
 

 

  
Abstract— This paper investigates multiple alternatives to 

predict environmental parameters (temperature and relative humidity) 
inside an intelligent container with the aim of the supervision of cool 
chains. A wireless sensor network will help us to measure those 
parameters in some distributed points of the closed space.  

To achieve the aim of fault detection and also total energy saving 
in the sensor network, there will be several possibilities. This 
research deals with prediction of future values of the environment in 
a few specific sensor nodes by using some of active sensor nodes. It 
inspects several requirements of the predictors to pick out the most 
applicable identification styles among ARX, ARMAX, OE, BJ and 
SS. It employs some key-sensor nodes (KSNs) as predictors of the 
parameters in a few desired sensor nodes (DSNs). The DSNs either 
have already been turned to sleeping mode to reduce battery-
consumption or deactivated due to energy depletion.  
 

Keywords— Prediction, model, temperature, relative humidity, 
air flow  

I. INTRODUCTION 
HERE are lots of research activities in the field of fluid 
dynamics to make thermo dynamical models for 
environmental parameters (EPs) in closed spaces. They 

usually look for a way to improve cooling systems, ventilation 
or to make homogeneity in the space. They modify either the 
quality of supply chain or decrease the energy consumed by 
the cooling systems.  

By using a wireless sensor network, online access to the 
EPs inside of a closed space containers would be possible 
during transportation. Wireless sensor nodes (WSNs) in these 
networks are supplied by batteries and they need to be 
recharged regularly after a while. In some applications there 
are several ways to recharge them automatically by using 
energy harvesting methods. Some other applications develop 
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some recipes to save energy for the sensor networks to 
prolong life time of the batteries. In addition to [14], [15] and 
[16] there are a lot of studies about various styles to save or 
harvest energy for the WSNs. Our approach might be used 
together with the mentioned procedures.  

The evaluation framework presented in this paper provides 
one step towards using predictors to achieve the EPs on slept 
sensor nodes instead of direct measurement. It deals with 
different model structures and alternatives to achieve the best 
prediction results. A Floating Input Approach (FIA) was 
already presented by the authors via [11], [12], [13]. This 
approach introduces a linear multi input-single output (MISO) 
dynamic model to be used between surrounding key- sensor 
nodes (KSNs) and a desired sensor node (DSN).  

There is another work that uses grey-box approach in [1] to 
combine theoretical modeling, parameter identification of 
discrete models and partially known models by using 
optimization techniques. It uses energy balance to achieve to 
transfer functions of transducers. It makes some models for 
any device and then identifies unknown parameters by using 
some separate tests. Under some very special conditions it 
decouples temperature (T) and Relative Humidity (H) and uses 
separate linear transfer functions for them. Analytical and 
numerical models developments to describe the dynamics of 
the cryogenic freezing tunnel system have been mentioned in 
[2]. By a composite model, it uses finite difference methods 
for sizing the tunnel freezer. It also talks about freezing and 
freezer dynamics that is useful to have a view of these 
systems. Reference [3] is a brief review of numerical models 
of F in refrigerated food applications using (k-ε) model and 
also a data-base mechanistic modeling technique. They obtain 
partial differential equations using computational fluid 
dynamics (CFD) which are without general analytical 
solution. It is a simulation tool for modeling of fluid flow 
problems based on the solution of the governing flow 
equation. Although this technique gives high precision, we 
can’t use it, because this process is necessarily iterative and 
requires the solution of a huge number of equations at each 
step. 

To model the 3-D spatio-temporal temperature distribution 
in an imperfectly mixed forced ventilated room for control 
purposes they use a second order model in [4]. It gives very 
good definitions of different models (white, grey and black) in 
a cooling system. It introduces a hybrid between the extremes 
of mechanistic and data based modeling. This so-called data-
based mechanistic (grey box) models provide a physically 
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meaningful description of the dominant internal dynamics of 
heat and mass transfer. It uses model between inlet and outlet. 

It uses static experiments to examine the action of the 
ventilation rate on the spatial temperature homogeneity, while 
keeping the average temperature inside the ventilated chamber 
constant. It emphasizes that increasing the ventilation rate 
decreases the standard deviation of temperature in different 
places. In a specific rate maximum uniformity is achieved. It 
fits a curve to temperature of various places. It uses MBPC to 
optimal control of spatial temperature distribution. It doesn’t 
consider relative humidity. 

