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Boundary Stabilization of a String with Two Rigid
Loads: Calculation of Optimal Feedback Gain Basec
on a Finite Difference Approximation

Hideki Sano

~ Abstract—This paper is concerned with the boundary stabilizaclosed-loop system with the controller, by using the LaSalle’s

tion problem of a string with two rigid loads which is described byinvariance principle. However, how to determine an optimal

two kinds of hyperbolic equations. In our previous work, a controgain of the controller remains an open problem. There, in
S

law that made an energy function of the system non-increasing wi . K 110 idered imolified | d
derived, and the asymptotic stability of the closed-loop system witRur previous wor [10], we considered a simplified lumpe

the controller was proved by using the LaSalle’s invariance principld@rameter model in connection with the string with two rigid
Moreover, a simplified lumped parameter model was considered loads, and proposed the design method to determine an optimal

connection with the string with two rigid loads, and the design methofeedback gain for the model. In the paper, it was shown that

to determine an optimal feedback gain for the model was proposed.[lﬁe controller with the optimal gain works effectively to some
this paper, it is shown that the controller with an optimal gain based

on a finite differnce approximation works more effectively than théxtent for the original system through numerical simulations.

one based on our previous method for the original system througth€ purpose of this paper is to improve the method, namely,
numerical simulations. to propose a method to determine a more optimal feedback

Keywords—Boundary stabilization problen(,-semigroup, de- gain .based on _a finite d_lfference approximation. .
scriptor system, finite difference approximation, hyperbolic equation, This paper is organized as follows: In Section II, we
LaSalle’s invariance principle, string. explain the model treated in this paper. In Section I, we
review our previous results concerning control law, closed-
loop stability, optimal feedback gain based on a simplified

] o ~_model. Section IV is our main part of this paper, in which

and optimal control of strings without natural damping arg finite difference approximation is proposed. In Section V,

challenging topics. Since old times, several types of problemfe result of numerical simulations is given. Finally, this paper
in this direction have been investigated by many research§tSs,mmarized in Section VI.

(see, for example, [1]-][3], [4, Chapter 6], [5], [6, Chapter
6], [7]-[13], and the references therein). Especially, from the
engineering point of view, Rao has treated the stabilization
problem of suppressing the vibration of a distributed parameter
overhead crane model with one rigid load [8]. In that paper,
after deriving a control law, the energy multiplier method is
applied to the closed-loop system and the exponential stability y(t,z)
of the energy is proved. d’Andréa-Novel and Coron have
proposed a back-stepping approach for the similar problem [2].
Also, Grabowski andZotopa have solved the output motion
planning problem [5].

In this paper, we study the stabilization problem of a string
with two rigid loads which is described by two kinds of
hyperbolic equations. Especially, the system can be regarded [
as a distributed parameter overhead crane model with two
rigid loads. Here, it is supposed that the flexible cable of the
overhead crane has a constant length. For the string with two
rigid loads, an energy function is defined and a control law
such that the energy becomes non-increasing is derived. In
[9], we have given the proof of the asymptotic stability for the I PR
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Let b be a constant such that< b < 1. We shall consider
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Il. SYSTEM DESCRIPTION

the following string with two rigid loads:

0%y 0 Oy
@(t,fﬂ) = % (a(ff)%(tvdf))a
t>0, xz€(0,b),
9%y 0 (., |0y
@(t,fﬂ) = % (a(ff)%(tvdf))a

we have

d
—E(t) = —yy2(¢,0) < 0.
o (t) = =y, (t,0) <0

Consequently, the energl(t) for system (1) becomes non-
increasing under the control law (2).

Remark 2: In [8], an energy function of this type is used
and the same control law is derived for a distributed parameter
overhead crane model with one rigid load. In that paper, the
energy multiplier method is applied to the closed-loop system

t>0, z€(b1),

a(0)5(t,0) = u(t), >0,

! )
y(tv bi) = y(t,bJr)v t>0,

0? ~ 0
My (1) = a(b) 3 )
—a(b’)a—Z(t,b’), t>0, by

2
Mg%(t,l) = —d(l)%(t,l), t>0,
y(0.2) = p(a), 1 (0.2) = q(@), v €[0,1]

In the above,u(t) denotes the control force, andz) :=
gMy + My +1—2) (0 <z <b) anda(z) == g(Maz +
1—2z) (b < 2 < 1) the tension force of the cable at the
point z, where g is the gravitational acceleration, and;

and M, the masses of rigid loads. System (1) expresses a
distributed parameter overhead crane model with two rigid
loads (see Fig. 1). Here, it is assumed that each load is a masj
point and that the mass of the cart, which is sufficiently small

compared with the one of each load, is neglected. Moreover,
it is supposed that the displacemeyit, z) and its derivative

Ay and the exponential stability of the energy is proved.

