
 

 

  
Abstract—The double-diffusion effect is a known phenomenon in 
oceanography. In this paper a model of thermohaline field turbulent 
energy evolution caused by double-diffusion effects, is under 
consideration. The mathematical model itself is a system of three 
nonlinear partial differential equations for environment’s 
temperature, salinity and turbulence kinetic energy, where unknown 
functions depend on time and on one only space variable. The 
discretisation and numerical implementation of the model is given, 
which bases on implicit difference method, on the uniform 
rectangular time-space grid and Newton iteration method. As the 
main result of paper the computational stability condition is obtained. 
The numerical stability criterion of the numerical algorithm for 
finding approximate solution is estimated by the maximum values of 
the solutions of system components and main parameters of the 
model. 
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I. INTRODUCTION 
HE effect of double-diffusion is known already from 1857, 
when in Sydney, W.S. Jevons performed the first known 

laboratory experiments on heat-sugar fingers. Fundamental 
notion that convective fluid motions can arise as a result of 
different molecular diffusivities was forgotten for nearly 100 
years. Rediscovery happened in 1956: Arnold Arons 
suggested that a pipe with heat-conducting walls would allow 
a self-sustaining flow to occur the "perpetual salt fountain" 
[23].  

The layering of initially stable vertical profiles of 
hydrophysical fields into stair-like profiles is a well-known 
phenomenon from oceanographic observation and laboratory 
investigations [4], [5], [25], [27]. The physical reason of the 
process proceeds from the difference of coefficients of 
molecular diffusion for different environment constituents, for 
example in oceans - heat and salt, characterised by 
temperature and salinity fields. Two different scenarios of 
layering processes are possible called as salt-fingering and 
diffusive layering regimes. 
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II. STRATIFICATION MODELS AND DOUBLE-DIFFUSION 
In nature, the air in the atmosphere and the water in the 
oceans, seas and lakes are usually stratified. A direct 
consequence of stratification is that natural synoptic-scale 
motions frequently have nontrivial vertical structure. 
However, analysis in [19] shows that this consequence can be 
partially avoided if the stratification becomes evident in the 
form of well-defined layers of practically homogeneous fluid. 
The two-layer model is applicable in cases when the vertical 
density distribution in the ocean or atmosphere has one well-
defined layer of large density gradients, and the rest of the 
medium is much more weakly stratified. There are, however, 
cases when the water masses have significantly more complex 
structure. For example, at medium latitudes the seasonal 
thermocline creates a 3-layer structure (the Baltic Sea) [1]. 

The stratification of a water column frequently becomes 
evident in the form of a series of homogeneous layers 
alternating with high gradient interfaces. Such a vertical 
structure is known as a stepped staircase or a stepwise 
thermohaline structure. Steplike vertical profiles with the 
typical height of the steps from a few centimeters to tens and 
hundreds of meters occur in the oceans. Such structures can be 
found in many regions of the world’s oceans, including 
tropical, Caribbean, arctic or mid-latitude waters, e.g. 
Tyrrhenian Sea in the Mediterranean [20], [12], [28]. A large 
number of experiments in the Red Sea, in the Arctic Ocean, 
the North Atlantic, in the Canada Basin etc. suggest that the 
staircase-like structures are a common feature in the ocean 
[24], [13], [14]. They seem to be present in all areas where the 
conditions for thermohaline layering are sufficient. Layered 
structures can be found in some lakes also, e.g. lake Nyos in 
Cameroon where the contribution of CO2 to the stratification 
is much larger than that of temperature and dissolved salts 
[19]. 

In order to estimate the correctness of underlying 
assumptions of the layered model and for a reliable 
implementation of results from a multi-layer ocean model, it is 
important to know if, when and how the layers develop. In 
current paper an attempt is made to clarify under which 
conditions the layering process occurs in the typical ocean 
environment. The analysis is based on the description of this 
mechanism owing to interplay of double-diffusive processes 
and turbulent mixing in the framework of the theory of 
rotationally anisotropic turbulence [6]. The research presented 
serves as a first stage of the studies of this mechanism and has 
the goal to qualitatively understand, under which conditions 
the layered structure is generated and which sort of numerical 
methods can be used for its analysis. Further studies are 
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needed in order to establish what can be the thickness of the 
layers and how large can be the temperature, density and 
salinity jumps in between the layers. The results obtained so 
far suggest that these studies require extensive computational 
efforts and are outside of the scope of this paper. 

