
 

 

  
Abstract— In longitudinal studies of disease, patients can 

experience several events through a follow-up period. In these 
studies, the sequentially ordered events (gap times) are often of 
interest. The events of concern may be of the same nature (e.g. cancer 
patients may experience recurrent disease episodes) or represent 
different states in the disease process (e.g. alive and disease-free, 
alive with recurrence and dead). If the events are of the same nature 
this are usually referred as recurrent event, whereas if they represent 
different states (i.e. multi-state models) they are usually modeled 
thought their intensity functions. In this paper we present 
nonparametric estimators for several quantities in a progressive three-
state model. We present a simple estimator for the bivariate 
distribution function for censored gap times and estimators for the 
transition probabilities. The proposed methods can be easily extended 
for the progressive k-state model (with a vector of k gap times). 
Another major goal is to study the relationship between the different 
covariates and disease evolution. The proposed methods were applied 
to a database on breast cancer from Galicia, Spain. Software (in R) 
implementing the methods proposed in this paper were developed by 
the authors. 
 

Keywords—bivariate censoring, Kaplan-Meier, Multi-state 
model, Proportional Hazards Model. 

I. INTRODUCTION 
N many medical studies, patients may experience several 
events. The analysis in such studies is often performed 

using multi-state models [1]-[4]. These models are very useful 
for describing event history data offering a better 
understanding of the process of the illness, and leading to a 
better knowledge of the evolution of the disease over time. 
Issues of interest include the estimation of progression rates, 
assessing the effects of individual risk factors, survival rates or 
prognostic forecasting.  
     The complexity of a multi-state model greatly depends on 
the number of states defined and by the transitions allowed 
between these states. The simplest form of multi-state model 
is the “two-state” model, or mortality model, for survival 
analysis. Splitting the “Alive” state from the simple mortality 
model for survival data into two transient states, we therefore 
obtain the simplest progressive three-state model, illustrated 
in Figure 1. It has three states and the only possible transitions 
are 1→2 and 2→3. Note that for the progressive three-state 
model we may assume that the transition intensity from state 2 
into state 3 might depend, in some way, on the entry time in 
state 2, denoted by t12. 
 

 
 

 
Fig. 1 Progressive three-state model 

 
  The scope of multi-state models provides a rich framework 
to handle complex situations involving more than two states 
and a number of possible transitions among then. The most 
common models in literature include: the progressive k-state 
model (which is a generalization of the mortality model and 
the progressive three-state model), depicted in Figure 2; the 
illness-death model, depicted in Figure 3; the bivariate model 
and the competing risks model (not shown).   

Despite its potentialities, multi-state modelling is not used 
by practitioners as frequently as other survival analysis 
techniques. Lack of knowledge of the available software as 
well as misunderstanding of what multi-state modelling’s 
advantages rely on, are probably responsible for this lack of 
popularity. We believe that the present paper contributes to fill 
an existing gap by presenting new estimation methods for 
several functions of interest in medical studies. The proposed 
methods can be implemented using software developed by the 
authors. Specifically, we focus on the three-state model of 
Figure 1. In this model, the times between consecutive events 
(which define states 2 and 3) are often of interest. In the scope 
of this model we present a nonparametric estimator of the 
bivariate distribution function of the gap times. Some related 
problems as the estimation of the marginal distribution of the 
second gap time will be discussed. Estimators for the 
transition probabilities are also given. 
 

 
Fig. 2 Progressive k-state model 

 
 

 
Fig. 3 Illness-death model 

  
     The layout of this paper is organized as follows: notation 

is introduced and nonparametric estimators for bivariate 
distribution function and transition probabilities are presented 
in Section 2; regression methods are discussed in Section 3, 
focusing on the proportional hazards model; an example of 
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application to a real breast cancer data set is presented in 
Section 4. Finally, we conclude with a discussion section.  

II. NONPARAMETRIC ESTIMATORS 
In this section we present nonparametric estimators for the 
progressive three-state model. We review some of the methods 
proposed in the literature and propose new estimators for 
several functions. The idea behind the new estimators 
proposed below is using the Kaplan-Meier estimator 
pertaining to the distribution of the total time to weight the 
data.  

Multi-state process are characterized through: transition 
probabilities between states h and j that we express as 

,ݏሺ ሻݐ ൌ ܲሺܺሺݐሻ ൌ ݆|ܺሺݏሻ ൌ  ௦ିሻܪ,݄
ݏ   ߪ௦ି ሺܪ where ,ݐ െ  ሻdenotes the history of theܽݎܾ݈݁݃ܽ
process and is generated consisting of the observation of the 
process over the interval ሾ0,  ሾ; or through transitionݏ
intensities that we express as 

ሻݐሺߙ ൌ lim
∆௧՜

,ݐሺ ݐ  ሻݐ∆ ⁄ݐ∆  
representing the instantaneous hazard of progression to state j 
conditionally on occupying state h, and that we shall assume 
exist. 