A combination of CFD and DBM methods is studied in [5]. 
It outlines a methodology to achieve an accurate model of T in 
a closed space. First of all using k-ε model, turbulence is 
modeled and then a DBM model was formulated from an 
energy balance equation. It can reduce complexity of CFD 
using identification technique. It doesn’t consider relative 
humidity. Some first order models between inlet and 
individual zones, is considered assuming a constant air flow 
rate (F). 

Numerical and experimental characterization of air flow 
within a semi trailer enclosure with pallets has been reported 
in [6]. The effect of air flow pattern on T is given by this 
paper. The numerical modeling of air flow is performed using 
CFD code fluent and second–moment closure, the Reynolds 
stress model (RSM). It demonstrates importance of air ducts in 
decreasing temperature differences throughout the cargo. It 
says that prediction using k-ε models are often not accurate. It 
looks into numerically and experimentally the air flow pattern 
throughout a vehicle enclosure loaded with two rows of pallets 
with and without an air duct system. 

Using CFD method flow pattern inside the working area of 
a pilot scale clean room has been numerically worked over in 
[7]. Two versions of the k-ε turbulence model have been 
tested. To solve transport equations the surfaces bounding the 
domain has been defined clearly during this work. Some 
comparisons between turbulence models have been done. 

As mentioned in [8], there are two ways to define a grey 
box model. One way emanates from the black box model 
frame. A priori knowledge is incorporated as constraints on 
model parameters or variables. Second way is to begin with a 
model originating from mathematical relations, which describe 
the behavior of the system. This means the starting point is a 
specific model structure based on physical relations. 

All models are obtained between system input so-called 
reefer (inlet) and a point in the corresponding space. With the 
mentioned models, the EPs in some DSNs can be changed due 
to variation in the inlet. Some models introduced in the 
mentioned papers, either linear or nonlinear, do not consider 
interconnections of the EPs. Particular conditions and limit 
range of parameter variations of such models are necessary. 
Despite the high precision, complexity makes some of them 
impractical and the rest inaccurate in the present application.  

Nonlinear multivariable nature and interconnections 
between the variables of the EPs in addition to the presence of 
the load as an unpredictable, immeasurable disturbance 
influence of surfaces inside the container increase complexity 

of the model.  
In the present article a brief introduction of a new grey-box 

hybrid model of the EPs between the reefer and a DSN will be 
included. Then, we will use achieved linear multi input-single 
output (MISO) model to obtain some practical results to find 
unknown parameters of the proposed linear dynamic model. 

II. PROBLEM FORMULATION  
Fig.1 illustrates a container with mounted WSNs. There is a 

complicate time and place dependent multi variable model 
between reefer unit (inlet) and each sensor node. 

 

 
 Fig.1. Container with wireless sensor network mounted. 

 
Couplings among the EPs increase difficulties of doing 

independent experiments and also initial conditions make the 
measurement results completely different with the previous 
tests. Any change in T, H and even F in inlet may change both 
T and H in all positions of the desired space. Measurements 
can be affected by disturbances and they might be different 
even in the same place. In our models, obtained from 
surrounding key-sensor nodes (KSNs) and a DSN, every non 
modeled disturbance is modeled as an implicit input change, 
not as a pure disturbance. It is notice that only some of the 
KSNs can be among the system estimators. When a 
disturbance acts on the system, it might excite a few sensor 
nodes and it can be used to initialize the estimators. 
Parameters of the mentioned models are obtained using 
present noise-corrupted data of the KSNs (inputs) and the 
DSNs (output). This procedure implies some models between 
the couples of the KSNs_DSN.  

According with Fig.2 there will be a network with several 
KSNs (K1, …, Km) as input nodes and a few DSNs (S1 and 
S2) as output nodes. KSNs might evaluate measured values 
and do prediction of the EPs in the DSNs and deactivate them 
when the conditions are normal and there are no big changes 
in the environment.  

 

 
Fig.2. Proposed sensor network. 

 
The KSNs can be located everywhere in to the container, 

near the door, near to inlet or surrounding the DSNs, but if 
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they are located in some key points, estimation mismatch error 
due to no considering unpredictable phenomenon would be 
avoided because while identification based on the proposed 
technique, most of uncertainties and disturbances are 
considered indirectly as the input change in the KSNs. 
Disturbance might be applied to the input, system and or to the 
output, but in all cases it influences the outputs (KSNs).  