B. Closed-Loop Stability

The closed-loop system consisting of (1) and (2) is described

= (a(@)ys(t, 7))z, >0, x € (0,0),

yu(t, x) = (a(2)ys (t, 7))o,

a(0)yz(t,0) = ay(t,0) + vy(t, 0),

y(t,b7) =y(t, "),

Miyu(t,b) = a(d¥)y.(t,0%) — a(b™)y.(t,b7),
t>0,

ytt(t,fﬂ)
t>0, x€(b1),
t >0,

t>0,

ngtt(t, 1) = —d(l)yx(t, 1), t >0,

y(va) = p(x)7 yt(ovx) = q(m), UAS [Ov 1]'

3)

In order to formulate this closed-loop system in an abstract

y-(t,x) are small through the cable and that the total mass %ace let us introduce the Hilbert space

the cable is 1, i.e., the line density is equal to 1.

Remark 1: We note that, under zero control input, the
vibration does not decay at all, since no damping terms are
contained in system (1) with(t) = 0.

Ill. DERIVATION OF CONTROL LAW AND CLOSED-LOOP
STABILITY

A. Derivation of Control Law
Let us define the following energy functidfi(¢) for system

(2):

ISIENSE IR BNy

€ H*(0,b) x L*(0,b) x H* (b, 1)

—_— — —

=

(-
(-
(-
(-
£
n

xL2(b,1) x R x R ; y(b) = gj(b)}

with the inner product

1

b
B0) = 5 | [ a2, + 200}

1
+ / {a(@)y2 (¢, 2) + 2 (t,2)}do
b
+O‘y2(t’ 0) + Mlth(t, b) + MQth(t’ 1) )

wherea > 0. Differentiating E(t) with respect ta, and using

(1) and integration by parts yields
d
7B = —4e(t,0)(u(t) — ay(t, 0)).

Here, choosing the control inpuf(t) as

u(t) = ay(t,0) +yy:(t,0), >0, )
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<f17 f2>X
b
- / (0(@)y10(@)y2e (@) + 21 (2) 22 ()

+ / {a(2)§12(7)Fow (z) + Z1(2)Z2(7) }da
b
+ay1(0)y2(0) + M1&182 + Maminsz,

for fi=[y1, 21,0, %1,.&,m]" € X,
f2 = [y, 22, T2, 72, &2, m2)" € X.

In the above,H!'(0,b) and H'(b,1) are the usual Sobolev
spaces. Here, we define the operator D(A) C X — X as
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follows: loads (see Fig. 2):
[ —2() ] €jo = T sinby, — u,
y(-) —(@(’)y2())a 5 , _
Z() 72() M1y1 :T3 Sll’l92 _T2 8111917
al 90| —(@()g2())e Majjs = —Tysin 6y, (5)
Z(- _ N _ _ ’ .
é) a(b)ge(b) —a(d)y.(b7) Yo + bsinbfy =y,
n d(l)%l(l) Y1+ (1 —0)sinby = yo,
B My N where ¢ is a sufficiently small positive constant which ex-
y() ] presses the mass of caffy := g(M; + My + 1), Ty :=
2(+) g(My + My + 1 —0), Ty := g(My + 1 —b), Ty := gMs
() denote the tension forces.
for ~ € D(4),
()
3 C
u(t) art
o 0
[ y() bo(®)
a9
D(A) = { 38 e H?(0,b) x H*(0,b)
£
L 7
xH?(b,1) x H'(b,1) xR x R ;
§= Z(b) = Z(b)’ n= 2<1)’
) plom®)
(0)1:(0) = ay(0) +92(0) y(8) = 3(0) }.
And, denotingy(¢, x) restricted to0 < x < b by y(¢,z), and
y(t,x) restricted tob < = < 1 by g(¢, ), and moreover in-
troducing the new variables(t, ) = y:(t, ), 2(t,-) = 4:(¢,-),
£(t) = we(t,0)(= we(t,07) = Gu(t,07)), n(t) = §e(t, 1), the
closed-loop system (3) can be written as 1
d
— =-A 4
ZI(0) = —Af (@), (@) :
where
Fig. 2. Lumped parameter overhead crane model with two
F@t) = [y(t, ), 2(t, ), 5(t, ), 2(8, ), €(), ()] rigid loads I.
Then, the solution of (4) is expressed as When |0;| and |62| are sufficiently small, system (5) is
ia approximated as
f(t) = e f(0),
since the operatorA generates &)-semigroup of contrac- €jo = —a1yo + yr — u,
tions e~*4 on X [9]. Moreover, the operatofl + AA)~! : i1 = G2yo — As3y1 + Aaya,
X — X is compact for everyh > 0 [9]. Based on these L .
facts, the following fact has been proved by using the LaSalle’s Y2 = dsY1 — AsY2,