A number of possible models for the transition rates have 
been studied. These include:  
(a) Time-homogeneity: the intensities are constant over time, 
that is, independent of t; 
(b) The Markov assumption: the transition intensities only 
depend on the history of the process through the current state; 
(c) The semi-Markov assumption: future evolution not only 
depends on the current state h, but also on the entry time ݐ 
into state h. Therefore we may consider intensity functions of 
the general form ߙሺݐ, ݐ െ  ሻ or, as the special homogeneousݐ
case ߙሺݐ െ  .ሻݐ
     Consider the progressive three-state model depicted in 
Figure 1. Let ሼܺሺݐሻ, ݐ  0, ܺሺ0ሻ ൌ 1ሽ denote the underlying 
stochastic process where ܺሺݐሻ denote the state being occupied 
at time t, for which all individuals are in state 1 at time zero. 
We represent the stochastic behaviour of the process by a 
random vector ሺ ଵܶଶ, ଶܶଷሻ, where ܶ is the potential transition 
from state h to state j, 1  ݄ ൏ ݆  3. The pair ሺ ଵܶଶ, ଶܶଷሻ is a 
pair of gap times of successive events, which are observed 
subjected to random right-censoring. Let C be the right-
censoring variable, assumed to be independent of (T12,T23) and 
let ܻ ൌ ଵܶଶ  ଶܶଷ be the total time. Because of this, we only 
observe ൫ ෨ܶଵଶ, ෨ܶଶଷ, ∆ଵ, ∆ଶ൯, 1  ݅  ݊, which are n 
independent replications of ൫ ෨ܶଵଶ, ෨ܶଶଷ, ∆ଵ, ∆ଶ൯, where ෨ܶଵଶ ൌ
ଵܶଶ ר ଵൌ∆ ,ܥ ሺܫ ଵܶଶ  ሻ, and ෨ܶଶଷܥ ൌ ଶܶଷ ר ଶ, ∆ଶൌܥ
ሺܫ ଶܶଷ  ଶܥ ଶሻ, withܥ ൌ ሺܥ െ ଵܶଶሻܫሺ ଵܶଶ   ሻ the censoringܥ
variable of the second gap time. Note that ∆ଶൌ 1 implies 
∆ଵൌ 1. Hence ∆ଶൌ ሺܻܫ  ሻ. Define ෨ܻܥ ൌ ܻ ר  and let H and ܥ
G denote the distribution functions of  ଵܶଶ and C, respectively. 
Since ଵܶଶ and C  are independent, the Kaplan-Meier product-
limit estimator based on the pairs ൫ ෨ܶଵଶ, ∆ଵ൯’s, consistently 
estimates the distribution H. Similarly, the distribution of the 
total time may be consistently estimated by the Kaplan-Meier 

estimator based on ൫ ෨ܻ, ∆ଶ൯’s, and the distribution of C can be 
consistently estimated by the Kaplan-Meier estimator based on 
൫ ෨ܻ, 1 െ ∆ଶ൯’s. Because ଶܶଷ and ܥଶ will be in general 
dependent, the estimation of the marginal distribution for the 
second gap time is not a simple issue. The same applies to the 
bivariate distribution function ܨଵଶሺݔ, ሻݕ ൌ ܲሺ ଵܶଶ  ,ݔ ଶܶଷ 
 ሻ.This issue have received much attention recently. Amongݕ
others it was investigated by Lin et al. [5], Wang and Wells 
[6], Wang and Chang [7], Peña et al. [8], van der Laan et al. 
[9] or van Keilegom [10].  
     Introduce  
,ݔଵଶሺܨ ሻݕ ൌ ∑ ܹܫ൫ ෨ܶଵଶ  ,ݔ ෨ܶଶଷ  ൯ݕ

ୀଵ                              (1) 

where ܹ ൌ
∆మ

ିோାଵ
∏ 1 െ

∆మೕ
ିோೕାଵ

൨ିଵ
ୀଵ   is the Kaplan-Meier 

weight attached to ෨ܻ when estimating the marginal 
distribution of Y from ൫ ෨ܻ, ∆ଶ൯’s, and for which the ranks of 
the censored ෨ܻ’s, ܴ, are higher than those for uncensored 
values in the case of ties. This estimator is consistent 
whenever ݔ   is smaller than the upper bound of the support ݕ
of the censoring time [11]. From (1) we can obtain an 
estimator for the marginal distribution of the second gap time, 
ሻݕଶሺܨ ൌ ܲሺ ଶܶଷ    ሻ, namelyݕ
ሻݕଶሺܨ ൌ ,∞ଵଶሺܨ ሻݕ ൌ ∑ ܹܫ൫ ෨ܶଶଷ  ൯ݕ

ୀଵ                              (2)  
Note that estimator (2) is not the Kaplan-Meier estimator 
based on ൫ ෨ܶଶଷ, ∆ଶ൯’s. This is because the weights ܹ are 
based on the ෨ܻ-ranks rather than on the ෨ܶଶ-ranks. Indeed, 
since ଶܶ and ܥଶ are expected to be dependent, the ordinary 
Kaplan-Meier estimator of ܨଶ will be in general inconsistent.  
The estimator (1) can also be written as  
,ݔଵଶሺܨ ሻݕ ൌ ,ݔሺܮ 0ሻ െ ,ݔሺܮ   ,ሻݕ
where 
,ݔሺܮ ሻݕ ൌ ଵ


