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Abstract - We study the kernels in the contour integral 
representation of the remainder term of Gauss-Lobatto 
quadratures, in particular the location of their maxim on 
circular and elliptic contours. Quadrature rules with 
Chebyshev weight functions of all four kinds receive special 
attention. We also study a general Gauss Chebyshev-Stancu 
quadrature with double fixed nodes. 
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I.  INTRODUCTION 

   
Let  be a simple closed curve in the complex plane 

surrounding the interval [
Γ

]1,1−  and  be its interior. Let D f  

be analytic in  and continuous on D D . We consider an 
interpolatory quadrature rule    
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denote its node polynomial (which in general depends on ), 
and define: 
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 then, as is well known, the remainder term NR  in (1) admits 
contour integral representation  

( ) ( ) ( )1= ,
2N NR f K z w f z

iπ Γ
∫� dz  (5) 

 where the "kernel"  can be expressed, e.g., in the form 
(see [1] ): 
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Note that Nω  in (3) and (4) may be multiplied by 

any constant 0C ≠  without affecting the validity of (6). It is 
also evident from (6) that  

( ) ( ), = ,N NK z w K z w        (7) 

 
In order to estimate the error in (1) by means of 

( ) ( ) ( ) ( ) ( )12 ,max maxN N
z z

R f l K z w fπ −

∈Γ ∈Γ
Γ- z   (8) 

 where ( )l Γ  is the length of the contour Γ , it becomes 

necessary to study the magnitude of NK  on Γ . This has 

been done in a number of papers (see [1] ) for Gauss-type and 
other quadrature formulae, and for contours Γ  that are either 
concentric circles centered at the origin or confocal ellipses 
with focal points at 1± . The thrust of this work has been 
directed towards upper bounds, or asymptotic estimates, for 
the maximum of NK  in (8). In attempt to remove 

uncertainties inherent in such estimates, W. Gautschi [2] for 
Gauss, Gauss-Lobatto and Gauss-Radau formulae, the precise 
location on Γ  where NK  attains its maximum, and we 

suggested simple recursive techniques to evaluate ( ),NK z w  

for any [ ]\ 1,1∈ −z C . Here we investigate, in the same 

spirit quadrature rules of Gauss-Stancu type, especially for any 
of the four Chebyshev weight functions:  
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II.  SOME GENERAL RESULTS FOR CIRCULAR CONTOURS 

   

In this sections, , = rCΓ { }= : =rC z z r∈C , 

where . For positive weight functions  and quadrature 
rules of Gaussian type, with  it is known from [2] that:  

> 1r w
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We now explore the implications of this results to 

Gauss-Lobatto formulae (subsection 2.1.) and Gauss – Radau 
formulae (subsection 2.2.) 

 
2.1. Gauss-Lobatto formulae  
These are the quadrature rules (1) with N=n+2, 

= 1Nτ − , 1 = 1τ  and , whenever ( ) = 0NR f 2 1nf P +∈  
(the class of polynomials of degree 2n+1). They are clearly 

interpolatory. We denote  and write 

 for the polynomial of degree n (suitably 

normalized) orthogonal with respect to the weight function 
. It is well known that: 
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 from which then follows:  
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Here  is the Kernel for n-point Gauss 

formula relative to the weight function . Since 

( , L
nK w⋅ )

Lw 21 z−  

attains its minimum of  at rC =z r  and =z r− , and since 
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 depending on whether 
( )
( )

w t
w t−

, is nondecreasing or 

nonincreasing respectively. In particular, for the Jacobi weight 

functions ( ) ( ) ( )= 1 1w t t tα β− + , > 1α − , > 1β −  the 

first relation in (13) holds if α β-  and the second if 

>α β . 
 

2.2. Gauss – Radau formulae  
These are pairs of such formulae namely  (1) with 

N= n+1, Nτ = -1, and (1) with N= n+1, 1τ =1, both having 
Rn(f)=0 for f∈  P2n. It suffices to consider one of them, say the 
former since the kernels of the two formulae are simply 

related. If we denote w(-t)=w*(t) and write  ( 1) (.; )N w±Κ for 

the Kernel of the Radau formula with 1τ =  -1 and 1τ =1, 
respectively, a simple computation indeed will show that 

( 1) ( 1) *( , )N z w+ ( ; )N z w−−Κ −Κ = , where bars indicate 

complex conjugation. Therefore,  
 

( 1)( , )N z w+Κ = ( 1) *( ; )N z w−Κ −         (14 ) 

 

i.e., the modulus of ( 1)
N
+Κ  for the weight function at the 

point z has the same value as the modulus of  ( 1)
N
−Κ  for the 

weight function w* at the point   - z , the mirror image of z 
with respect to the imaginary axis. 