invariance principle. _ where @, = Ti/b, ds = To/Mib, a5 = To/Mb +
Theorem 1. ([9]) The closed-loop system (4) is asymptoti-ry /Af, (1 — b), ag := Ts/My(1 —b), a5 = Ty/My(1 —b).

cally stable, namely, for every(0) € X, [le™*f(0)]x goes Here, by lettinge go to zero, we have the following descriptor

to zero ast goes to infinity. system:
Ez = Az + Bu, (6)
C. Optimal Feedback Gain Based on a Smplified Model
(Former Method [10]) where
In connection with system (1), we shall consider the follow-
ing lumped parameter overhead crane model with two rigid Z:= [yo, 90, y1, U1, y2, V2] T
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L0 0000 where f = [fi, fo, fo, 1 So. JolT k= [kska ks, b,
000000 ks, ke)*, and the norm || - || is the Euclidean norm. Hereafter,
E:— 001000 we denote the solution to the optimization problem (10) by
000100/’ (@7).
0000T10 ’
0 00001 IV. OPTIMAL FEEDBACK GAIN BASED ON A FINITE
0 1 0 0 o0 o DIFFERENCEAPPRG XIMATION (PROPOSEDMETHOD)
a1 0 &4 0 0 0 Let I, J be positive integers. Assume thats chosen such
A_| 0 0 0 1 0 0 that N
| a4 0 —az 0 as O |’ = e
0o 0 0 0 0 1 where Az := 1/(I + J). Hereafter, we set; := a(iAx) for
| 0 0 a5 0 —as O 1=0,1,---,I,andary; :=a(({ +i)Az) fori =0,1,---, J.
B:=[0,-1,0,0,0,0]%.
When we apply the control law 0 y
u=ay+yy = Fz Az
to system (6), the closed-loop system becomes 28z
. 3Azx
Ez= (A +BF)z, (7
where
F:=[a,7,0,0,0,0].
Now, let us consider the functional (I —1)Az
T i= [ @ Qa0 + R (o) ®) b
0 (I+1)Azx
for system (6), where Q is a positive definite matrix and R is
a positive number. The problem of determing the control law
for system (6) such thal[u] is minimized is called the linear
quadratic regulator problem. Using the admissible solution (74 .7 —1)Az
(X,Y) to the generalized algebraic Riccati equation 1
ATX +YA +Q—-YBR'BTX =0,
E”X = YE, z
) o Fig. 3. Lumped parameter overhead crane model with two
the solution to the problem is given by rigid loads II.
. _p-lpT . ) .
u=Kz, K:=-R'B'X Introducingv = y, w = v, the first equation of system (1)

v =w,

stated in [14]. Then, the closed-loop system consisting system
(6) and the optimal control is given by
Ez = (A + BK)z (9) Where'=9/0t,’ = 9/0x. Similarly, the second equation of
system (1) is written as

(see [14]). In this(X,Y) is calculated according to the way IS Written as {
(1)

w = a(z)v" — gv',

Then, we can determine the parameterand~ such that the .
characteristic polynomial of (7) { v =w, 12)

¢F(s) = detsE — (A + BF)) W = a(z)o” — gv'.
= 15" + fos* + fss® + fas® + fos + fo

approaches the one of (9)

Here, definingu;(t) := v(t,iAz), wi(t) = w(t, iAzx) (see
Fig. 3) and approximating’ (t,iAx), v”(t,i1Ax) as