∑ ൫ܫ ෨ܶଵଶ  ,ݔ ෨ܶଶଷ  ൯∆ଶݕ ൛1 െ ൫൫ܩ ෨ܻ൯

ି൯ൟൗ
ୀଵ , 

where ܩ is the Kaplan-Meier estimator of G.  
     The state occupation probabilities are defined as ߨሺݐሻ ൌ
ܲሺܺሺݐሻ ൌ ݄ሻ and in particular ߨሺ0ሻ ൌ ܲሺܺሺ0ሻ ൌ ݄ሻ is the 
initial distribution of the process. Another quantity of interest 
in multi-state modelling is the cause-specific cumulative 
incidence function, as defined by Kalbfleisch and Prentice 
[12]. These quantities are appropriate if our interest is the 
estimation of failure probabilities. These functions are 
different from the transition probabilities because they 
represent the probability of the individual to be or having been 
in some particular state. 

Throughout this paper we are particularly interested in the 
estimation of the transition probabilities. These quantities 
constitute one topic of much interest providing important 
measures to make long-term predictions. 

In Markov models, the transition probabilities can be 
calculated from the intensities by solving the so-called 
forward Kolmogorov differential equation [13]. For example, 
for the progressive three-state model the transition 
probabilities ሺݏ, ሻݐ ൌ ܲሺܺሺݏሻ ൌ ݆|ܺሺݏሻ ൌ ݄ሻ,   ݄ ൌ 1,2; 
݆ ൌ 1,2,3; ݄  ݆, have explicit expression,  

,ݏଵଵሺ ሻݐ ൌ ,ݏଵଶሺܣ൫െݔ݁  ሻ൯ݐ
,ݏଶଶሺ ሻݐ ൌ ,ݏଶଷሺܣ൫െݔ݁  ሻ൯ݐ
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,ݏଵଶሺ ሻݐ ൌ න ,ݏଵଵሺ ,ݑଶଶሺሻݑଵଶሺߙሻݑ ݑሻ݀ݐ
௧

௦
 

where ܣሺݏ, ሻݐ ൌ  ݑሻ݀ݑሺߙ
௧
௦  is the cumulative or integrated 

intensity between s and t. Note that in this model, the 
transition probabilities to be estimated reduce to ଵଵሺݏ,  ,ሻݐ
,ݏଵଶሺ ,ݏଶଶሺ ሻ andݐ ,ݏଵଷሺ ሻ, sinceݐ ሻݐ ൌ 1 െ ,ݏଵଵሺ ሻݐ െ
,ݏଵଶሺ ,ݏଶଷሺ ሻ andݐ ሻݐ ൌ 1 െ ,ݏଶଶሺ  .ሻݐ
 In time homogeneous Markov models the explicit 
expressions for the transition probabilities are given by 

,ݏଵଵሺ ሻݐ ൌ  ሻݐଵଶߙሺെݔ݁
,ݏଶଶሺ ሻݐ ൌ  ሻݐଶଷߙሺെݔ݁

,ݏଵଶሺ ሻݐ ൌ
ଵଶߙ

ଵଶߙ െ ଶଷߙ
ൣ݁ିఈమయሺ௧ି௦ሻ െ ݁ିఈభమሺ௧ି௦ሻ൧ 

Details about the inference for the transition intensities can be 
seen in Andersen and Perme (2008) [4]. 

The transition probabilities may also be estimated via the 
non-parametric (Aalen–Johansen estimator) model. This can 
be thought as the generalization of the Kaplan-Meier approach 
for the simple mortality model and was proposed by Aalen 
and Johansen [14] for general multi-state models with a finite 
number of states. For the progressive three-state model, the 
transition probabilities ଵଵሺݏ, ,ݏଶଶሺ ሻ andݐ  ሻ may beݐ
estimated by 

,ݏଵଵሺ ሻݐ ൌ ෑ 1 െ
݀ଵଶ
݊ଵ

൨
௦ழ௧ሺೖሻஸ௧

 

,ݏଶଶሺ ሻݐ ൌ ෑ 1 െ
݀ଶଷ
݊ଶ

൨
௦ழ௧ሺೖሻஸ௧

 

Where ݐሺଵሻ ൏ ڮ ൏  ሺௗሻ are the event times (which representݐ
states 2 and 3) arranged in increased order, ݊ଵ and ݊ଶ denote 
the number of individuals in states 1 and 2, respectively, just 
prior to the event time ݐሺሻ. Further, ݀ଵଶ is the number of 
subjects who underwent from state 1 into state 2 at time ݐሺሻ, 
while ݀ଶଷ is the number of subjects who underwent from 
state 2 into state 3 at that same time.  
 An estimator for ଵଶሺݏ,  ሻ is given byݐ

