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Abstract—The dependence of the Marangoni flow and impurity 

distribution on the vertical temperature gradient is analyzed in the 
framework of a stationary model including the incompressible 
Navier-Stokes equation in the Boussinesq approximation and the 
convection-conduction, and conservative convection-diffusion 
equations. The computations are carried out in a 2D axisymmetric 
model by the finite-element numerical technique, for aluminum-
doped silicon fibers grown from the melt by the edge-defined film-
fed growth technique, and reveal existence of the three critical 
Marangoni numbers due to thermal gradients. The homogeneity of 
the dopant distribution in the crystal is computed for different 
Marangoni numbers situated in the ranges determined by the 
obtained critical Marangoni numbers Mac1, Mac2, Mac3.    
 

Keywords—Boussinesq approximation, critical Marangoni 
number, finite element technique, fluid flow.  

I. INTRODUCTION 
HE demand for single or poly-silicon has increased 
dramatically due to the rapid expansion of the 
photovoltaic PV industry. Various growth techniques 

have been used for producing silicon wafers for a PV cell, like 
the Czochralski Cz, floating zone Fz and edge-defined film-
fed growth EFG methods. Among these, EFG is the first non-
conventional technique for crystalline silicon wafer 
production to enter into large-scale manufacturing in the 
photovoltaic industry [1], with ribbon growth of silicon 
meeting the actual demands of economical material 
consumption because it avoids silicon losses, such as during 
the blocking of ingots or sawing of wafers [2].        

Identifying and investigating the metal impurities in silicon 
are fundamental tasks in semiconductor physics and device 
engineering. In solar cells, aluminum is usually present in the 
metal back contact as well as in the back surface field region. 
Due to a low diffusivity of interstitial aluminum in silicon, 
compared to the diffusivity of the transition metals, silicon is 
intentionally contaminated with aluminum during the growth 

process. If aluminum is already present as a grown-in impurity 
in the starting material, then it can act as an electrically-active 
defect with detrimental consequences to the charge carrier 
lifetime [3].  
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Molten silicon is known to be an extremely-reactive 
material [4], with strong thermal forcing in surface-tension-
driven flows being realized during the growth process. The 
surface tension value and its temperature dependence are 
essential for describing surface-tension-driven flow 
(Marangoni-Bénard flow) on the free liquid surface 
(meniscus, i.e., the liquid bridge between the die and the 
crystal) [5]. It is generally accepted that thermal fluctuations 
are a serious drawback in growing a high-quality crystal. The 
existence of Marangoni convection for molten silicon has 
been revealed through crystal growth experiments using the 
Cz [6] and Fz [7] configurations. For the former, the 
dependence on the Marangoni-Bénard and Rayleigh-Bénard 
instabilities on the coefficient dγ/dT of temperature 
dependence of the surface tension was confirmed. The 
contribution of the Marangoni effect to the instabilities and 
consequently to the impurity distribution in the crystal is 
governed by the magnitude of dγ/dT. Although a large amount 
of surface tension data has been reported for molten silicon 
[5], there is still some uncertainty concerning the absolute 
values and its temperature dependence, because the surface 
tension of molten silicon is quite sensitive to surface 
contamination, particularly oxygen. These reasons and the 
difficulty of an experimental investigation of the surface-
tension-driven Marangoni-Bénard convection for small 
Prandtl numbers (Pr = 0.01 for silicon) have been the 
motivation for a numerical analysis of the dependence of the 
Marangoni flow and impurity distribution on the vertical 
temperature gradient.  

This analysis is made on the aluminum-doped silicon fibers 
grown from the melt by EFG technique using a central 
capillary channel CCC shaper design (see Fig.1).   

It is also assumed that, the melt level in the crucible is 
constant during the growth process (i.e., continuous melt 
replenishment) and, the radius of the fiber and the meniscus 
height, respectively, are constant (i.e. the effect of the pulling 
rate variation concerning the rod radius variation and the 
meniscus height variation are compensated by an adequate 
temperature variation). 

T 
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Fig.1: Schematic EFG crystal growth system.  