Double-diffusion is a phenomenon that occurs during the 
mixing processes in fluids with two constituents of greatly 
different molecular diffusivities [18]. In the oceans, such 
constituents, which also affect the water density, are the 
temperature and salinity. The molecular diffusivity of 
temperature is by two orders of magnitude larger than the 
molecular diffusivity of salinity. Equivalently, on the 
molecular scale heat diffuses much more rapidly than salt. 
Many oceanographers expect that double-diffusion has major 
effects on oceanic water masses and circulation. Although 
double-diffusion becomes evident mostly in small scales, the 
common opinion of the experts is that double-diffusive fluxes 
produce significant effects on various large-scale features of 
the ocean, and it is the potential of such effects that has driven 
much of the active research in the field [19]. The scope of 
investigations of double-diffusion is not restricted with 
oceanography. The process is studied even in porous medium 
[2].  
 

III. MECHANISMS OF LAYER FORMATION 
The basic source of stratification in the ocean is the energy 

submitted to the ocean by the Sun and wind. There exist a 
large number of studies of formation of a staircase-like 
structure. Its mathematical modelling both in general fluid 
mechanics and in oceanography is supported by many 
laboratory experiments and with a large amount of 
experimental data [4], [5], [8], [25]. Many aspects of the 
origin of such a structure, in spite of long history of its 
studies, are still unclear and are a subject for speculations. 

There exist several mechanisms that can produce structures 
similar to those observed in the nature. A field of turbulence 
in a strongly stratified fluid, far from boundaries, being 
supported by a Reynolds stress and having a non-zero vertical 
flux of buoyancy or density, may be unstable to variations in 
the vertical density gradient [15]. The vertical diffusion of salt 
or heat is a strongly nonlinear process, and the relevant non-
linear differential equation has initially unstable solutions 
under certain conditions. The properties of such solutions 
have been analysed by E.S. Posmentier in [16] who 
numerically demonstrated the possibility of development of 
initially smooth salinity profiles into staircase-like structures. 
Thermohaline intrusions may also create such structures [3]. A 
simple one-dimensional numerical model demonstrates how 
intrusions generate inversions in temperature and salinity. 
Under normal conditions the density usually increases with 
depth. A reversal of the normal behavior of density in the 
ocean is, in which a layer of more dense water is overlaid by a 
less dense layer. The medium seems to evolve toward an 
equilibrium state in both finger- and diffusive type 
stratifications. The equilibrium states are characterised by 
convecting and thus well mixed layers between specific 
interfaces - layers in which either diffusive layering takes 

place or salt fingers occur. The resulting structure has 
staircase-like vertical profiles of temperature, salinity and/or 
density. 

In this study we explain a novel mechanism of the 
formation of the layered structure, triggered by the joint 
influence of double-diffusive and turbulent mixing processes. 
This mechanism can trigger one of the most likely scenarios 
for formation of layers and the step-like structure in the sea. It 
may become active practically always when double-diffusion 
processes are active. The relevant process can be modelled in 
the framework of the theory described in [6]. 

A well-defined layered structure means that large gradients 
appear in some areas below called interfaces. The formation 
of a layer is therefore accompanied by large gradients of 
certain parameters (temperature, salinity and/or density in the 
ocean) at the interface(s). In extreme cases, the behaviour of 
their derivatives resembles delta-like peaks. This feature 
makes the numerical studies of the formation of steplike 
stratification a particularly difficult problem since onset of 
numerical instability may be interpreted as a (non-realistic) 
layer in the modelling process. The stability and reliability of 
the numerical scheme is thus a central prerequisite in the 
relevant studies. 

The described problem resembles well-known difficulties 
appearing in numerical solving of stiff systems characterised 
by extensive variation of the magnitude of different terms in 
the equations to be solved. On the one hand, the numerical 
scheme may become unstable. While modelling the situation 
where layering is expected, it is hard to determine if the 
computed result is a fake or real, without analyzing the 
physical process. On the contrary, making the numerical 
scheme “too stable” (for example, with the use of a sort of 
additional numerical viscosity), we can artificially damp the 
layer formation process. Therefore one has to employ a 
method that is able to reproduce the physical results and to 
damp the instabilities. 