,ݏଵଶሺ ሻݐ ൌ  ,ݏଵଵ൫ ሺିଵሻ൯ݐ
݀ଵଶ
݊ଵ

,ሺሻݐଶଶ൫ ൯ݐ
௦ழ௧ሺೖሻஸ௧

 

which is a plug-in estimator. 
Datta and Satten (2001) [15] investigated the performance 

of the Aalen-Johansen estimator of state occupation 
probabilities when the process is not Markovian. These 
authors established the consistency of Aalen-Johansen 
estimators for the occupation probabilities in this case. 
Recently, Meira-Machado et al. (2006) [16], verified that in 
non-Markov situations, the use of Aalen-Johansen estimators 
[14] to empirically estimate the transition probabilities, 
,ݏሺ  ሻ, may be inappropriate. These authors propose, in theݐ
scope of the illness-death model, alternative “Markov-free” 
estimators for the transition probabilities, which do not rely on 
the Markov assumption. The proposed methods can easily be 
adapted to the progressive three-state model. Now according 
to the notation introduced 

,ݏଵଵሺ ሻݐ ൌ ܲሺ ଵܶଶ  |ݐ ଵܶଶ   ሻݏ
,ݏଵଶሺ ሻݐ ൌ ܲሺ ଵܶଶ  ,ݐ ଵܶଶ  ଶܶଷ  |ݐ ଵܶଶ   ሻݏ

,ݏଶଶሺ ሻݐ ൌ ܲሺ ଵܶଶ  ଶܶଷ  |ݐ ଵܶଶ  ,ݐ ଵܶଶ  ଶܶଷ    ሻݏ

     These quantities are determined by the joint distribution of 
ሺ ଵܶଶ, ଶܶଷሻ. Specifically, the knowledge of the distribution of 
the first gap time is enough for the recovery of ଵଵሺݏ,  ሻݐ
,ݏଵଵሺ̂ ሻݐ ൌ ቀ1 െ ሻቁݐሺܪ ቀ1 െ ሻቁൗݏሺܪ                                  (3)  
While expectations of type ܵሺ߶ሻ ൌ ሾ߶ሺܧ ଵܶଶ, ܻሻሿ arise when 
handling ଵଶሺݏ, ,ݏଶଶሺ ሻ andݐ  :ሻݐ
,ݏଵଶሺ̂ ሻݐ ൌ

ଵ
ଵିுሺ௦ሻ

∑ ܹ

ୀଵ ߶௦,௦൫ ଵܶଶሾሿ, ෨ܻ൯                            (4)  

,ݏଶଶሺ̂ ሻݐ ൌ ∑ ܹ߶෨௦,௧൫ ଵܶଶሾሿ, ෨ܻ൯
ୀଵ ∑ ܹ߶෨௦,௦൫ ଵܶଶሾሿ, ෨ܻ൯

ୀଵൗ ,   (5)  
where ܹ are the Kaplan-Meier weights attached to ෨ܻሺሻ, with 
H the distribution function of ଵܶଶ, and ܪ its Kaplan-Meier 
estimator; ߶௦,௧ሺݑ, ሻݒ ൌ ݏሺܫ ൏ ݑ  ,ݐ ݒ  ,ݑሻ and ߶෨௦,௧ሺݐ ሻݒ ൌ
ݑሺܫ  ,ݏ ݒ  ሻ. In these expressions, ෨ܻሺଵሻݐ  ڮ  ෨ܻሺሻ denote 
the ordered sample of the ෨ܻ´s, and ଵܶଶሾሿ for the pair attached 
(concomitant) to the ෨ܻሺሻ value.   

Estimators (4) and (5) can also be written as  

,ݏଵଶሺ̂ ሻݐ ൌ
1

݊ ቀ1 െ ሻቁݏሺܪ


ݏ൫ܫ ൏ ෨ܶଵଶ  ,ݐ ෨ܻ  ൯∆ଶݐ
1 െ ൫൫ܩ ෨ܻ൯

ି൯



ୀଵ

 

,ݏଶଶሺ̂ ሻݐ ൌ
∑ ൫ܫ ෨ܶଵଶ  ,ݏ ෨ܻ  ൯∆ଶݐ

1 െ ൫൫ܩ ෨ܻ൯
ି൯


ୀଵ

∑ ൫ܫ ෨ܶଵଶ  ,ݏ ෨ܻ  ൯∆ଶݏ
1 െ ൫൫ܩ ෨ܻ൯

ି൯

ୀଵ

 

     The estimator (4) is equivalent to Aalen-Johansen 
estimator.  

     These estimators do not rely on the Markov assumption 
and are motivated as natural extensions to a censored scenario 
of the proportion of individuals in each state. For obtaining the 
asymptotic results, Meira-Machado et al. (2006) [16] have 
used the existing theory devoted to Kaplan-Meier integrals. 
Special attention was paid to consistency, convergence in 
distribution to a normal, and (limit) variance estimation. The 
results can easily be adapted to the progressive three-state 
model. The authors evaluated this new approach through a 
simulation study, comparing the new method with Aalen-
Johansen estimator (typically assumed in Markov situations). 
Results show that unless the process is, in fact, Markov, the 
Markov-free estimator is a wise choice. Simulations suggest 
that the Aalen-Johansen estimator is highly susceptible to 
departures from the true transition probabilities when the 
process is not Markov.  