 
The computations are carried out in the stationary case in a 

2D axisymmetric model by the finite-element numerical 
technique using COMSOL Multiphysics 3.4 software [8] [10], 
for 38 different values of dγ/dT situated in the maximal range 
[-7×10-4; 0] Nm-1K-1 (i.e., for Marangoni numbers Ma 
between zero and 406.25), which contains all values reported 
in literature [5],  and for three representative vertical 
temperature gradients in the furnace: kg1 = 5,000; kg2 = 50,000; 
kg3 = 100,000 Km-1 situated in the range [5,000; 100,000] Km-

1 determined by experimental data [11]. These numerical 
investigations prove the existence of three critical Marangoni 
numbers – Mac1, Mac2, Mac3 – as reported for two-dimensional 
containers [12]-[14]. The computed fluid flows reveal that, the 
best homogeneity of the dopant distribution in the crystal is 
obtained for lower Marangoni numbers. The length of the 
ranges determined by these lower Marangoni numbers 
increases if the vertical temperature gradient in the furnace 
decreases. This suggests a possible future feedback control of 
the Marangoni-Bénard instability which can delay the 
Marangoni convection [15] through a particular choice of the 
process parameters (for example: a small vertical temperature 
gradient), in order to optimize the crystal quality.  

-

II. THE MATHEMATICAL MODEL 
The Marangoni flow and impurity distribution induced by 

vertical temperature gradients in the furnace is analyzed in the 
framework of a stationary model including the incompressible 
Navier-Stokes equation in the Boussinesq approximation (the 
temperature-dependent density appears only in the 
gravitational force term), and the convection-conduction and 
conservative convection-diffusion equat ons [16]: i
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The axis-symmetric solutions are searched in the cylindrical-
polar coordinate system (rOz) corresponding to the EFG 
technique having a central capillary channel shaper design 
(see Fig. 2).  

 
Fig. 2: Schematic EFG crystal growth system showing the 
domain boundaries (a) and dimensions (b) used in the 
numerical model. 

 
In this system, the unknowns are: velocity vector u  = 

(u,v), temperature T, impurity concentration c, and pressure 
p. The material parameters are: ρl - reference melt density, β - 
heat expansion coefficient, η - dynamical viscosity, k - 
thermal conductivity, Cp - heat capacity, D - impurity 
diffusion, and g  - gravitational acceleration. The system (1) 
is considered in the two-dimensional domain whose 
boundary is from Ω1 to Ω10, as represented on Fig. 2(a). 
The fluid density is assumed to vary with temperature as 

( ) ([ ]TzrTzr l )Δβρρ −−= ),(1, ,               (2) 
and the surface tension γ in the meniscus is assumed to vary 
linearly with temperature as 

( ) ( T)z,r(T
d

)
T

dz,r l Δγγγ −+=   ,            (3) 

where ΔT = (T0+Tm)/2 is the reference temperature at the free 
surface, γl  is the surface tension at the temperature ΔT, and 
dγ/dT is the rate of change of surface tension with the 
temperature. The main parameter of the Marangoni-Bénard 
convection is the Marangoni number 
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where η is the dynamic viscosity, α = k/ρl Cp  is the thermal 
diffusivity,  and h the meniscus height. 
For solving the system (1), boundary conditions on Ω1 to Ω10 
are imposed, with the Oz-axis considered as a line of symmetry 
for all field variables: 
- Flow conditions: On the melt/solid interface, the condition 

of outflow velocity is imposed, i.e., ku 0v
s

l

ρ
ρ

= , where k  

represents the unit vector of the Oz-axis. On the melt level in 
the crucible, the inflow velocity condition is imposed (melt 
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0

2
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surface, we set slip/symmetry condition,  up the 0=⋅nu , 

( )( )[ ] 0p
T

=∇+∇+−⋅ nuuIt η , where t  and n  represent the 

boundaries are set up 
tangential and normal vectors, respectively. The other 

by the non-slip condition 0u = . 
- Thermal conditions: On the melt/solid interface, we set the 
temperature as T = Tm. On the free surface, we impose therm

su
al 

in lation, i.e., 0)( =+∇−⋅ un TCTk plρ . For the other 

boundaries, we have the temperature condition T = T0. 
- Concentration co elt/solid interface, the 
flux condition is imposed, which expresses that impur

nditions: On the m
ities are 

rejected into the melt according to ( )cK1
D
vc

0
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the melt level in the crucible, the con f aluminum in 
silicon is c = C0. The other bound ablished by 
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aries are est