For the Radau formula with Nτ = -1, we write 

w ( )t
ℜ = (1+t) w(t) and have, as is well known, 

 

( 1)( ; ) (1 ) ( ; )W n nz w z z wπ ℜ
+ = +      (15) 

 
There folows, similar to the case of Lobatto formulae,  
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Where  is the Kernel for the n- point Gauss 

formula relative to the weight function wℜ . Since   

on  attains its minimum at z = -r, we can now apply the 
second results in (10), giving 
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provided 
( )

( )

w t

w t

ℜ

ℜ −
 is no increasing on (-1,1). Unfortunately, 

this condition is not satisfied for the Chebysev weights w1, w2, 
w3, (cf. (9)). We conjecture, in fact, that the maximum in (17) 

obtained at , rather than , when z r= z = −r 3w w=  

 

III.REMAINDER KERNELS FOR CHEBYSHEV WEIGHT FUNCTIONS 

   
In this section, after some preliminaries on 

orthogonal polynomials, we provide explicit formulae for 
Gauss-Lobatto, and Gauss-Stancu type rules, of ( ),nK w⋅  

when , = iw w ( = 1,2i )

)

 (cf (9)). 

 
3.1  Preliminaries 
  
We shall need some facts about Jacobi polynomials 

with half-integer parameters. They are given here in a form 
general enough to be applicable (if need be) to a Lobatto 
formulae with multiple fixed nodes. 

 
Lemma 3.1.  The polynomial of degree n  

orthogonal on  with respect to the weight functions ( 1,1−

( )
1

2 21 kt
−

+− ,  an integer, is given by 0k . ( ) ( )k
n kT t+  where 

 denotes the n-th degree Chebyshev polynomial of the first 
kind.  

mT

  Proof:  See equations (6.21.7) in [4] and the 
paragraph following that equations.              

The following lemma is also known, but are stated 
here in a form were suitable, for our purposes. We recall that 
Chebyshev polynomials ,  of the second and third kind 

(orthogonal relative to weight functions 

nU nV

(

( ) ( )

( )

sin 1
cos =

sin
1cos
2cos =

1cos
2

n

n

n
U

n
V

θ
θ

θ

θ
θ

θ

+

⎛ ⎞+⎜ ⎟
⎝ ⎠       (18) 

 
Lemma 3.2.  Let  be a polynomial of degree  

orthogonal on 

,n kU n

( )1,1−  with respect to the weight functions 

( ) ( )
1 1
2 2

kt t1 1 +− + , k  an integer. Then>  0.

( ) ( ),0 =n nU t U t

( )

          

( )

( )

( )
( )

, 1, 1

, 1

1=
1

1 1
2

1 1 11 1
2 2 2

n k n k

n k

U t U t
t

n k n k
U

t n k n k

+ −

−

+
+

⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠+
⎛ ⎞⎛ ⎞+ + + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

t  (19) 
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and use the second relation in [4], eq (6.5.4) with 
1=
2

α , 

1=
2
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Lemma 3.3. 
 
Let Vn,k be the polynomial of degree n orthogonal on 

(-1,1) with respect to the weight function (1-t)-1/2 (1+t)1/2+k, 
 are integer. Then 0k .

Vn,0(t)= Vn(t)                
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and use the second relation in [4] with 
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3.2  Gauss-Chebyshev-Lobatto formulae 
  
We begin with the weight functions  and consider 

(1) with , , 
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Now it is well known (cf. [2] pp. 177) that:  
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 where t  and  are related by the familiar conformal maps  u
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2
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 which transforms the exterior of the unit circle 

{ }: > 1u u∈C , into the whole -plane cut along z [ ]1,1− . 

Concentric circles =u ρ , > 1ρ  there by are mapped into 
confocal ellipses  
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 with foci at 1±  and sum of semiarces equal to ρ . 
Substituting (19) in (17) and (18), and noting that 
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Proceeding to the weight function W2, we recall that 
the node , 2 1Nντ ν≤ ≤ − , are now the zeros of  
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From (27), and the second relation in (19), we find  
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 In the case  we have  
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* In the cas ily transfo 4w w=  

( )4 3w t w ( )t= −
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The Kernel for 4w w=  is thus obtained from that for 

3w w=   essentially by reflection on the imaginary axis. 
 