III. REGRESSION MODELS 
     One important goal in multi-state modelling is to study the 
relationships between the different predictors and the 
outcome. To relate the individual characteristics to the 
intensity rates through a covariate vector, Z, possibly time-
dependent several models have been used in literature. The 
most common are: (a) Homogeneous Markov Model, (b) 
Piecewise Homogeneous Markov Model, (c) Cox (semi-) 
Markov model. Because of its simplicity, models (a) and (c) 
are the most used. Cox-like models (c) can be fitted through 
most of the statistical packages (R, S-plus, SAS, etc.), as long 
as a counting process notation is used, with each patient being 
represented by several observations [2]. The homogeneous 
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Markov model and the piecewise model need specialized 
software, most of which are written in FORTRAN, R or SAS. 
In this paper special attention is paid to Cox-like models. 
More details about the inference in models (a) and (b) can be 
found in Meira-Machado et al. (2008) [2]. 

The inference problem in a multi-state model can be 
decoupled into various survival models, by fitting separate 
intensities to all permitted transitions. For the progressive 
three-state model of Figure 1, assuming the process to be 
Markovian, the transition intensities, ߙሺݐ; ܼሻ, ݄ ൌ 1,2; 
݆ ൌ 1,2,3; ݄  ݆, may be modelled using Cox-like models of 
the form  
;ݐሺߙ ܼሻ ൌ ்ߚ൫ݔሻ݁ݐ,ሺߙ ܼ൯                                             (6) 
where ߙ,ሺ·ሻ is the baseline intensity function between states 
h and j, ߚ is the vector of regression parameters, and ܼ is a 
covariate vector.   
     Another regression model for survival data that can easily 
be extended to multi-state models is the additive hazards 
approach of Aalen ([1], [17] and [18])  
;ݐሺߙ ܼሻ ൌ ሻݐ,ሺߙ  ்ߚ ሺݐሻܼ                                             (7)  
where the regression functions ߚሺݐሻ are left unspecified.       
     By ignoring disease history behavior, Markov models such 
as (6) and (7) above may be inappropriate (e.g., the future 
health of recently diseased individuals may be different from 
that of individuals who have been ill for a long time). The 
most common deviations from the Markov property are 
various kinds of duration dependence. One typical approach to 
deal with such problem is to use a semi-Markov model in 
which the future of the process does not depend on the current 
time but rather on the duration in the current state [2]. Usually, 
this assumption is checked including covariates depending on 
the history. For details about other modeling approaches and 
assumption see for example Meira-Machado et al. (2008) [2].  
     Note that in multi-state models some of the transitions can 
be competing (for example, in the illness-death model this can 
happen frequently) leading to interpretational problems. This 
is not the case for the progressive three-state model.  
     The multi-state models of the form (6) and (7) are both 
semiparametric, and the effects of continuous predictors on 
log-hazard are modeled linearly. In practice, however, the 
effect of a given continuous predictor can be unknown, and its 
form may be different in all permitted transitions. If the true 
effect is highly nonlinear, this erroneous assumption of 
linearity may have serious consequences: misspecification and 
statistical errors (bias and decreased power of tests for 
statistical significance); leading to a diagnosis of 
nonproportional hazards. For more details see Cadarso et al. 
(2008) [19].  
     One possible approach allowing for nonlinear effects in 
model (6) above (and similarly to Aalen’s additive model), is 
to express the log hazard on transition ݄ ՜ ݆ as an additive 
Cox model of the form  
;ݐሺߙ ܼሻ ൌ ∑൫ݔሻ݁ݐ,ሺߙ ݂,ሺܼሻ൯                                     (8)  
where ݂,ሺ·ሻ and are smooth covariate functions. To 
introduce flexibility into model (8), several smoothing 
methods may be applied, but B-splines, smoothing splines, P-

splines or Bayesian versions of P-splines are being most 
frequently considered in this context [20]-[22]. One particular 
concern in fitting these smoothing methods is the selection of 
reasonable values for smoothing parameters [19], [23]. In this 
paper, P-splines have been chosen as smoothers, since in the 
context of Cox-type models they behave satisfactorily when 
compared to other smoothers [24]. When using P-splines, 
automatic selection of the smoothing method based on 
minimizing the Akaike's information criterion [25] somewhat 
mitigates this problem in univariable models but cannot be 
used to the multivariable setting. Cadarso et al. (2008) [19] 
propose the use of the smoothing parameters based on a mixed 
model representation of penalized splines for the multivariable 
setting [26]. This approach, based in a Bayes empirical 
methodology, can be used to determine the optimal amount of 
smoothing in both univariable and multivariable settings. 
Cadarso et al. (2008) [19] propose also a flexible method for 
constructing smooth hazard ratio (HR) curves with confidence 
bands taking a specific value as the reference. For simplicity, 
assume a single continuous covariate. The hazard ratio for a 
subject with covariate value Z compared to a subject with 
covariate value ݖ, on transition ݄ ՜ ݆ is given by 