Assuming excited KSNs as inputs, the input in defined 
MISO system will change and output nodes (DSNs) will be 
influenced of such new inputs. Several MIMO models will be 
created between the KSNs and a DSN (fig.3).  

 

 
Fig.3. Block diagram of a MISO model of the EPs. 

 
Whereas we would like to increase the accuracy of the 

predictions and decrease the total power consumption by the 
wireless sensor network, we are interested in turning more 
sensors to longer sleeping mode. Due to decrease the 
calculation, we would like to reduce the number of the KSNs. 
But, later simulations clarify that the accuracy will be 
increased with increasing the number of these estimators. The 
KSNs have separate influences on a DSN. Considering an F 
direction as a simple example in a three dimensional space, K1 
and K2 can be considered more operative than K3. We will 
obtain a relationship between the KSNs to choose the best 
estimators.  

It will be clarify that using data of a KSN_DSN to make 
single input-single output (SISO) model cannot present 
surrounding influences completely. It can only interpret 
variations of the EPs on a DSN from side of the mentioned 
KSN. Prediction using multi input-single output model 
(MISO) will cause better accuracy than that using SISO 
models. As a result, using more effective KSNs is better. 
Furthermore, whenever sensor failure is occurred in a KSN, 
other KSNs will be able to continue the prediction. There are 
also some KSNs which do not have any influences on the 
DSN, could not help to increase the accuracy. 

III. PROBLEM SOLUTION  
In [11] we started with a hybrid model consisting of 

nonlinear interconnections to attain an estimation of the EPs.  
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(1) 
(TSN, HSN, and FSN) and (Tinlet, Hinlet, and Finlet) are 

respectively the EPs in a SN and inlet. It is noted that, f and g 
are nonlinear interactions. NT, NH, and NF are measurement 
Gaussian noise in the WSNs. GT,F  and GH,F are transfer 
functions of T and H, influenced by F and GF is transfer 
function of F between inlet_SN.  

We assumed reefer unit of the container as input and every 
WSNs as output. Then, we introduced the FIA to simplify it. 
We applied an argument to solve simplified problem. Above 
formulation is not a real super position. That is only an 
assumption.  

The influence of variation in F on linear part of the models 
is considered in the place of poles in linear transfer functions 
and we assign an exponential function to determine these 
influences so that their parameters will be determined while 
operation.  According with [11] to perform the nonlinear part 
we use some basic thermodynamic relations and we have: 
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 (T0, H0) are initial conditions of the EPs between inlet and 

the WSNs, respectively. GT,F and GH,F are identifiable linear 
transfer functions, (3) and (4) illustrate nonlinear and 
stochastic  parts of T and H. To simplify the problem we use 
the advantages of plurality of measuring points in our sensor 
networks. If the EPs in some KSNs_DSN are close enough, 
we may obtain approximate linear models. Those can be 
divided into a set of SISO models and there will be a new 
multivariable matrix equation in the domain Z to solve:  
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(UTi, UHi), (GTi, GHi), and (TDSN, HDSN) are measured inputs, 

linear transfer functions of the KSN (Ki)_DSN and values of T 
and H in the DSN respectively. M(.) and P(.) are for effects of 
the KSNs on a DSN.  
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IV. PREDICTION ALTERNATIVES 
During a field test on a truck in the University of Bremen 

up to 20 data loggers (ibutton) for measuring T and H were 
mounted at the walls, top, bottom, inside a closed box and 
outside the container. Reefer unit (inlet) in the container 
provides only desired T, based on the adjusted set point and F 
and H are dependent variables. The variation depends on 
several factors such as: initial conditions, type and size of 
freight and so on. There are some obstacles against the natural 
path of the air flow and different initial conditions in the 
WSNs because of either positions or corresponding 
measurement errors. To do some simulation based on the 
measured data of the WSNs as shown in fig.4 we chose two 
KSNs and a DSN. We will have different EPs as well as 
delays in K1, K2, and S1. We look for the prediction of the 
EPs in S1. As the first step of estimation, while the KSNs and 
the DSN are active and measure the corresponding EPs, there 
is a separate MISO system for T as well as H with inputs K1 
and K2 and output S1. All unknown parameters in these 
models should be determined using an identification 
technique. In the second step, we can assume KSNs are active 
and there is a failure on the DSN or it is in sleeping mode (to 
achieve to energy saving). Depend on our selection of SISO or 
MISO models, having new inputs, new predictions will be 
possible in the DSNs. 