~ Vig1(t) —vim1(t)

ok (s) = det(sE— (A + BK)) Vit iAT) =
= k157 4 kost + k3s® + kas? + kss + ke (1 i) = Vig1(t) — 20i(t) +viea(t)
as much as possible, by solving the following optimization ’ ; Aa? ’
problem: it follows from (11) that
Find the pair («,~) that attains v = wj,
min{ | — k[ ; a>0,v >0}, (10) { i = oviy 4 s i, (13)
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fori=1,2,---,1 —1, where where
o = I Bi = _2ai z:= [vg,v1, -, Uy g, wo, wa, - wig ]
TOAz?2  2Az7 Y Az?’
G g Irigm Oryi41
TT AR T A e 0 -~ 0
. — o1 -+ 0
Similarly, from (12) we have Ee:= Or4741 _ _ )
VI 4i = WItis )0 .. 1
{ | : ) ~ 4 00 1
Wi = QrpiVri—1 + BreiVivi + Y14iVivit1, Oriyer Iiism
A = ‘ ‘
fori=1,2,---,J — 1, where A2z Orys4a
G ar4i L9 Bros = 2014 —c c 0 0
= Ag2 T oAy T T AR a; By " 0
- arii g = S - - :
Lei = g~ A Ay : : S . i ;
0 - aryg-1 Bryg-1 Yi+i-1
For the time being, we suppose that the cart has a sufficiently 0 0 é —e
small mass > 0. Then, the third equation of system (1) is
replaced by B .= { O(”é“)“ ] , By:=[-1,0,---,0]".
2

ey (t,0) = a(0)y.(t,0) — u(t).
Here, by approximating,.(¢,0) as

~ U1 (t) — Vg (t)
Yz(t,0) = S we—
we have

Ug = Wo,
. (15)
€Wy = —CVg + CVU1 — U,

where ¢ := ag/Az. Moreover, by approximating, (¢,b"),
y.(t,b7) in the fifth equation as

vr1(t) — v ()

+Y) ~
yelt, ) = D=0
() = v (t)
y;c(tab ) = Az >

and,y..(t, 1) in the sixth equation as

o Vs (1) = vrg g1 (t)

x t? 1 )
Ya(t,1) AL
we get
vy = wy,
- - (16)
wr = dvy_1 — (d + d)’l)[ + dU[_H,
V[4J = W[4,
- + ) + ] (17)
Wi4+Jg = €V j—1 — €V14J,
where
g 7. ar 5o ar+Jg
’ MlAZL" ' MlA.Z” ’ MQAZL‘
Combining (13), (14), (15), (16), and (17), we get
E.z = Az + Bu, (18)
Issue 4, Volume 2, 2008

In this, I74 741 denotes thgI + J + 1) x (I + J + 1) unit
matrix, andO; 1 j11 the (I+J+1) x (I+J+ 1) zero matrix.
Here, by lettinge \, 0 in (18), we obtain

Ez — Az + Bu, (19)
where
Irig41 Or47+1
00 --- 0
E:= Or+a+1 0 1 0
00 - 1

In this way, we have a finite difference approximated model
for system (1), which is a descriptor system since the matrix
E is singular.

When we apply the control law

u = avg +ywy = Fz
to system (19), the closed-loop system becomes

Ez= (A +BF)z, (20)

where

F:= [aﬂoa"'voa7voa"'a0]'

Therefore, we can calculate the gafn,~) such that the
closed-loop system (20) approaches a specified optimal closed-
loop system as much as possible, by using the method ex-
plained in Subsection I1I-C.

V. NUMERICAL SIMULATIONS

Let us setg = 9.8, M, = 0.7, My = 1.0, andb = 0.7
in system (1). And, we set the initial conditions a&c) =
0.001(e® — 1) + 0.1 and g(z) = 0.0 for = € [0,1]. In the
following subsections, we give the simulation results by the
two design methods.
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B. Proposed Method

According to the design method explained in Subsection I11- In order to apply our proposed method to the problem, we
C, we calculate the optimal parametersind~ of the control ~ first set
law (2). In functional (8), let us set the positive definite matrix I=1J=3,
Q and the positive number R as namely, Az = 0.1. Since we have sét= 0.7, the condition
Q=39x1Is, R=10, b= IAz

where I denotes thé x 6 unit matrix. Then, the admissible
solution (X, Y)
is computed as

82.3290 —0.0000 —80.9112 3.8153
4.4200 2.0000 —3.6929 1.9566
X — —80.9112 0.0000 274.4085 —0.0837
3.8153 0.0000 —0.0837  4.0363
5.3371 0.0000 —186.8889 —0.2641
3.3132  —0.0000 3.5054 1.6151
5.3371 3.3132
2.7370 1.6991
—186.8889 3.5054