,൫ܼܴܪ ൯ݖ ൌ exp ቀ ݂ሺܼሻ െ ݂൫ݖ൯ቁ. A natural 
estimate of the hazard ratio curve can be constructed as 
ܴܪ ൫ܼ, ൯ݖ ൌ exp ቀ መ݂ሺܼሻ െ መ݂൫ݖ൯ቁ by replacing ݂ሺ·ሻ 
by any P-spline estimate መ݂ሺ·ሻ. The expression for the 
variance of the log hazard ratio estimate is given in terms of 
the covariance matrix of the smoother 
ݎܸܽ ቀܪ݊ܮܴ ൫ܼ, ൯ቁݖ ൌ

ݎܸܽ ቀ መ݂ሺܼሻቁ  ݎܸܽ ቀ መ݂൫ݖ൯ቁ െ ݒܥ2 ቀ መ݂ሺܼሻ, መ݂൫ݖ൯ቁ 
Finally, assuming normality, ሺ1 െ  ሻ100% pointwiseߙ
confidence bands can be constructed around the hazard ratio 
curve 

eݔ ൬ܪ݊ܮܴ ൫ܼ, ൯ݖ േ ܼଵିఈ ଶ⁄ ܧܵ ቀܪ݊ܮܴ ൫ܼ,  ൯ቁ൰. Theݖ

use of these instruments greatly simplifies the interpretation of 
the continuous predictor.  

IV. A REAL EXAMPLE 
Due to large number of peoples affected by breast cancer, 

there is much demand for information on this disease. Special 
attention is usually paid to diagnosis [27] and prognostic 
forecasting [2], [19]. In a large percentage of the patients, the 
diagnosis is made at a sufficiently early stage when all 
apparent disease tissue can be surgically removed. 
Unfortunately, some of these patients have residual cancer, 
which leads to recurrence of disease and death (in some 
cases). Cancer patients who have experienced a recurrence are 
known to be at a substantially higher risk of mortality, making 
it essential to understand which characteristics of the patient 
(or of the tumour) predispose to recurrence. For the breast 
cancer data, we may consider the recurrence as an associated 
state of risk, and use the progressive three-state model with 
states “alive and disease-free”, “alive with recurrence” and 
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“dead”. Here, we consider a sample of subjects who 
underwent curative surgery for breast cancer. In the period 
between April 1991 and December 2003, 585 patients with 
breast cancer were treated in Galicia (Spain). From the total of 
the patients, 172 relapsed (recurrence) and among these 114 
died. Eleven patients died without relapse. These patients are 
treated as censored on the recurrence transition and they are 
not considered on the mortality transition from the “Alive with 
recurrence” state. The rest of the patients remained alive and 
disease-free up to the end of the follow-up.  

This study focussed mainly on flow cytometry parameters 
DNA index (DNA: ratio of the G0/G1 channel number of 
tumor cells to the G0/G1 channel number of diploid cells) and 
S phase fraction (SPF: the percentage of cells in phase S) but 
other factors were also included such as: age (Age: years), 
tumor size (Size: measure in mm), histologic grade (SBR: 
stages I to III), lymph node involvement (LNI: percentage 
between positive and total dissected lymph nodes), and 
hormone receptor status (ER). 

 A property that is often assumed when using multi-state 
models is the Markov property (future depends on the history 
only through the present). The Markov assumption may be 
checked by including covariates in the modelling process [28]. 
The results obtained for the breast cancer data show that the 
effect of time spent in state 1 is significant (P < 0.05). This 
allows us to conclude that Markov’s model is unsatisfactory 
for the breast cancer. Note that the methods presented in the 
previous section are free of the Markov property. 

In multi-state modelling, the Cox (Semi) Markov model is 
typically assumed whenever the interest is to study how 
covariates affect survival. These models can easily be fitted 
through most of the existing software as long as we use a 
counting process notation, representing each subject with 
several observations [2]. 

One main interest in breast cancer is to make diagnosis at a 
sufficiently early stage of the disease. Thus, is important to 
make long-terms predictions and to identify possible times of 
diagnosis (threshold values). Therefore, it is very important to 
obtain good estimates for the transition probabilities. Since the 
process for the breast cancer data does not fulfils the Markov 
assumption the use of the estimators proposed here is 
preferable. With this application, we illustrate differences 
between the estimated transition probability from Aalen-
Johansen estimator (Markovian) and from “Markov-free” 
estimator. In Figure 4 we present, as an example, estimated 
transition probabilities for ሺ2, ,ሺ6 ሻ (above) andݐ  ሻݐ
(below), ݄ ൌ 1, 2, ݆ ൌ 1, 2, ݄  ݆, showing that a choice 
between those two approaches makes a big difference 
(especially for the prognostic of patients with recurrence at 
year 6). From these figures, we can see more clearly the effect 
of the intermediate event (recurrence) in the patient survival 
prognosis, showing a much poorer survival prognosis for those 
individuals in state 2. 