 

 
Fig.4. A container with mounted data loggers to measure T and H. 
 
According with [9], using model identification schemes 

with the general form of input-output data in (8), we will have 
separate sets of linear transfer functions of T and H both for 
K1_S1 and K2_S1: 
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A, B, C, and D are polynomials of operator (q) and nk is 

delay time of input signal u(t). Also, y(t) and e(t) are output 
and estimation error respectively. As represented in fig.5, 
during the measurement test we opened the door for different 
durations (one minute at t=150, 330, and two minutes at 
t=220). The curve with the less variation is related to a node 
far from the inlet or inside a box, reduces the F rate. The first 
part of the curves is related to loading and turning-on the 
ventilation system and the last part is permanent turning off, 
opening the door to unload the freights out of the container. 
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Fig.5. Actual T and H inside and outside the container (Ts= 1 min). 

 
Some parameters, influenced on the quality of estimation:   
1. Different estimation methods such as ARX, ARMAX, 
OE, BJ and SS to see the corresponding differences.  

2. Difference of accuracy of the estimation using other 
number of data-samples in learning stage.  

3. Investigation of different adaptation indexes  
4. Observing the influence of the number of KSNs and 
model order on the estimators.  

5. Using either online or offline predictions.  
6. Using suitable sensor nodes. 

V. COMPARING DIFFERENT ALGORITHMS 
Assuming only one KSN as estimator and one DSN (S1) as 

the object of estimation, and having its actual measurement, 
we will attain different results using ARX, ARMAX, OE, BJ 
and State Space methods in another experiment.  

Whereas order one can’t cause a good performance, a third 
order linear model was chosen and unknown parameters was 
obtained via the mentioned approaches. At the first step we 
studied the effect of model structure on the performance of 
prediction. The black curve represents actual measurement of 
temperature on S1 and the others show different predictions. 
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Fig.6. Prediction using different off-line methods. 

 
According with fig.6, using previous results of measured 

temperature we used 500 samples out of 691 to make a model 
and then used the remained samples to validate that model.  It 
represents that the methods BJ, ARMAX and OE provide a 
better adaptation to actual measurement with the same quality, 
better than state space (SS) method. Due to good flexibility of 
ARMAX method as well as less amount of calculations in 
compare with the other schemes such as Box-Jenkins in 
addition to achieving to the same quality of estimation leads 
us to choose this routine among the other ways.  

VI. RESULTS WITH DIFFERENT DATA NUMBER 
A very common question is that how many samples are 

enough to a good estimation?  
In our thermo dynamical system, answer to this question is 

influenced of a few parameters such as the situation of 
measured inputs (measured temperature in the estimator 
KSNs). If they don’t have any big change, prediction is not too 
sensitive to the number of data-samples to create the model. 
This means, we may use less number of measured data to 
make the model and then use that model to predict output 
accurately. However, when we have big variations in inputs, 
we should consider them in the obtained model. Because, it 
makes clear we have much variation around the desired sensor 
node so that we should be cautious. In this case we need more 
samples to make more accurate model to have better 
prediction.  

We changed the number of data-samples for estimating and 
then we applied complete range of measured-data and 
assessed validity of models. Obviously, when the number of 
data is reduced, some methods can’t be converged and the 
performance of prediction is relatively weak.  

Achieved model can be used for predicting the EPs in the 
new situations provided that it already consists of relatively 
similar variations in the learning section. Having ARMAX 
method, fig.7 shows increasing data number up to 500 out of 
691 provides better performance and increasing the samples 
more than 500 changes the quality little.  Then we can say that 
in most cases 70 % of whole range of data horizon is enough 
to have an acceptable prediction in 30 % of the rest. Increasing 
the order more than three causes no big improvement.  
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Fig.7. Comparison of different data number used for model making 

VII. DIFFERENT INDEXES OF FITTING 
We want to find the best estimators in the stage of learning, 

before using the achieved models as predictors in the rest of 
procedure. There are several indexes: 
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Table 1 represents the result of a comparative study in case 

various conditions applied to estimators. Above indexes 
candidate separate estimators having different samples of data, 
orders, and indexes. As a general note, bigger NC and %FIT 
or smaller SSE cause more careful estimation.  