—0.2641 1.6151 |’
187.2904 —0.5427
—0.5427  8.5941
82.3290 3.3645  —80.9112 3.8153
—0.0000 1.9500 0.0000 0.0000
Y — —80.9112 —2.6556 274.4085 —0.0837
3.8153 1.9077 —0.0837  4.0363
5.3371 2.6686 —186.8889 —0.2641
3.3132 1.6566 3.5054 1.6151
5.3371 3.3132
0.0000 —0.0000
—186.8889 3.5054
—0.2641 1.6151
187.2904 —0.5427
—0.5427  8.5941

Therefore, the optimal feedback gain is calculated as

K= 4.4200 2.0000 —3.6929 1.9566
2.7370  1.6991 |,

and the characteristic polynomial of the optimal closed-loo
system is calculated as

ok (s) = det(sE — (A + BK)) = [s°, s, 5%, 5%, 5, 1]k,
where

k=10 x [ 0.0020 0.0422 0.3449 3.9696
7.3901 4.5264 | .

Hence, the optimal parameters are determined: as 3.46,

% = 5.62. Then,||f — k|| takes the minimum value¢07.6082

at the point(@, 7). The broken lines of Figs. 4-6 show the
evolution of inputu(t) and displacementg(t,0.7), y(¢,1) in
the closed-loop system (3), respectively.
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to the generalized algebraic Riccati equatior?2 size, and the matrix B is of

is satisfied. In this case, the matrices A and E aredi

2 x 1 size. According to
the design method proposed in Section IV, we calculate the
optimal parametera and~ of the control law (2). In functional
(8), let us set the positive definite matrix Q and the positive
number R as

Q=3.9XIQQ, R = 10,

wherel,; denotes th&2 x 22 unit matrix. Here, we note that
the same coefficiert.9 is used for the matrix Q to compare
with the result in Subsection V-A. Then, the admissible so-
lution (X, Y) to the generalized algebraic Riccati equation is
computed as

r 0.0644 —0.0600 —0.0083 0.0057
—0.0600 0.2567 —0.2340 0.0486

—0.0083 —0.2340 0.4959 —0.3118

0.0057 0.0486 —0.3118 0.5025

—0.0037 —0.0144 0.0766 —0.2997

0.0024 —0.0008 —0.0215 0.0728

—0.0004 0.0042 —0.0001 —0.0236

0.0032 —0.0069 0.0098 0.0172

0.0041 0.0390 —0.0386 —0.0469

—0.0151  —0.0522 0.0576 0.0603

X — 10% 0.0090 0.0221 —-0.0261 —0.0248
0.0065 —0.0043 —0.0043 0.0029

0.0007 0.0004 —0.0016 0.0007

—0.0002 0.0013 —0.0002 —0.0015

0.0001 —0.0005 0.0014 —0.0002

—0.0000 0.0003 —0.0007 0.0012

0.0000 —0.0001 0.0004 —0.0005

0.0000 0.0001 —0.0002 0.0003

0.0003 0.0004 —0.0003 —0.0003

0.0002 —0.0001 —0.0004 0.0008

—0.0002 0.0009 0.0007 —0.0009

0.0004 —0.0000 —0.0006 0.0004

—0.0037 0.0024 —0.0004 0.0032 0.0041
—0.0144 —0.0008 0.0042 —0.0069 0.0390
0.0766 —0.0215 —0.0001 0.0098 —0.0386
—0.2997 0.0728 —0.0236 0.0172  —0.0469
0.4686 —0.2760 0.0634 —0.0287 0.0231
P —0.2760 0.4293 —0.2318 0.0020 0.0651
0.0634 —0.2318 0.3419 —0.1501 0.0061
—0.0287 0.0020 —0.1501 0.5048 —0.6396
0.0231 0.0651 0.0061 —0.6396 1.3704
—0.0055 —0.0604 —0.0215 0.3393 —1.0375
—0.0035 0.0189 0.0122 —0.0499 0.2556
—0.0019 0.0012 —0.0002 0.0016 0.0021
—0.0004 0.0002 —0.0000 0.0001 0.0005
0.0007 —0.0004 0.0002 0.0001 0.0002
—0.0012 0.0005 —0.0003 0.0004 —0.0007
—0.0002 —0.0009 0.0003 —0.0000 —0.0005
0.0008 —0.0002 —0.0005 —0.0005 0.0009
—0.0003 0.0005 —0.0002 —0.0008 0.0013
0.0000 0.0005 0.0009 —0.0001 —0.0012
0.0005 —0.0009 —0.0013 0.0014 —0.0001
—0.0011 —0.0001 0.0007 0.0002 —0.0001
0.0005 0.0003 —0.0000 —0.0002 0.0002