As it can be seen from Figure 4, the “Markov-free” 
estimator, have fewer jump points but with bigger steps. The 
number of jump points and the size of the steps are related to 
censoring and to the sample size. With regard to the survival 

prognosis, we observe serious departures between both 
survival curves for individuals who have had recurrence. 
Differences are clearer with the progression of time (from 800 
days on), showing that the prognosis using the “Markov-free” 
estimator is poorer than Aalen-Johansen prognosis. 

  

 
Fig. 4 Estimated transition probabilities for Aalen-Johansen estimator 
(solid line) and non-Markov model (dashed line). 

 
Under gap time’s framework, ଵܶଶ is the time from 

randomization to cancer recurrence and ଶܶଷ is the time from 
cancer recurrence to death. These times are observed subject 
to random right-censoring.  

Table 1 presents the estimates for the joint distribution 
function using estimator (1) for several values of ሺݔ,  ሻ (the xݕ
values are the percentiles 5%, 25%, 50%, 75% and maximum 
of the first gap time). Results show that the survival is poor for 
small values for the first gap time (time from randomization to 
recurrence). Substantially better results are obtained for higher 
times of recurrence. 

Figure 5 illustrate the differences between the Kaplan-Meier 
estimator for the marginal distribution of the second gap time 
(based on the ൫ ෨ܶଶଷ, ∆ଶ൯’s) and estimator (2). The range of 
time has been restricted to 5 years to emphasize the 
differences between the two estimators. Differences between 
the two curves can be explained by the (possible) failure of the 
independence assumption, necessary to obtain consistency for 
the Kaplan-Meier estimator. Estimates for the two marginal 
distribution functions (using the Kaplan-Meier product-limit 
for the first gap time) can be used to compare the survival in 
two or more groups/treatments (results not shown). 
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Table 1: Estimates of the joint distribution function, ܨଵଶሺݔ,   .ሻݕ
x \ y 1 2 3 4 5 

0.7624 0.01852 0.02421 0.02830 0.03097 0.03097 
2.9922 0.06824 0.11892 0.14127 0.16877 0.16877 
4.1480 0.07538 0.13431 0.16082 0.20303 0.21068 
5.6823 0.08892 0.14785 0.20356 0.24576 0.25341 
 12.685 0.11723  0.31946  0.38490 0.42711  0.46811 

 
Fig. 5 Estimates of the marginal distribution function of the second 
gap time using our estimator (dashed line) and using Kaplan-Meier 
estimator (solid line). 

 
     One major goal in multi-state models is to study the 
relationship between the different covariates and disease 
evolution. These models provide more detailed information on 
the disease progress, by highlighting covariates affecting both 
mortality and recurrence. In the paper by Cadarso-Suarez et al. 
(2008) [19], the Galician breast cancer data is analyzed using a 
Cox semi-Markov model, illustrating some of the advantages 
of using a multi-state model. In this paper, the authors propose 
a flexible methodology assuming non-linear relationships 
between continuous predictors and survival. The use of such a 
multi-state model revealed important disease information 
regarding the effect of flow cytometry parameters considered 
(DNA index and S phase fraction). Comparison between the 
results of fitting a semi-Markov model and those obtained 
from the traditional Cox model yielded some important 
biologic insights. Among other results, this study revealed 
that, whereas DNA index is only an important predictor of 
recurrence intensity (similarly for tumor size), S phase fraction 
revealed itself a significant predictor of both recurrence and 
mortality. Interestingly, the effect of Age revealed to be 
significant only on the mortality transition (1→2). 
Furthermore, the important (nonlinear) effect of DNA index 
and Tumor Size, in the recurrence transition, would probably 
not have been detected by a parametric analysis (in both the 
linear Cox model and the linear multi-state framework). Table 
2 presents the comparative results for the multivariate three 
models (marginal and multi-state) when introducing all the 
continuous predictors using P-splines (degrees of freedom 
using Bayes empirical methodology). More details and results 

(e.g., estimated effects) can be seen in Cadarso et al. (2008) 
[19]. 
 
Table 2: Significance of the predictors for the three Cox models 
(marginal Cox model; multi-state Cox semi-Markov model) 

 P-vaule 
Covariate Cox 1->2 2->3 
Age (years) 
      age  
      ps(age)  nonlinear  
Size (mm) 
      size      
      ps(size)  nonlinear  
LNI (%)  
      LNI 
      ps(LNI)  nonlinear  
SBR 
      I 
      II 
      III 
ER 
      No  
      Yes 
SPF 
      SPF 
      ps(SPF)  nonlinear  
DNA 
      DNA 