The central problem is the relevant choice of the model type 
and parameters for a reliable description of the layer formation 
owing to the joint influence of double-diffusive (called DD 
below) and turbulent mixing processes in the framework of 
the theory [6]. The qualitative analysis of the model equations 
and results of a variety of numerical experiments suggest that 
the formation of layering in a stratified medium is a generic 
process in the oceans. The above has shown that the analysis 
of the stability of the relevant numerical code is equally 
important. It is established that for a certain range of 
parameters the numerical scheme is stable and the results are 
correct although the process looks unstable.  

IV. TYPES OF INTERFACES IN DOUBLE DIFFUSION PROCESSES 
Let us consider two water masses with different 

temperature and salinity above each other. There exist two 
options of initially stable stratification. First, the overall 
stratification is stable when the upper layer is cooler but much 
less saline compared to warmer and more salty lower layer. 
Second, the upper layer may be more saline but warm enough 
compared to relatively cool and somewhat more fresh lower 
layer. 
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The interface between the water masses has a different 
nature in these cases. When the interface is unstable with 
respect to the highly diffusive constituent (i.e. heat – the 
warmer water is in the lower layer), the changes of water 
properties in the vicinity of the interface occur by the 
molecular diffusion of both heat and salt. The molecular 
diffusion causes density inversions that lead to the 
corresponding release of potential energy within the inversion 
region and initiate the mixing process and formation of new 
(more or less uniformly mixed) layers. An interface of this 
kind is known as a diffusive layering (DL) interface. 

On the opposite case when the interface is unstable with 
respect to a substance of lower diffusion (i.e. the more saline 
water is in the upper layer) long, narrow “finger-like” 
convection cells with rising and sinking fluid motions that 
carry buoyancy flux will be created. These interfaces are 
called (salt) finger (SF) interfaces [3], [5], [26], [27]. 

The mathematical model, setup of which is explained in [6], 
[9], starts from traditional approach in solving the turbulent 
problems, based on the classical semi-empirical theory of 
turbulence [11] and a theory explained in [6]. The model itself 
is a system of three nonlinear partial differential equations for 
environment’s temperature, salinity and turbulence kinetic 
energy, where unknown functions depend on time and on one 
only, vertical space state variable. The discretisation, using 
difference method, leads us to the algebraic system with 
block-structured matrix. When more then one spatial direction 
is taken into account, then the idea of introducing virtual 
voxels could be used for discretisation of the problem, in real 
monitoring also the Kalman filtering would be useful. These 
ideas are applied in [10]. Within the mathematical problems 
arising from the model the central question is the stability of 
numerical realisation of the model. Some examples from 
numerical results are given. 

 

V. THE MATHEMATICAL MODEL 
When describing the layering process in environment due 

to double diffusive effects the quantities under consideration 
are the non-dimensional turbulent energy ( )tzK , , salinity 

( )tzS , , temperature ( )tzT ,  and density ( )tz,ρ . Assuming 

that the state equation )1(~)1(~1 −+−−= ST βαρ  is 
linear, the model equations read: 
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where 2
00

2 −= zKctb K  has the meaning of the coefficient of 

turbulent diffusion, t  is non-dimensional time, Kt  and 0z  are 

the characteristic time and vertical scale, respectively, 0K  is 

the characteristic scale of the turbulent energy, 1
00
−= Kgzr , 

2
0

−= ztka K
mol
T , 2

0
−= ztkd K

mol
S , mol

Tk  and mol
Sk  are the 

coefficients of molecular diffusion of heat and salt, 
respectively, 1

00
~ −= ραα T , 1

00
~ −= ρββ S , and α  and β  

are the coefficients of thermal expansion and salinity 
contraction, respectively. The model thus contains five 
physical constants α , β , mol

Tk , mol
Sk and g . The derivation 

and discussion of the equations is presented in [9] and the 
value of the semi-empirical constant 05.0=c  is suggested 
based on theoretical considerations of [21]. 

Depending on the character of initial stratification, two 
different scenarios of layering processes are possible. For the 
mathematical model the choice between these variants brings 
out different initial and boundary conditions [9]. 