—0.0151
—0.0522
0.0576
0.0603
—0.0055
—0.0604
—0.0215
0.3393
—1.0375
1.1739
—0.4395
—0.0077
—0.0012
—0.0007
0.0009
0.0011
0.0001
—0.0007
—0.0003
—0.0000
—0.0002
—0.0002

0.0001
—0.0005
0.0014
—0.0002
—0.0012
0.0005
—0.0003
0.0004
—0.0007
0.0009
—0.0003
0.0001
0.0000
—0.0000
0.0001
—0.0000
0.0000
—0.0000
0.0000
—0.0000
0.0000
0.0000
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0.0090
0.0221
—0.0261
—0.0248
—0.0035
0.0189
0.0122
—0.0499
0.2556
—0.4395
0.2273
0.0046
0.0006
0.0004
—0.0003
—0.0006
—0.0003
0.0000
0.0005
0.0000
0.0001
—0.0000

—0.0000
0.0003
—0.0007
0.0012
—0.0002
—0.0009
0.0003
—0.0000
—0.0005
0.0011
—0.0006
—0.0000
0.0000
0.0000
—0.0000
0.0001
—0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

—0.0000
0.0000
—0.0000
0.0000
—0.0000
0.0000
—0.0000
0.0000
0.0000
0.0000
—0.0000
0.0002
0.0000
—0.0000
0.0000
—0.0000
—0.0000
0.0000
—0.0000
0.0000
—0.0000
0.0000

0.0000
—0.0001
0.0004
—0.0005
0.0008
—0.0002
—0.0005
—0.0005
0.0009
0.0001
—0.0003
0.0000
0.0000
0.0000
0.0000
—0.0000
0.0001
—0.0000
0.0000
0.0000
—0.0000
0.0000

0.0002
—0.0001
—0.0004

0.0008

0.0005
—0.0009
—0.0013

0.0014
—0.0001
—0.0000

0.0000

0.0001

0.0000
—0.0000
—0.0000

0.0000

0.0000
—0.0000
—0.0002

0.0005
—0.0002

0.0001
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0.0007
0.0004
—0.0016
0.0007
—0.0004
0.0002
—0.0000
0.0001
0.0005
—0.0012
0.0006
0.0004
0.0001
—0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
—0.0000
0.0000

0.0000
0.0001
—0.0002
0.0003
—0.0003
0.0005
—0.0002
—0.0008
0.0013
—0.0007
0.0000
0.0000
0.0000
0.0000
—0.0000
0.0000
—0.0000
0.0001
0.0000
—0.0000
—0.0000
0.0000

—0.0002
0.0009
0.0007

—0.0009

—0.0011

—0.0001
0.0007
0.0002

—0.0001

—0.0002
0.0001

—0.0001

—0.0000
0.0000
0.0000
0.0000

—0.0000

—0.0000
0.0001

—0.0002
0.0004

—0.0001

—0.0002
0.0013
—0.0002
—0.0015
0.0007
—0.0004
0.0002
0.0001
0.0002
—0.0007
0.0004
—0.0001
—0.0000
0.0001
—0.0000
0.0000
0.0000
0.0000
0.0000
—0.0000
0.0000
0.0000

0.0003
0.0004
—0.0003
—0.0003
0.0000
0.0005
0.0009
—0.0001
—0.0012
—0.0003
0.0005
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0006
—0.0002
0.0001
0.0002

0.0004 7
—0.0000
—0.0006

0.0004

0.0005

0.0003
—0.0000
—0.0002

0.0002
—0.0002
—0.0000

0.0002

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0002

0.0001
—0.0001

0.0009
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—0.0037
—0.0144
0.0766
—0.2997
0.4686
—0.2760
0.0634
—0.0287
0.0231
—0.0055
—0.0035
—0.0000
—0.0004
0.0007
—0.0012
—0.0002
0.0008
—0.0003
0.0000
0.0005
—0.0011
0.0005