 

3.3  Main results. Gauss-Chebyshev-Stancu type 
formulae 

 
3.3.1.  
We consider a quadrature formulae with double fixed 

nodes 1±  and the weight function , 1=w w = 4N n + , 

= 1Nτ − , = 1Nτ ′ − , 1 1= = 1τ τ ′ , and ( ) = 0R fN  for 
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In the last equality we are based on lemma 1. Results 
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 and with the relations (6) and (32) we have  

or 
equivalently, 
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We recall (11) and operate 
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Therefore finally  
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Remark 1  The kernel of Gauss-Chebyshev-Stancu 

formulae verify:  

( )
( )

( )4 1 221

4, = ,n nK z w K z w
u u

+ +−−
2

)

 

where  represented the kernel of Gauss-Lobatto 

quadrature formulae with simple fixed nodes to the Chebyshev 
function of second kind . 

(2 2,nK z w+

 
This last kernel it was determined in relation [28] by 

the W. Gautschi. 
 
3.3.2. We also consider a quadrature formulae with 

fixed nodes 1Nτ = −  (simple) and '1 1 1τ τ= =

(1 1t−

(double) 

follow that the polynom of fixed nodes is ( ) and 

the weight function . 

)2t+

1ww =

3nΝ = +  and , for any polynom ( ) 0fℜ = 2 2nf +∈Ρ . 

From here the nodes ,2ν ν 1τ ≤ ≤Ν− are the zeros of polynom: 

 

( ) ( )( ) ( ) ( ) ( ) ( )
1 3 1 12 1
2 2 2 21; 1 1 ; 1 1 ; 1 1n n nt t w t t t t +⎛ ⎞ ⎛

⎜ ⎟ ⎜Π ⋅ − + = Π ⋅ − + = Π ⋅ − +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

 ⎞
⎟
⎟
⎠

nd from here we have: a

( ) ( )( ) ( )2
3 1 ,1, 1 1n nz U z+ +z w zω = −    (34) 

 
ut cf. Lemma 3.2. we have: B

( ) ( )
( )

( )
( ),1 1,0 ,0

3 2
1 2

31 1
2

n n n

n n
U t U t U t

t n n
+

⎧ ⎫⎛ ⎞+ +⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠= +⎨ ⎬
+ ⎛ ⎞⎪ ⎪+ +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

or 

( ) ( ) ( )1
1 1 2

1 1 1n n
nU t U t U t

t t n+
+

= + ⋅
+ + +

 n
Thus: 
 

( )
( )( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

21 ,1
3 1 1

1
21

1 1
1

1
1 2

1
1 1

1
2 2

1 1

2 1

1 1
,

1 1 1 2
1 1

1 2
1

2
1

2
1

n
n

n n

n n

n n

n n

t t U t
z w w t dt

z t

t t nU t U t w t dt
z t t n

nU t U t w t dt
z t n

U t U tnw t dt w t dt
z t n z t

n
nu u

ρ +
−

+
−

+
−

+

− −

+ +

− +
= =

−

− + +⎡ ⎤⋅ + =⎢ ⎥− + +⎣ ⎦

+⎡ ⎤+ =⎢ ⎥− +⎣ ⎦

+
+

− + −

Π + Π
= + ⋅

+

∫

∫

∫

∫ ∫

 

Result that: 

( )3 1 1
2 1,
1n n

nz w
nu

ρ + +
Π +⎛ ⎞= +⎜ ⎟+⎝ ⎠u

 (35) 

We recall (34) and operate 
( )21

21
4

u u
z

−−
− = −  we 

obtain : 

( )
( ) ( ) ( )

( ) ( ) ( )

21 2 12 1
3 1 1 1

1
2 12 1

2,
4 1

2
4 1

n nn n
n

n nn n

u u u u n u uw z w
nu u u u

u u nu u u u
n

− − + − ++ +
+ − −

−
− + − ++ +

− ⎡ ⎤− + −⎢ ⎥= − + ⋅
+

=
⎢ ⎥− −⎣ ⎦

− +⎡ ⎤⎛ ⎞− + −⎜ ⎟⎢ ⎥+ ⎝ ⎠⎣ ⎦

 

 
or Kernel, with wellknown formulae, we have F
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( ) ( )
( )

( ) ( )

3 ; 1
3 1

3 ; 1

1
1 22 1

;