For the discretisation of the continuous model described by 
equations (1)-(3) we introduce the rectangular time-space grid, 
with the time step τ and vertical step h. Denote (ti,zj) the grid 
points and Ki,j, Ti,j and Si,j the approximate values of K, T and 
S respectively, in these points. Here ti=iτ, zj=z0+jh, 
i=0,1,2,…, j=0,1,2,…,n.  

If the approximate values of the system variables are known 
at t=ti, then discretisation of initial set of equations leads to 
the following system of algebraic equations for values at t=ti+1 
: 
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Equations (4), where nj ,...,1,0= , present the non-linear 

algebraic system accompanied with the set of linear equations 
representing boundary conditions and allowing to eliminate 
values of unknown functions beyond the grid [9]. 
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For fixed i the system (4) presents the approximation of 
system of model equations (1)-(3) in the following discrete 
form: 

0)(
r

=xF ,                              (5) 
 
where x denotes the vector of dimension N=3(n+3) of 
unknown approximate values, x=(Ki+1,0,…,Ki+1,n, 
Ti+1,0,…,Ti+1,n, Si+1,0,…,Si+1,n,); F- vector function determined 
by system of equations (4) complemented with relations from 
initial and boundary conditions, with components fj

(s)= fj
(s)(x), 

s=1,2,3, j=0,1,…,n; 0
v

- vector of zeroes of length N. Below 
we use also the notation Fp , px , p=0,1,…,N-1, for the 

components of F or x .  
 

VI. NUMERICAL PROCESS 
It is convenient to solve the nonlinear algebraic system (5) 

using the Newton iteration method.  For given initial values x0 
the iteration process will be: 

)())(( 111 −−− =−′ mmmm xxxx FF ,          (6) 

where m is iteration index and )( mxF ′  denotes the Jacobian 
of F evaluated in  xm, m=1,2,… In our case the Jacobian has 
the 3x3 block structure: 
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where A and B denote different 3-diagonal, 2-diagonal 
matrixes, O is zero matrix. The structure of A and B is as  
follows: 
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Here the asterisks denote the locations of nonzero elements in 
matrices. Formulas (8)-(19) below show the computational 
rules of those. 

In the following we investigate the conditions, under which 
the Jacobian ( )mxF ′ , (7),  has dominating main diagonal - 
i.e. the problem of solvability of system (6). It is well-known 
(see e.g. [22]), that such domination ensures the uniqueness of 
solution of the system (4) and stability of elimination process 
for solving linear system (6). 

Let’s consider the equation (5), 0)(
r

=xF , (here and 
afterwards we omit the upper iteration index). According to 
component form (4) we find the nonzero components of 
Jacobian (7) for  j=0,1,…,n  as follows: 
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During the numerical process it is necessary to compute the 

values of described components of Jacobian (7) on every 
iteration step. The sparse structure of the Jacobian makes it 
possible to apply a modification of the elimination method for 
solving this system to reduce the number of arithmetical 
operations. The method will be discussed elsewhere. 

VII. STABILITY CRITERION 
In the following we show that by the choice of the rate of 

grid steps h and τ it is possible to reach the domination of the 
main diagonal of the Jacobian F’(x). This in turn guarantees 
the uniqueness of the solution of the system (4) and the 
stability of the elimination process of solving of that system. 
Denote also  
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where j= 0,1,…n. 
According to the formulae for the components of the 

Jacobian we analyse the estimations 
 

jj
jq

qj ff ,, <∑
≠

 , 1,...,1,0 −= Nj .       (20) 

We consider the estimations (20) separately in three cases: for 
nj ,...,1,0=  (case 10), 22,...,2,1 +++= nnnj  (case 

20), for 1,...,42,32 −++= Nnnj  (case 30). 
For case 10 from (8) we find 
 

( )

( ) ≥⎟
⎠
⎞⎜

⎝
⎛ −−−+

++++−−=

−+++−+++

+−++++

1,11,11,11,1

,121,1,11,12

2
1

2
1

221
,

jijijiji

jijijiji

TT
h

rbSS
h

rb

b
cK

h
bKKK

h
bf

jj

αβ

τ   

(21) 

( )

.61

22
41

2

1,11,11,11,1
1,1,11.12

TSK
h

rb
h

rb
h
b

h
TT

h
SS

rbKKK
h
b jijijiji

jijiji

αβ
τ

αβ
τ

−−−≥

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
++−−≥ −+++−+++

−++++

 