0)( =+∇−⋅ un ccD . 
Imposing the above boundary conditions, on the free surface 
the Marangoni effect i  using the ws modeled by eak form of the 
boundary application mode. Thus, on the free surface 
(meniscus), the boundary condition expresses that the gradient 
velocity field along the meniscus is balanced by the shear 
stress,  
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where ),( zr tt=t  and ( )zr nn ,=n . The sign of the rate dγ/dT, 
in general, depends on the material, with downward (dγ/dT <0) 

ard (dγ/dT w on the fr

cription (units) Value 

or upw >0) flo ee liquid surface. 
In order to investigate numerically the impurity distribution 
induced by the Marangoni convection and vertical temperature 
gradients kg, we consider 38 values of dγ/dT situated in the 
range [-7×10-4; 0] Nm-1K-1, and three representative values of 
kg1 = 5,000, kg2 = 50,000 and kg3 = 100,000 Km-1 situated in the 
range [5,000; 100,000] Km-1. For every value of the vertical 
temperature gradient, the dependence of the fluid flow and 
dopant distribution on the corresponding 38 Marangoni 
numbers is established. The critical Marangoni numbers are 
found, following the computed steady or turbulent behavior of 
the fluid flow. In these numerical investigations, the considered 
diffusion coefficient of aluminum in liquid silicon is that 
reported recently by the new determinations of Garandet [4]. 
The material parameters used in the mathematical model for 
the considered EFG system are given in Table 1 ([4], [5], [11], 
[17]). 
 
Table 1: Material parameters for silicon.  

Des

β         heat expansion coefficient (K-1) 
c         impurity concentration (%) 

5.5×10-6 

See text 

C0       alloy concentration (%) 
-1 -1Cp       heat capacity (J kg K ) 

e   dγ/dT  rate change of the surfac

 
 

1040 

           tension (N m-1K-1) 
D        impurity diffusion (m2s-1) 
Dl       die length (m) 
g         gravitational acceleration (m s-2) 

t (m) 

t (K m-1) 

crucible (m) 

h         meniscus heigh
k         thermal conductivity (W m-1K-1) 
kg        vertical temp. gradien
K0       partition coefficient 
η         dynamical viscosity (kg m-1s-1) 
R         crystal radius (m) 
Rcap     capillary channel radius (m) 
Rc        inner radius of the 
R0       die radius (m) 
ρl        density of the melt (kg m-3) 
u        velocity vector 

T 
 (K) 

re (K) 
 
tion 

45×10-3 

0.002 

1  
0

1685 
 

v0        pulling rate (m s-1) 
        temperature (K) 

T0        temperature at  z = h
Tm       melting temperatu
ΔT       reference temperature (K)
z          coord. in the pulling direc

 
5.8×10-8 

9.81 
0.5×10-3 

64 
50000 

7×10-4 
.5×10-3

.5×10-3 
23×10-3 
2×10-3 
2550 

 
1×10-7 

 
 

 

III. NUMERICAL RESULTS 
The computations are made using the two-dimensional axis-

symm licon ribbon of 
ra

the 
w

pearance of small turbulences, and increasing of 
turbulences in the meniscus) reveal the following critical 

etric hypothesis for an aluminum-doped si
dius  R = 1.5×10-3 m grown with a pulling rate v0 = 10-7 ms-1. 

The boundaries presented in Fig. 2 are determined from the 
peculiarities of the considered EFG growth system. Thus, a 
crucible with inner radius Rc = 23×10-3 m is considered, which 
is continuously fed with the melt, such that the melt height in 
the crucible is maintained as constant at 45×10-3 m. In the 
crucible, a die with radius R0 = 2×10-3 m and length is 
introduced, such that 2/3 of the die 45×10-3 m is immersed in 
the melt. In the die, a capillary channel of radius  Rcap = 
0.5×10-3 m, i.e., capillary number Ca = 5.5×10-5, is 
manufactured through which the melt rises to the top of the die, 
where a small meniscus of height h = 0.5×10-3 m is formed. 

The stationary incompressible Navier-Stokes model for fluid 
flow, stationary heat transfer and mass transfer, along with 

eak form of the boundary condition are implemented with the 
COMSOL Multiphysics 3.4 software, and the system (1) is 
solved by the finite-element numerical technique. According to 
the considered geometry, 17,072 triangular elements and 
150,803 degrees of freedom are considered. The effect of the 
Marangoni forces is computed in the stationary case for the 
three values kg1 = 5,000, kg2 = 50,000 and kg3 = 100,000 Km-1 
of the vertical temperature gradient in the furnace situated in 
the range [5,000; 100,000] Km-1 and for different Marangoni 
numbers Ma situated in the range [0; 406.25] (see (4)), which 
corresponds to those 38 considered values of the surface 
tension rates. 
The computed fluid flows and their behaviors (downward 
steady flow, ap
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Marangoni numbers Mac which depend on the vertical 
temperature gradients: 
 