2 1
1

2
4 1

n z w
n

n z w

n

nn n

z w

n
n uu

u u nu u u u
n

ρ

ω

π

+
+

+

+

− − + − ++ +

Κ = =

+⎡ ⎤− +⎢ ⎥+⎣ ⎦

− +⎡ ⎤⎛− + −⎜⎢ + ⎝ ⎠⎣ ⎦
1n ⎞
⎟⎥

 

and 
 

( )

( ) ( ) ( )

3 1

1 1 22 1

;
1 2

4 1
2
1

n

n nn n

z w
n

u n
nu u u u u u u
n

π

+

+ − − + − ++ +

Κ =

+
+

+− ⋅
+ ⎛− − + −⎜ ⎟
+ ⎝ ⎠

1n ⎞

)

 (36) 

 
Remark 2: The Kernel  verify: (3 1;n z w+Κ
 

( )
( )

( )3 1 2 32
2; ;

1
n n

nz w z w
n

+ +Κ = Κ
+

 

Where  represented the Kernel of Gauss- 
Lobatto quadrature formulae with simple fixed nodes to the 
Chebyshev weight function of third kind. 

(2 3;n z w+Κ )

 
3.4.Chebyschev-Radau formulae  
 
In analogy to (19) one has 

( )

( ) ( )
( )

1

1
3

1

,
1

2

1

n n
n

n
n

u uV z
u

V t
w t dt

z t u u

π

+ −

−

+
=

+

=
− −

∫
         (37) 

 
The first relation follows from the second relation in (14) by 
writing all cosines in exponential form, using Euler’s formula, 

and then putting iu e θ= . To prove the second relation, 
substitute  

cost θ= to obtain: 
 

( ) ( )

( )

1
3

1 0

0

1 1cos cos
2 22
cos

cos 1 cos
cos

n
nV t

w t dt d
z t z

n n
z

π

π

θ θ
θ

θ

θ θ
θ

−

⎛ ⎞+ ⋅⎜ ⎟
⎝ ⎠= =

− −

+ ⋅
−

∫ ∫

∫

 

 
And then use Equation (5.3) in [1] and the equation 
immediately following it to evaluate the last integral. For 

reasons indicated in Subsection 2.2, we consider only Radau 
formulae with the fixed point at -1. Thus, 

1, 1nN n τ= + = −  in (1), and ( ) 0N fℜ =  for 

2nf ∈Ρ
, 1, 2,3, 4iw i

. We treat in turn the four weight functions 

=  (cf. (9)) 
 
* For 1w w= , in wiew of 

( )( ) ( ); 1n t w wΠ ⋅ + 1 ;= Π ⋅ 3n , we can take  
 

( ) ( ) (1 1; 1n z w z V zω + = +

( )

)n , which, by the first relation 

in (37) and 
21

1
2

u
z

u
+

+ = , gives 

 

( ) ( ) ( )1
1 1

1; 1
2

nn
n z w u u uω − +
+

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 

And by the second relation in (37)  
 
 

( )
( )

1 1
2;
1

n n
z w

u u

πρ + =
−

,          hence 

 
 

( )
( )( )1 1 2 2 1

4;
1 1

n n
uz w

u u

π
+ +

Κ =
− +

 (38) 

 
* In the case 2w w= , we are led to 

( )( ) ( ) ( )
1 3
2 22; 1 ; 1 1n nt w t t

⎛ ⎞
⎜ ⎟Π ⋅ + = Π ⋅ − +
⎜ ⎟
⎝ ⎠

 

And may apply Lemma 3.2. ( ) to obtain 1Κ =
 

( ) ( ) ( )

( ) ( )

1 2 ,1

1

; 1

2
1

n n

n n

z w z U z

nU z U z
n

ω +

+

= + =

+
+

+

 

Using (19) we find 
 

( )
( ) ( )

1 2

2 12 1
1

,

1 2
1

n

n nn n

z w

nu u u u
nu u

ω +

− + − ++ +
−

=

+⎧ ⎫⎛ ⎞− + −⎜ ⎟⎨ ⎬+ ⎝ ⎠⎩ ⎭−

 

 
And 

( ) 1
1 2 1

2;
1n n

nz w u
nu

πρ −
+ +

+⎛ ⎞= +⎜ ⎟+⎝ ⎠
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Giving 
 

( )

( )
( ) ( )