The bold numbers in the rows emphasize the best 
estimators. Usually In case enough number of data, high order 
MISO model causes the best estimation. Then we recommend 
using either the MISO models or SISO model by using sensor 
nodes with more fitting index with output data. Those KSNs 
have more correlation with the DSN. Two columns in the left 
side of the table represent measured values and the others 
assign to the estimation results. The column so-called selected 
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results, represents the amount of parameters such as NC, 
%FIT and SSE for different kinds of estimation. For instance 
with 100 samples out of 429, measured value of K2 has more 
NC than K1 (two columns in the left side) and High order 
MISO model with NC= 0.936 has the most NC among the 
other orders of K1-S1 or K2-S1. Also this estimation has the 

most %FIT and SSE among the other estimations. Only for 
used sample= 200 the best estimation is obtained by low order 
MISO. Because, with less number of data, model is not 
containing the whole conditions and therefore cannot be used 
to predict the rest of data having all input data. To have a good 
model we need to have enough data. 

 
Table 1. An example of choosing the best estimators in case different number of data, indexes, orders, SISO and MISO For Estimating H

M
ea

su
re

d 
K

1 

M
ea

su
re

d 
K

2 

A
ve

(K
1,

K
2)

 

Lo
w

 o
rd

er
  

(K
1-

S1
) 

H
ig

h 
or

de
r 

 (K
1-

S1
) 

Lo
w

 o
rd

er
 

 (K
2-

S1
) 

H
ig

h 
or

de
r  

(K
2-

S1
) 

Lo
w

 o
rd

er
  

M
IS

O
 

H
ig

h 
or

de
r 

M
IS

O
 

In
de

x 

Se
le

ct
ed

 
R

es
ul

ts
: 

U
se

d 
Sa

m
pl

es
 

To
ta

l S
am

pl
es

 

-0,929 0,956 0,361 0,309 0,488 0,442 0,884 0,837 0,936 N.C. 0,936 
      -12,8 7,6 -13,6 -15,1 15,9 17,9 Fit (%) 17,9 

255,7 92,3 476,5 317,7 260,3 320,0 324,1 236,8 231,4 SSE 231,4 
100 429 

0,363 0,560 0,501 0,232 0,389 -0,073 0,328 0,562 0,331 N.C. 0,562 
      -9,5 -76,0 -135,1 -195,5 0,2 -93,2 Fit (%) 0,2 

92,9 229,7 248,9 20,2 32,4 43,3 54,4 18,4 35,6 SSE 18,4 
200 429 

0,290 0,426 0,375 0,298 0,250 0,162 0,357 0,610 0,664 N.C. 0,664 
      4,3 -2,2 0,7 1,1 19,0 23,7 Fit (%) 23,7 

156,0 267,1 248,9 17,6 18,8 18,3 18,2 14,9 14,1 SSE 14,1 
300 429 

0,233 0,344 0,303 0,121 0,359 0,190 0,426 0,611 0,728 N.C. 0,728 
      0,1 6,4 1,0 9,3 19,5 31,0 Fit (%) 31,0 

178,3 312,4 248,9 18,4 17,2 18,2 16,7 14,8 12,7 SSE 12,7 
400 429 

0,227 0,348 0,303 0,300 0,612 0,148 0,545 0,625 0,764 N.C. 0,764 
      3,3 18,1 0,9 16,2 18,7 35,2 Fit (%) 35,2 

192,3 327,8 248,9 17,8 15,1 18,3 15,4 15,0 11,9 SSE 11,9 
429 429 

VIII. MODEL ORDER AND NUMBER OF KSNS 
Because of being time consume and causing over fitting 

problems, model orders more than three are not suitable in this 
application. Although measured K1_S1 has less covariance 
than K2_S1, using both K1 and K2 has more covariance than 
using each of them individually, because a MISO model can 
consider the effect of environment around of a DSN in 
different directions. To select either one or more KSNs 
provided that there are no additional conditions, these steps 
should be followed:  

(1) Large number of data of (KSNs) and the DSN, enough 
to estimate is necessary. 

(2) Covariance matrix for KSNs_DSN should be computed. 
(3) After sorting the normalized covariance the best 

estimators are those with bigger NC.  
(4) Picking up the number of the estimators for each DSN 

depends on the number of all KSNs and the DSNs and 
capability of the processor and required accuracy.  