1. For kg1 = 5,000 Km-1, there is only one Mac  value (Mac1 = 
75.4) situated in the range [0; 406.25]; 

. For kg2 = 50,000 Km-1, there are three  values of Mac situated 

ion. The connection between 
ertical temperature gradients and the critical Marangoni 

goni numbers Mac 

 
d l Maran mbers (se 2) show 

king e 50, he 
roportionality between vertical temperature gradients is 

γ/dT < 0) on the free liquid surface push the 

the flow of the 

2
in the range [0; 406.25]:  Mac1 = 7.54, Mac2 = 39.46 and Mac3 
= 69.64; 
3. For kg3 = 100,000 Km-1, the values of Mac are: Mac1 = 3.65, 
Mac2 = 19.73 and Mac3 = 35.4. 
 
These critical values are essential in the fluid flow behavior 
and in the dopant concentrat
v
numbers can be seen on Table 2. 
 
Table 2: The connection between vertical temperature 
gradients kg and the critical Maran
 

The compute  critica goni nu e Table 
that, ta as referenc value k*g2= 000, then t
p
inverse with respect of the critical Marangoni numbers. This 
dependence is very important for practical crystal growers, 
because if know critical Marangoni numbers for a fixed 
vertical temperature gradient, then they can compute the 
necessary vertical temperature gradient in the furnace such that 
to obtain a sufficient large range   [0; Mac1] which assure a 
steady flow. 
For the considered vertical temperature gradients kg1, kg2 and 
kg3, if Ma is situated in the first range [0; Mac1], then the steady 
downward flow (d
maximum of the dopant concentration Cmax at the triple-point, 
as it can be seen in Figs. 3 & 4(a-c). The computed fluid 
velocity distribution shows that in the case for which we 
consider the forced flow, i.e., Ma = 0 (see Fig. 3), with a rate 
of 10-7 ms-1 at the solid-liquid interface (the pulling rate) if the 
ratio ρl/ρs is neglected, and consequently 9×10-7 ms-1 on 
average in the capillary channel (taking into account the 
surface ratio between crystal and channel), then the maximum 
forced velocity is 18×10-7 ms-1. This maximum is situated in 
the center of the capillary channel; if the vertical temperature 
gradient increases, then perturbations appear. 
For the case in which the surface driven flows are taken into 
account (Fig. 4), the Marangoni convection perturbs the forced 
flow: the arrows presented in Fig. 4 denote 

velocity field caused by the surface tension driven flow 
(downward flow on the meniscus). 

 
Fig. 3: Computed fluid flows and maximum values of the 

e 

he maximum velocity of the fluid flow in the meniscus is 

dopant distribution for the Marangoni number Ma = 0 in th
case of kg1 = 5,000 Km-1 (a), kg2 = 50,000 Km-1 (b) and kg3 = 
100,000 Km-1 (c). 
 
T
situated on the free surface, and it increases if the Marangoni 
number increases. This dependence and the magnitude of the 
maximum velocity are in agreement with the equilibrium of the 
viscous and Marangoni forces, 

h
MaU υ

⋅≈

 Mac1 Mac2 Mac3 

kg1=5,000 
1/10×kg2 

Mac1  
=10×

- - 
= Ma*c1 
k* =50,000 Ma*  = 7.54 Ma*c2 = 39.46 Ma*c3 = 69.64g2 c1

kg3=100,000 Mac2  Mac3  

=2×kg2 
Mac1  
≈1/2×Ma*c1 =1/2×Ma*c2 =1/2×Ma*c3 

 , 

where ν is the kinematic viscosity [16]. 
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Fig. 4: Computed fluid flows and maximum values of the 
dopant distribution for the first critical Marangoni numbers 
Mac1 in the case of kg1 = 5,000 Km-1 (a), kg2 = 50,000 Km-1 (b) 
and kg3 = 100,000 Km-1 (c). 
 
These behaviors of the fluid flow show that if Ma increases in 
the corresponding ranges [0; Mac1], then a better mixing of the 
dopant distribution takes place near the free meniscus surface, 
and hence Cmax decreases slowly from 2.029×C0 (which 
corresponds to Ma = 0, Fig. 3) to 2.028×C0 (which corresponds 
to Ma= Mac1, Fig. 4). 
These investigations prove that, for any vertical temperature 
gradients kg1, kg2 and kg3, the fluids flow and dopant 
distributions are similar for Ma in the range [0; Mac1]. The 
most important point is the length of the interval [0; Mac1], 
which depends on the size of the vertical temperature gradient. 
For practical crystal growers, this information offers the 
possibility to change the configuration of the equipment and 
process parameters (vertical temperature gradient) for 
optimization of the crystal quality. 