  ps(DNA)  nonlinear

 
0.028 
ns 
 
ns  
0.025 
 
<0.001 
0.037 
 
- 
ns 
ns 
 
- 
<0.001 
 
<0.001 
0.028 
 
ns 
0.005  

 
ns 
ns 
 
ns  
0.018 
 
<0.001 
0.019 
 
- 
ns 
ns 
 
- 
0.004 
 
<0.001 
ns 
 
ns 
<0.001 

 
<0.001 
ns 
 
ns  
ns 
 
ns 
ns 
 
- 
ns 
0.027 
 
- 
0.049 
 
<0.001 
ns 
 
ns 
ns 

ns = not significant 
 
The presence of a nonlinear effect for DNA in the recurrence 
transition can be visually inspected and their correct functional 
form identified in the graphs shown in Figure 6. The plot for 
DNA suggests a spoon-shape functional form, indicating that 
risk decreased sharply until about 1.3, increased gradually 
until a value of 2.5, and then remained roughly constant. 
 From the biologic point of view, clinicians expect that 
tumors with DNA values close to 1 will have a better 
prognosis than those distant from 1. However, graph of Figure 
6 shows that the main curve keeps decreasing after value 1. 
Although the smoothed log hazard curves shown in this figure 
provide important information about covariate effect on 
hazard, interpretation is not straightforward since we do not 
have a reference value. To obtain interpretable results we 
constructed smooth log HR curves with 95% confidence 
intervals to describe the relationship between the continuous 
predictor and risk (recurrence) for a reference value of 1. 
Figure 7 shows the corresponding curves showing that patients 
with or close to DNA = 1.3 had a significantly smaller risk 
when compared to those with DNA =1. One possible 
explanation is that a relatively large group of patients may be 
present with two diploid populations, with DNA =1. 
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Fig. 6 Adjusted Smooth log hazard with 95% pointwise 
confidence bands for age, SPF and DNA Index. 
 
The authors expressed the nonlinear relationship between 
continuous predictors and survival as smooth hazard ratio 
curves with confidence intervals where a specific value is 
taken as reference. The log HR curve for DNA index (obtained 
taking DNA = 1 as the reference value) is depicted in Figure 7. 
The confidence bands for the log HR are important, showing 
that patients with DNA index values lower than 1 are at higher 
risk, and patients with DI values in the interval from 1 through 
1.4 are at lower risk when compared with those with DNA 
equal to 1.  

 
Fig. 7 Adjusted smooth log hazard ratio estimates with 95% 
pointwise confidence bands for DNA Index (value 1 as reference).  
 
With regard to Age, a reference value of 50 years was selected 
as a possible value for the beginning of menopause. The 
corresponding plots for Age (see Figure 8) showed that in 
mortality transition the risk of death was higher for older 
patients, when compared with a patient aged 50 years 
(reference value). 

 
Fig. 8 Adjusted smooth log hazard ratio estimates with 95% 
pointwise confidence bands for Age (value 50 as reference). 
 

V. CONCLUSION 
In this paper, we have discussed the use of multi-state models 
in the analysis of survival data. In the scope of the progressive 
three-state model, nonparametric estimators are presented and 
illustrated using a real dataset on breast cancer from Galicia, 
Spain. In contrast to other existing methods, the introduced 
estimate for the bivariate distribution function for censored 
gap times (time to recurrence and time from recurrence to 
death) is a proper distribution function, in the sense that it 
attaches positive mass to each observation. We use this 
estimator to introduce also an estimator for the marginal 
distribution of the second gap time. The ideas behind the 
estimators are also used to introduce nonparametric estimators 
for the transition probabilities. The proposed methods can be 
easily extended for the progressive k-state model. In such a 
case we have a vector of k gap times, ሺ ଵܶ, … , ܶሻ, and the 
weights ܹ are defined as those of the Kaplan–Meier 
estimator of the marginal distribution of the total time 
ܻ ൌ ଵܶ  ڮ ܶ. The proposed method for the transition 
probabilities can also be adapted to more general multi-state 
models (e.g., illness-death, bivariate model, etc) though they 
can become difficult with the increase of the number of states 
involved. The basic ideas behind this paper can also be 
extended to cope with the estimation of other parameters and 
functions such as the cause specific cumulative incidence 
function.  
     Alternative estimators for the above quantities are given in 
Van Keilegom et al. (2008) [29]. This methodology assumes 
that the vector of gap times ሺ ଵܶଶ, ଶܶଷሻ satisfies the 
nonparametric location-scale regression model ଶܶଷ ൌ
݉ሺ ଵܶଶሻ  ሺߪ ଵܶଶሻߝ, where the function m and ߪ are “smooth”, 
and ߝ is independent of ଵܶଶ. On the basis of the idea of transfer 
of tail information, the estimator of the error distribution is 
used to introduce nonparametric estimators for those targets. 
The asymptotic properties of these estimators are also 
obtained.  
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     A flexible approach using an additive multi-state model 
for estimating the possible effects of continuous predictors on 
response is used. The application of such a model to the 
Galician breast cancer data illustrates the advantages of using 
these methods for assessing the possible effect of quantitative 
predictors on recurrence and mortality after recurrence. To 
better understand the effect of continuous covariates on the 
outcome results are expressed in terms of hazard ratio curves, 
taking a specific covariate value as reference. All analyses 
were performed using software (in R language) written by the 
authors.  
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