Using the experiments by ARMAX method we will 
compare the results through fig.8 and fig.9, when we use both 
one and two KSNs as the estimator. MISO model is more 
robust than SISO model. However, with proper KSNs, SISO 
model needs less calculation and gives reasonable prediction. 
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Fig.8. Comparing the result of prediction of Temperature (T). 
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Fig.9. Comparing the result of prediction of R. Humidity (H). 

IX. ON-LINE OR OFF-LINE AND AVERAGE TECHNIQUE 
Based on fig.10 and fig.11, using on-line estimation we 

obtain very good accuracy, but to use for energy management 
system that we need large number of prediction points, it can’t 
be a good choice. In this case off-line estimation which uses 
all previous data of system gives better performance. 
However, it is suitable to use in short horizon predictions. 
Then, it is applicable in fault diagnosis.  
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Fig.10. Off-Line estimation using 300/429 samples  

 
The simplest way to estimate the EPs in a sensor node is 

finding the average of the EPs from the surrounding WSNs. 
Fig.11 states that it can’t be a good estimation, but it is a 
reliable amount not far from the others. This value can be used 
when we lose all estimation in the real application. 
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Fig.11. Off-Line estimation using 300/429 samples  

X. PREDICTION IMPROVEMENT 
There will be several periods of learning and predicting 

working the implemented approach. In the first learning stage 
we make a model and latter, in the first prediction stage, 
having the present inputs, we use the model to predict output.  

Although we would like to have a continuous curve 
consisting of learning (model making) and prediction stages, 
always value of prediction is not fit with the measurements. It 
means that when we start second stage of measuring, the first 
measured data is different with the last predicted data of 
former prediction stage. We are not interested in to have such 
difference in the first part of each measurement stage.  

Fig.12 is an actual prediction based on the achieved model 
from a part of whole data. There are some differences between 
actual measurement and prediction. Particularly when using 
SISO model either K1 or K2 don’t make very good prediction 
where the MIMO model causes better fitted prediction.  
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Fig.12. Estimation using K1 (%FIT= 40.78). 

 
To explain whole procedure, fig.13 shows an example of 

separate learning and Prediction stages. Obviously it clarify 
the differences mentioned before. Input is the measured values 
by a KSN which is always available. 
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Fig.13. Whole stage of estimation and prediction  

 
To move the green curve, obtained by predictors to blue 

curve in fig.14 we use a formula in the following: 
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(t0 and t1) are respectively starting time of the first and 

second measurements. (y^last(t) and yfirst(t)) are the last point of 
prediction and first point of second measurement. and ynew(t) is 
the new improved prediction.  In this way we will be able to 
move the last point of prediction to the first point of the next 
stage of measurement. Other points of prediction will also be 
moved linearly and the first point of prediction won’t change. 
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Fig.14. Primary prediction and its improvement. 

XI. CHOOSING IMPROPER SENSOR NODES AS ESTIMATOR 
 

Models of T, H, and F can be independent if we use 
appropriate KSNs as estimators. Fig.15 exhibits the 
measurements of three SNs. After using these KSNs to predict 
parameters in the DSN, fig.16 shows less accuracy with K1 
(near to reefer unit), far from the DSN and another one (K2) 
near to the DSN. Using both K1 and K2 in a MISO model also 
gives acceptable prediction.  
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Fig.15. Comparing the result of prediction of R. Humidity (H) when a 

far sensor node is chose as predictor. 
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Fig.16. Comparing the result of prediction of R. Humidity (H). 

XII. CONCLUSION 
Different identification schemes to achieve more applicable 

one to implement a new method of estimation of 
environmental parameters inside a closed space container was 
evaluated. We used system identification tool-box of Matlab 
in addition to several programs to simulate different situations.  

This work used actual measurements to evaluate the 
properties of different wireless sensor nodes as estimator and 
predictor with regard to lately introduced Floating Input 
Approach (FIA). The effects of different numbers of data-
samples, various performance indexes as well as different 
numbers of employed WSNs on the accuracy of predictions 
were studied. Furthermore, a way to improve the accuracy of 
procedure was introduced. Implementing the represented 
approaches and calculating the amount of energy saving when 
applying the FIA can be an interesting issue for future works. 
Combining the proposed recipe with the existing battery 
management techniques to achieve a better performance might 
also be of interest to those who are working on energy 
management of Wireless sensor networks. 
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