Concerning of the second (Mac2) and third (Mac3) critical 
Marangoni numbers, computations show that if Ma increases 
in the ranges (Mac1; Mac2], (Mac2; Mac3] and (Mac3; 406.25] 
for kg2 and kg3, or if Ma increases in the range (Mac1; 406.25] 
for kg1, the velocity of the fluid flow in the meniscus 
increases, and turbulences in the fluid flow take place. More 
precisely, if Ma increases in the range (Mac1; Mac2] for kg2 
and kg3 (or if Ma increases in the range (Mac1; 406.25] for 
kg1) then very small turbulences in the fluid flow lead to an 
increase of Cmax, which is located at the triple-point. If Ma 
increases in the range (Mac2; Mac3], then turbulences in the 
fluid increase, and Cmax is pushed inside at the level of the 
melt/crystal interface, at a distance on the same order as the 
meniscus height from the external crystal surface (see Fig. 5). 

 
Fig. 5: Computed fluid flows and maximum values of the 
dopant distribution for the Marangoni numbers in the range 
(Mac2; Mac3]: Ma = 46.42 for kg2 = 50,000 Km-1 (a) and Ma = 
29.01 for kg3 = 100,000 Km-1 (b). 
  
If Ma increases in the range (Mac3; 406.25], then higher 
turbulences move Cmax at the triple-point which increases 
considerably. 

Investigations show that for smaller vertical 
temperature gradients we obtain a wide range [0; Mac1] of 
values of the surface tension temperature coefficients which 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 2, 2008 436



assures the best homogeneity of the crystal. Indeed, non-
homogeneity of the crystal is given by the reduced radial 
segregation 

ax

axmax

C
CCC −

=Δ , 

where Cmax = K0·cmax(r, h) = K0·cmax(r; 0.5×10-3) represents the 
maximum concentration in the crystal, and Cax = K0·c(0,h) = 
K0·c(0; 0.5×10-3) represents the concentration on the axis of 
the crystal. For the representative vertical temperature 
gradient kg2 = 50,000 Km-1, the effect of the Marangoni forces 
on the radial segregation can be seen on the Fig. 6 (a-d) in 
which the radial segregations are presented as function of the 
Marangoni numbers situated in the intervals [0; Ma*c1], 
(Ma*c1; Ma*c2], (Ma*c2; Ma*c3] and (Ma*c3; 406.25], defined 
by the critical values. 

 
Fig. 6: Computed radial segregations for the Marangoni 

numbers situated in the ranges [0; Ma*c1] (a), (Ma*c1; Ma*c2] 
(b), (Ma*c2; Ma*c3] (c) and (Ma*c3;406.25] (d). 

 
These plots show that the radial segregation ΔC does the 
following:  
(i) decreases from 2.9×10-3 to 2.5×10-3 for Ma in [0; Ma*c1]; 
(ii) decreases from 2.5×10-3 to 2.1×10-3 for Ma in (Ma*c1; 
Ma*c2];  
(iii) is around 2.1×10-3 for Ma in (Ma*c2; Ma*c3], showing a 
slight increase; and (iv) for Ma larger than Ma*c3, ΔC 
increases considerably. 
 

IV. CONCLUSION 

The dependences of the Marangoni flow and impurity 
distribution on the vertical temperature gradient in aluminum-
doped silicon fibers, grown from the melt by the EFG method, 
are determined numerically by the finite-element technique in 
the framework of a stationary model including incompressible 
fluid flow in the Boussinesq approximation, heat and mass 
transfer, and the Marangoni effect. The computed fluid flows 
and their behaviors (downward steady flow, appearance of 

small turbulences, and increasing of turbulences in the 
meniscus) reveal the existence of three critical Marangoni 
numbers, Mac1, Mac2 and Mac3, which depend on the vertical 
temperature gradients. The wide range [0; Mac1] over which 
the downward steady flow induce the best homogeneity of the 
dopant distribution is obtained for the smaller considered 
vertical temperature gradient. This suggests to practical crystal 
growers that a possible feedback control for delaying the 
Marangoni convection can be obtained by decreasing vertical 
temperature gradient in the furnace. This control can be 
realized by other choices of the process parameters, e.g., by 
applying magnetic fields [18], which suggest further 
developments near the future. 

A conclusion section is not required. Although a conclusion 
may review the main points of the paper, do not replicate the 
abstract as the conclusion. A conclusion might elaborate on 
the importance of the work or suggest applications and 
extensions.  
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