 
For the case 10 from (9)-(11) follows the estimation for 
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For the case 20 from (15) we find 
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From (12)-(14) for non-diagonal elements follows, that 
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For the case 30 from (19) we find for diagonal elements: 
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The estimations for non-diagonal elements hold due to 
some elementary relations for real numbers. For cases 20 and 
30 the condition (20) leads to the inequalities:  
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Both of these are satisfied if  
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In case 10 the condition (20) holds if  
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If hrβ<7b and hrα<7b then the inequalities (27) and (28) are 
true for 

KTS ))(10(77
2

βα
τ

++++> hrbbbbh  ,     (29) 

which is the final estimation to the rate of grid steps to ensure 
the numerical stability of discrete model. 

From the right-hand side of inequality (29) it follows, that 
variability in parameters (S,T,K) cannot introduce bifurcation 
in stability criterion, as their estimations depend on essential 
parameters (b,r) linearly. 

VIII. NUMERICAL RESULTS 
The qualitative evolution of vertical profiles of temperature, 

salinity, kinetic energy and density in the framework of 
equations (1) - (3) in the vicinity of the diffusive layering and 
the salt finger interfaces within a stably stratified fluid is 
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sketched on Figure 1 and Figure 2, respectively. At the outset, 
the water density monotonously increases with the depth. In 
the course of time density inversions at one or both sides of 
the interface may be formed due to the double diffusion 
process for a certain range of parameters. In the diffusive 
layering case, two layers with density inversions are formed. 
One of them is located above and the other below the original 
interface (Figure 1). In the salt finger case (Figure 2) only one 
area of density inversion, which embraces the original 
interface area, is occasionally formed. In the inversion 
regions, the potential energy starts to release, equivalently, the 
turbulent kinetic energy K increases. Unstable stratification in 
the area of the inversion(s) launches the turbulent mixing 
process in the(se) area(s), and results in formation of new 
mixed layer(s). After the new interface(s) and the new mixed 
layer(s) have been formed, the turbulence intensity decreases 
again, and the double diffusion apparently becomes the 
governing process after a while. Under favorable conditions, 
this scenario may be repeated many times and result in 
formation of a multi-layered structure. 

This process can be easily tracked in the framework of 
equations (1) – (3). For simplicity let us denote 

 B
z

rb
z
T

z
Srb ≡

∂
∂

+=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+
ραβ 11             (30) 

and assume that at the outset the density linearly increases 
with depth. The term Β in equation of turbulence energy (1) is 
positive in this case. The turbulent energy is thus damped by 
the stable stratification and, if initially small, it remains small 
until a certain time instant 1t  when the quantity B  becomes 
negative 0<B . During this stage the diffusion process has an 
almost purely molecular character. It generally results in 
changes of local gradients of the constituents S  and/or T , 
and if it is intense enough, after some time it may change the 
sign of B  for some range of depths. 

The situation 0<B  reflects an inversion in the density 
profile in which tK ∂∂  appears to be roughly proportional to 
K  and the turbulent energy exponentially increases starting 
from 1tt = . This process may resemble (numerical) 
instability but in fact it only reflects a fast increase of 
turbulent energy in a certain sublayer owing to displacement 
of water masses towards restoring a stable stratification. This 
process soon overrides molecular diffusion and is 
accompanied by a fast increase of both tT ∂∂  and tS ∂∂ , 

followed by a fast decrease of zT ∂∂  and zS ∂∂  in the area 
of intense mixing owing to Eqs. (2) and (3). Equation (30) 
then implies that the quantity B  soon becomes positive again, 
say, at 2tt = . Starting from this time instant, equation (1) 
implies fast decrease of turbulent energy in layers with 

0>B . The whole process can be interpreted as forming a 
new mixed layer (with generally finite thickness) in the 
vicinity of the former interface. This layer is separated from 
over- and underlying regions by new interfaces where the 

buoyancy gradients are big enough to suppress the turbulence 
energy. 
 

 

Figure 1. Evolution of the vertical profiles of temperature T, 
salinity S, density )1()1(1 −+−−= ST βαρ , and 
turbulent kinetic energy K in the case of the diffusive layering 
interface. 