—0.0151
—0.0522
0.0576
0.0603
—0.0055
—0.0604
—0.0215
0.3393
—1.0375
1.1739
—0.4395
0.0000
—0.0012
—0.0007
0.0009
0.0011
0.0001
—0.0007
—0.0003
—0.0000
—0.0002
—0.0002

0.0644
—0.0600
—0.0083

0.0057
—0.0037

0.0024
—0.0004

0.0032

0.0041
—0.0151

0.0090
—0.0000

0.0007
—0.0002

0.0001
—0.0000

0.0000

0.0000

0.0003

0.0002
—0.0002

0.0004

0.0024
—0.0008
—0.0215

0.0728
—0.2760

0.4293
—0.2318

0.0020

0.0651
—0.0604

0.0189

0.0000

0.0002
—0.0004

0.0005
—0.0009
—0.0002

0.0005

0.0005
—0.0009
—0.0001

0.0003

0.0090
0.0221
—0.0261
—0.0248
—0.0035
0.0189
0.0122
—0.0499
0.2556
—0.4395
0.2273
—0.0000
0.0006
0.0004
—0.0003
—0.0006
—0.0003
0.0000
0.0005
0.0000
0.0001
—0.0000

—0.0600
0.2567
—0.2340
0.0486
—0.0144
—0.0008
0.0042
—0.0069
0.0390
—0.0522
0.0221
0.0000
0.0004
0.0013
—0.0005
0.0003
—0.0001
0.0001
0.0004
—0.0001
0.0009
—0.0000

—0.0004
0.0042
—0.0001
—0.0236
0.0634
—0.2318
0.3419
—0.1501
0.0061
—0.0215
0.0122
—0.0000
—0.0000
0.0002
—0.0003
0.0003
—0.0005
—0.0002
0.0009
—0.0013
0.0007
—0.0000

0.0057
—0.0035
—0.0042

0.0029
—0.0019

0.0012
—0.0002

0.0016

0.0021
—0.0075

0.0045

0.0002

0.0003
—0.0001

0.0001
—0.0000

0.0000

0.0000

0.0002

0.0001
—0.0001

0.0002

—0.0083
—0.2340
0.4959
—0.3118
0.0766
—0.0215
—0.0001
0.0098
—0.0386
0.0576
—0.0261
—0.0000
—0.0016
—0.0002
0.0014
—0.0007
0.0004
—0.0002
—0.0003
—0.0004
0.0007
—0.0006

0.0032
—0.0069
0.0098
0.0172
—0.0287
0.0020
—0.1501
0.5048
—0.6396
0.3393
—0.0499
0.0000
0.0001
0.0001
0.0004
—0.0000
—0.0005
—0.0008
—0.0001
0.0014
0.0002
—0.0002

0.0007
0.0004
—0.0016
0.0007
—0.0004
0.0002
—0.0000
0.0001
0.0005
—0.0012
0.0006
0.0000
0.0001
—0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
—0.0000
0.0000

0.0057
0.0486
—0.3118
0.5025
—0.2997
0.0728
—0.0236
0.0172
—0.0469
0.0603
—0.0248
0.0000
0.0007
—0.0015
—0.0002
0.0012
—0.0005
0.0003
—0.0003
0.0008
—0.0009
0.0004

0.0041
0.0390
—0.0386
—0.0469
0.0231
0.0651
0.0061
—0.6396
1.3704
—1.0375
0.2556
0.0000
0.0005
0.0002
—0.0007
—0.0005
0.0009
0.0013
—0.0012
—0.0001
—0.0001
0.0002

—0.0002
0.0013
—0.0002
—0.0015
0.0007
—0.0004
0.0002
0.0001
0.0002
—0.0007
0.0004
—0.0000
—0.0000
0.0001
—0.0000
0.0000
0.0000
0.0000
0.0000
—0.0000
0.0000
0.0000
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0.0001 —0.0000 0.0000
—0.0005 0.0003 —0.0001
0.0007 0.0004
—0.0002 0.0012 —0.0005
—0.0012  —0.0002 0.0008

0.0005 —0.0009 —0.0002
—0.0003 0.0003 —0.0005
0.0000 —0.0005
0.0005 0.0009

0.0009 0.0011 0.0001
—0.0003 —0.0006 —0.0003

0.0000 —0.0000 —0.0000

0.0000 0.0000 0.0000
—0.0000 0.0000 0.0000

0.0001 —0.0000 0.0000
—0.0000 0.0001 —0.0000

0.0000 —0.0000 0.0001
—0.0000 0.0000 —0.0000

0.0000 0.0000 0.0000
—0.0000 0.0000 0.0000

0.0000 0.0000 —0.0000

0.0000 0.0000 0.0000
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0.0008
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—0.0009
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0.0000
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0.0005
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0.0005
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—0.0008
0.0013
—0.0007
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0.0000
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—0.0002
0.0009
0.0007