1 2

2 1

1 2 12 1

,
21
1
2
1

n

n n nn n

z w
nu u u
n
nu u u u u
n

π

+

− −

+ − + − ++ +

Κ =

+
− + −

+⋅
+ ⎛ ⎞− + −⎜ ⎟+ ⎝ ⎠

(39) 

* For       since 3w w=

 ( )( ) ( ) ( )
1 3
23; 1 ; 1 1n nt w t t

⎛ ⎞
⎜ ⎟Π ⋅ + = Π ⋅ − +
⎜ ⎟
⎝ ⎠

2  we can 

appeal to Lemma 3.3 (with K=1) and obtain, similary as 
above, using (37) , that 

( )

( ) ( )

1 3

1

12 1

,
2 3

2 1 2 1
2 31
2 1

n

n nn n n−

z w
nun n

nnu u u u u
n

π

+

−

− ++ +

Κ =

+
++ +⋅ ⋅

+− + + +
+

2

(40) 

* Finally, when , we have  so that 

, and we find using (19) 
that 

4w w=

(, 1 z= +

( ) 41 t w w+ =

)n( ) ) (1 4n z w U zω +

 

( )
( ) ( )1 4 1 11

2 1,
1

n n nn
uz w

u u u u

π
+ + − ++

−
Κ = ⋅

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

(41) 

* We also consider a quadrature formulae with double fix 
node -1 and the weight function 1w w= , 

 and  for 

   [3]. 

'2, 1N Nn τ τΝ = + = = −

2 1nf +∈Ρ
( )N fℜ 0=

 The nodes fixed polynom’s is in the form ( . From 

here the nodes 

)21 t+

ντ , 2 N 1ν≤ ≤ −  are the zeros of the 
polynom  

( )( ) ( ) ( )
1 32
2 21; 1 ; 1 1n nt w t t−⎛

⎜ ⎟Π ⋅ + = Π ⋅ − +
⎜ ⎟
⎝ ⎠

⎞
 

From Lemma 3.3. (K=1) results for nodes polynom’s that: 

( ) ( ) ( )

( ) ( ) ( )

2
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1
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Than, from relation (4) we have: 
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From here results: 
( )

( ) ( )

2 1

1

2 12 1

,
2 3

24 2 1
2 31
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n

n nn n

z w
nuu n
nu u u u u u
n

π

+

−

− + n+ + −
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+
+

+⋅ ⋅
+− + + +
+

 (42) 

 

IV. THE MAXIMUM OF THE KERNEL FOR CHEBYSEV WEIGHT 
FUNCTIONS 

 
 4.1. For  we have only empirical and 

asymptotic results. The computation shows that 
2=w w

( )2 2,nK z w+ , z ρε∈  attains its maximum on the real axis 

if  or . If n  is odd and , the maximum is 
attained on the real axis if 1 <

= 1n = 2n 3n ≥
n<ρ ρ , and on the imaging 

axis if <nρ ρ  (at either place if = nρ ρ ). 

If  is even, the behavior is more complicated: 
we have a maximum on the real axis if 1 <

4n ≥
< nρ ρ′ , on the 

imaging axis if <nρ ρ , and in between if < <n nρ ρ ρ′ , 

where nρ′ , nρ  are certains numbers satisfying 1 < <n nρ ρ′ . 

Numerical value for ( )1 20= 3n  have been determined by a 
bisection procedure in [5] and are shown in Table 1. 
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Table  1:  
   

  n    nρ′    nρ   
3     1,4142  
4   1,2093   1,5955  
5     1,1170  
6   1,0822   1,4483  
7     1,0580  
8   1,0451   1,3671  
9     1,0350  
10   1,0287   1,3138  
11     1,0235  
12   1,0199   1,2756  
13     1,0169  
14   1,0147   1,2466  
15     1,0127  
16   1,0113   1,2237  
17     1,0099  
18   1,0088   1,2051  
19     1,0080  
20   1,0073   1,1896  

 
  
The empirical observations above can be verified 

asymptotically as 1ρ2 , or as ρ →∞ , for any fixed . In 
the just case a lengthy calculation reveals that when 

n
= 0θ  

(i.e., 
1

=
2

z ρ ρ+ −

) 
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⎝ ⎠

−
+ + +

∼

∼ 21 (43) 

 
 
 

The maximum of kernel ( )4 ;nK z w+

( )

( )
( )

( ) ( )( )( )
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+
∈

+−∈

−

− −−

−

+ + +−

− −
+ + +

∼

∼ ∼

∼

2

 

whereas, for other values of θ , including =
2
πθ . 