 

 
 
Figure 2. Evolution of the vertical profiles of temperature T, 
salinity S, density ρ , and turbulent kinetic energy K in the 
case of the salt finger interface. 

 
The essence of the model requires that 

max0 bKad <<<<< , where maxK  denotes the maximum 
value of the turbulent energy. New layers only can be 
generated if the turbulent energy is initially nonzero; however, 
this is normally the case in natural conditions. The initial 
profiles )0,(zT  and )0,(zS  were chosen so that the fluid 
density varied linearly in the vertical direction but a thin 
interface layer with relatively large temperature and salinity 
gradients was located at the mid-depth of the computational 
domain. 

The domain of integration is DzzDz +≤≤− ~~ . The 
following initial and boundary conditions for equations (1) – 
(3) were adopted. The turbulent kinetic energy was set to a 
constant )10(~)0,( 61 −−= OabzK .  The domain has an 

inner interface centered at zz ~=  and with a thickness of 
δ2 , where D<<δ . The interface is determined as a thin 

layer with relative large temperature and salinity gradients 
compared to their gradients outside the interface area. The 
initial profiles )0,(zT  and )0,(zS  are chosen so that the 
fluid density varies linearly in the vertical direction at the 
outset. Its deviation from the nondimensional value 1=ρ  at 
the centre of the interface is described by the state equation as 
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( )zzCzTzS ~]1)0,([]1)0,([ −=−−− αβ , where C  is 

jointly defined by )0,(zSβ and )0,(zTα . 
 

The evolution of thermohaline field for diffusive layering is 
explained on Figures 3-5.  

 

 

Figure 3. Temporal evolution of the vertical profile of water 
density  

For the following values of the physical parameters: 
0003.0~ =α  1−K , 0008.0~

=β  -1‰ , 
7103.1 −×=mol

Tk  12 −sm , 9107.1 −×=mol
Sk  12 −sm , 

1~ == zD  and 05.0=c , the molecular diffusion has 
generated inversion regions (represented by negative gradients 
of the density profile, Fig. 3), large enough to launch the 
turbulent mixing at t=100 s. For the realistic maximum values 
of the turbulent kinetic energy, temperature and salinity in the 
ocean, the ratio ( ) 01.02 >ΔΔ τh  must hold, where hΔ  
denotes the vertical step and τΔ  is the time step. In practical 
computations the time step has been taken as 

05.001.0 <Δ< τ .The resulting mixing process forms two 
new well-defined mixed layers by t=500 s (Figure 5). 
 

 
Figure 4. Temporal evolution of the vertical profile of the 
turbulent kinetic energy K  

 

 
Figure 5. Temporal evolution of the vertical profile of water 

salinity 
 

IX. CONCLUSION 
The stability criteria for numerical realisation of the model 

of vertical structure of thermohaline fields, caused by double 
diffusion effects are discussed. The possibility to guarantee a 
numerical stability of discrete model based on the set of 
nonlinear differential equations (1) - (3) by a choice of 
suitable space and time step on the time-space grid is 
demonstrated. The estimated criterion is sufficient for 
numerical stability of formulated discrete model. The 
experience with various values of the parameters entered into 
equations (1) – (3) and into the initial and boundary 
conditions shows that the layering process apparently is only 
effective for a specific subset of the parameters, because of 
their many realistic combinations the layer-formation 
mechanism did not become evident within a reasonable 
computation time. However, in several cases it leads to quite 
fast forming of new layers and interfaces. 

The experience with different sets of parameters and initial 
conditions suggests that the forming of such structures may 
have drastically different time scales in different regions, and 
that generally it is a long-term process and can be realized 
only in regions where the formation of stepwise structure has 
enough time to get formed. Research in this direction is 
clearly important, because as yet no modelling framework 
provides an integrated picture of DD-convection phenomena 
[7]. 

Although the example of double-diffusion in this article is 
taken from oceanography, the process itself (heat and mass 
transfer in a medium) is more and more investigated in non-
oceanographic applications. Examples can be found in many 
engineering technological areas such as geothermal reservoirs, 
petroleum extraction, chemical catalytic reactors, prevention 
of water pollution, nuclear reactor, underground diffusion of 
nuclear wastes and other contaminants, and porous material 
regenerative heat exchangers [17].  
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