domestic Product ( TL )   
time : Data monthly from January 1984 up to December 

2001  
1
1

r
k
−
=D  : Dummy variables that denotes the effects 

seasonality  

The main idea of this application presented here is 
to estimate time series and compare the nonparametric 
regression models in section 2 and 3. Semi-parametric 
regression results obtained using smoothing spline with 

2m l= = , which for the method presented section 
three are very similar to nonparametric regression ones 
obtained using the same method. The solution can be 
obtained by S-Plus and R software [8]. 
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A. EMPRICAL RESULTS 

It is discussed a semi-parametric regression 
model where parametric components are dummy 
variables for the seasonality. Results obtained with 
this model are given in Table 1. 

Table1. Results obtained by smoothing spline 

Parametric Part                   
Estimat
e   

St. Error     t value    Pr(>|t|)   

(Intercep
t)  

-17.352  1.84e-01 -94.35  6.38e-16 

S(time,1
5) 

 0.020 9.23e-05  220.90 4.74e-23 

D1              0.019  1.59e-03    11.711  3.61e-24  
D2             -0.073  1.59e-03  -46.235 5.60e-10 
D3              0.019  1.59e-03    11.711 3.61e-24  
D4             -0.014  1.59e-03   -8.935   3.65e-16  
D5              0.019  1.59e-03   11.711 3.61e-24 
D6            -0.014  1.59e-03   -8.935  3.65e-16  
D7              0.019  1.59e-03    11.711 3.61e-24  
D8              0.019  1.59e-03    11.711  3.61e-24  
D9             -0.014  1.59e-03   -8.935  3.65e-16  
D10            0.019  1.59e-03   11.711  3.61e-24  
D11          -0.014  1.59e-03   -8.935  3.65e-16  

Nonparametric Part  
Df   Npar Df Npar F Pr(F) 

S(time1) 1 14 766.07 2.2e-16  
Response: log(gdp); Deviance=0.009; 2R = 0.998;  
MSE=1.767633e-28       

    

According to Table 1, it is shown that both 
parametric and nonparametric coefficients are 
significance. So, we can say that GDP is under the 
effect of months. On the other hand, for example, a one-
unit increase in time corresponds to mean increase of 
0.020 GDP. As shown Table 1, the 2R  value is 99.8 %. 
An 2R  value of 0.998 means that only 98.8 % of 
variability in GDP is predictable using the semi-
parametric model.  

As shown the Table 2, results obtained by 
regression spline is similar to results of the smoothing 
spline. Semi-parametric model is significance because 
of the parametric and nonparametric components. As 
Table 2, GDP is under of the effects of months. Aspect 
of the relation between dummy variables and GDP are 
same for both methods (see the estimate columns of the 
Table 1 and 2). On the other words, while there is a 
positive relation between GDP and D1, D3, D5, D7, D8 
and D10, there is a negative relation between GDP and 
other remain variables. Furthermore, models obtained 
by smoothing spline and regression spline have a very 
small deviance.    

According to Table 3, the effects of interaction 
seasonality and time on GDP are significant in 
statistical. So, curvilinear effects are significant. 

Analogously to semi-parametric models, 96.3 % of 
variability in GDP is predictable by nonparametric 
model. As such in semi-parametric models, additive 
model has a small deviance too.  

The variable in nonparametric part of semi-
parametric model can be only displayed graphically, 
because it can’t be expressed as parametric. Figure 1 (a) 
and (b) shows the estimates (solid) and the 95% 
confidence intervals (dashed) for smoothing spline and 
regression spline methods. As shown Figure 1 (a) and 
(b), shape of the effects of trend on GDP is appears as a 
curve. Figure 2 shows the estimates and 95% 
confidence intervals for additive regression model. As 
such in Figure 1 (a) and (b), the shape of the effects of 
trend on GDP is appears as a curve in Figure 2. 
Mentioned here curve are significant (see Table 3). 

Table2. Results obtained by regression spline 

Parametric Part                  
Estimat
e   

St. Error     t value     Pr(>|t|)   

(Intercep
t)  

10.108  0.000670 15087   2e-16 

D1             0.0080 0.002222   3.635 0.000355 
D2            -0.0318 0.002222   -14.353  2e-16 
D3             0.0080 0.002222   3.635 0.000355 
D4            -0.0061 0.002222   -2.774 0.006083 
D5             0.0080  0.002222   3.635 0.000355 
D6           -0.0061 0.002222   -2.774  0.006083 
D7             0.0080   0.002222   3.635 0.000355 
D8             0.0080 0.002222   3.635 0.000355 
D9            -0.0061   0.002222   2.774 -0.00608 
D10           0.0080 0.002222   3.635 0.000355 
D11         -0.0061 0.002222   -2.774 -0.00608 

Nonparametric Part  
Df   Npar Df Npar F Pr(F) 

S(time) 8.812         9 617.7   2e-16 
Response: log(gdp); Deviance=0.100304; 2R = 0.965;  
MSE= 7.40571e-27 

 

Table 3. Results obtained by nonparametric regression 

         Df Npar Df  Npar F   Pr(F)     
s(time)         1 3 79.121  2.2e-16 
s(time×D1)   1 3 9.457 8.281e-06 
s(time×D2)   1 3 9.739 5.845e-06 
s(time×D3)    1 3 9.831 5.216e-06 
s(time×D4)   1 3 9.455 8.303e-06 
s(time×D5)   1 3 9.235 1.091e-05 
s(time×D6)   1 3 9.225 1.105e-05 
s(time×D7)   1 3 9.184 1.164e-05 
s(time×D8)   1 3 9.182 1.166e-05 
s(time×D9)   1 3 9.217 1.117e-05 
s(time×D10)  1 3 9.182 1.166e-05 
s(time×D11)  1 3 9.217 1.117e-05 
Response :   log (gdp);    Deviance = 0.224;   2R = 
0.963;   MSE= 4.733165e-30 
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(a): Smoothig spline 

(b): Regression spline 

Figure 1: Estimates (solid) and the 95 % confidence 
intervals (dashed) for semi-parametric regression   
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Figure 2: Estimates (solid) and the 95 % confidence 
intervals (dashed) for additive regression  

V. CONCLUSION 

In this paper it has been discussed two alternative 
models based on nonparametric regression techniques for 
estimation in time series including trend and seasonality. 
Results obtained with these two models have been 
compared to additive model. Some of the performance 
criteria associated with these models have been given the 
following Table:   

Performance criteria of the models   
MSE Deviance 2R  

Smoothing 
spline 

1.76763e-28    0.009 0.998 

Regression 
spline 

7.40571e-27 0.100 0.965 

N.parametric 
model 

4.733165e-
30 

0.224 0.963 

 
These results emphasize that estimates based on 

smoothing spline method is very better than the regression 
spline and additive traditional methods, like a parametric 
linear regression. However, estimates obtained by semi-
parametric regression model using smoothing spline are 
better than results obtained by regression spline and 
additive model.  
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