 
4.2. Radau formulae; circular contours. The case w1. 

again, is amenable to analytic treatment. We now have  
iz re θ= , > 1, and r

2 21 i iu z z e r r e 2θ θ−⎛ ⎞= + − = + −⎜ ⎟
⎝ ⎠

, 

where the branch of square root is taken that assigns positive 
values to positive arguments. There follows 
 

1
2 2

2 1
1 2

1
i iu e r e

u u u
θ θ

−
−

−
⎛ ⎞= = −⎜ ⎟
⎝ ⎠− −

 

 

Hence                
2 2

1

1 2 1

u

u r
≤

− −
, 

The bound being attained for 0θ = and θ π=  . 
Furthermore,  
 

( )2 1 2 12 1 2 2

2 1 2 1
2 2 2

1

1 1

n n in i

n n
i

u r r e e
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+
− ++ −
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−

⎛ ⎞

1

+ = + − +⎜ ⎟
⎝ ⎠

⎛ ⎞≥ + − − ≥ + − −⎜ ⎟
⎝ ⎠

≥

 1  is 
asymptotically determined by the:  

 
 

with equality holding for θ π= . Consequently,  

( ) ( )1 1 1 1

1 2 1

max ; ;

4 1

1

n n
z Cr

n

K z w K r w

R R R

π
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− +
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− −

=

(44) 
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where 2 1R r r= + − . (45) 
 
Theorema 1 
The kernel of the (n+1) –point Radau formula (with fixed 
node at -1) for the Chebyshev weight function w1 attains its 
maximum modulus on C  on the negative real axis; the 
maximum is given by (44), (45). 

r

For w=w2, we conjecture  
 

 

( ) ( )

( )
( ) ( )

1 2 1 2

1

2 2 12 1

max ; ;

1
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1
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n n
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n n nn n
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+ ⎛ ⎞ ⎛− − −⎜ ⎟ ⎜+ ⎝ ⎠ ⎝

⎞⎟
⎠

 

 
 

Where the denominator is easily showmn to be positive for 
R>1, and for , 3w w=
 

( ) ( )

( ) ( )

1 3 1 3

1 12

max ; ;

2 1
2 1 2 3

2 11
2 3

n n
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n nn n

K z w K r w
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nRR R R R R
n

π
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∈
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+
++ +

+− ⎛ ⎞− + −⎜ ⎟
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1 n−

, 

 
where R is given by (45). 
When , the Kernel is sufficiently simple to be treated 

analytically. Note, first of all, we have 
4w w=

u R≥  (with equality 

for θ π= ) hence  
 

( )1 11 1
1 1

1 1n nn n
n n

u u u R
Ru

− + ++ +
+ +

− ≥ − ≥ − , 

Again with equality holding for θ π= . Next, there follows 
21 1

1 1
z u
z u
− −⎛ ⎞= ⎜+ +⎝ ⎠

⎟ , so that 

4 2
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Here again, the bound is attained for θ π= . Consequently, 
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n n
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R
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+
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(46) 

 
This proves 
 
Theorema 2 
The kernel of the (n+1) – point Radau formula (with fixed 
node at -1) for the Chebyshev weight function w4 attains its 
maximum modulus on Cr on the negative real axis; the 
maximum is given by (46). 
 

4.3. Radau formulae; eliptic contours.  

Putting iu e ϑρ= in (38), one obtains, for 1w w=  
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4 2 4 2 2 1 2
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Which clearly takes on its maximum at ϑ π= . Thus 
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1
1 2 2 1
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1 4
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n
z

n n

K z w
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πρρ ρ
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+
∈

−
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 (47) 

 
and we have 
 
Theorema 3 
The kernel of the (n+1) – point Radau formula (with fixed 
node at -1) for the Chebyshev weight function w1 attains its 
maximum modulus on ρε , on the real axis; the maximum is 

given by (47). 
 
For 2w w= and 3w w= , the kernel is found by 
computation to behave more curiously. In the former case, we 
have a situation similar to the Lobatto formula for the same 
weight function, namely, the maximum is attained on the 
negative real axis, when n= 1,2,3, and also when n , but 4≥
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 then only if '1 nρ ρ< < or nρ ρ< , where '
nρ , nρ  are 

shown in Table 1; otherwise, the maximum point moves on 
the ellipse ρε  from somewhere close to the imaginary axis to 

the negative rael axis as ρ increases. 
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