—0.0009

—0.0011

—0.0001
0.0007
0.0002
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—0.0002
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—0.0000

—0.0000
0.0000
0.0000
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—0.0000

—0.0000
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0.0004
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0.0003
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—0.0003
—0.0003
0.0000
0.0005
0.0009
—0.0001
—0.0012
—0.0003
0.0005
—0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0006
—0.0002
0.0001
0.0002

0.0004
—0.0000
—0.0006

0.0004

0.0005

0.0003
—0.0000
—0.0002
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—0.0000
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0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
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Fig. 4. Control inputu(t). « = 3.46, v = 5.62 (broken line).
a = 6.65, v = 9.28 (solid line).
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~ — — Former method
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Fig. 5. Displacemeny(t,0.7) under the control law.

a = 3.46, v = 5.62 (broken line).
a = 6.65, v = 9.28 (solid line).

Displacement

— — — Former method
Proposed method | -|

2 3 4 5 6 7 8 9 10

Fig. 6. Displacemeny(¢,1) under the control law.

a = 3.46, v = 5.62 (broken line).
a = 6.65, v = 9.28 (solid line).

Therefore, the optimal feedback gain is calculated as

K= [ 65.4234 —42.8421 —42.7786 29.3219
—19.0760 12.2423 —2.0152 16.4422 21.2656
—77.3222 45.9720 2.0000  3.5717 —0.9250

0.5276 —0.0517  0.1224  0.2131 1.6375

11730 —0.7989 1.8481 ],

and the characteristic polynomial of the optimal closed-loop
system is calculated as

QOK(S) = del(SE - (A + BK)) = [5217 5207 ) 52; S, 1]ka

where

k=10%" x [ 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0003 0.0038 0.0536 0.3613

2.2526 5.8852 4.1896 | .
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See Appendix for the MATLAB program to solve the ad-
missible solution(X, Y) to the generalized algebraic Riccati

. . . . en
equation, the optimal feedback gain K, and the characteristic

polynomial of the optimal closed-loop system. Hence, the=a_
d=a(l)/ (ML*dx);
d_tilde=a_tilde(l)/(M*dx);

e tilde=a_tilde(l+J)/(M*dx);

optimal parameters are determined@s= 6.65, 7 = 9.28.
Then, ||f — k|| takes the minimum value.6628 x 103Y
at the point(@,¥). The solid lines of Figs. 4-6 show the
evolution of inputu(t) and displacementg(t,0.7), y(¢,1) in Al;
the closed-loop system (3), respectively. Thus, for the strm&z
with two rigid loads, we see that this control law has a better

gamma_tilde(l+i)
=a_tilde(l+i)/(dx"2)-g/(2*dx);

0/ dx;

=zeros(L+1);

=eye(L+1);
=zeros(L+1);

performance than that in Subsection V-A in the sense that tlﬁélg 1,1)=c;

vibration is suppressed more fast.

1, 2) =c;

A21(1+1, 1) =d;

A21(1+1, 1 +1) =- (d+d_ti | de);

VI. CONCLUSION

A21(1+1, 1+2)=d_ti | de;

A21(1 +J+1,1+J)=e_til de;
In this paper, we studied the stabilization problem of #&21(1+J+1,1+J+1)=-e_tilde;

string with two rigid loads which was described by two kindsf or

=2: 1
of hyperbolic equations. Since the controller that assured the 1A21(| -1)=al pha(i-1);
closed-loop stability contained free parametersy > 0, end
we considered a finite difference approximated model a d .
i=2:1
proposed the design method to determine an optimal feedbacck A21(i,i)=beta(i-1);
gain (a,¥). Through numerical simulations, it was shownend
that the performance of the control law which was designed . __.
. . .. . or i=2:1
based on the descriptor expression of the finite difference a21(i,i+1)=gamm(i-1):
approximated model was better than that of the previousd
control law. How to determine the optimal feedback gai or i=2:3
by the direct method, namely, by the one not based on the A21'(|+i .1 +i-1)=al pha_tilde(l+i-1);
approximated model is still remained as an open problem. end
for i=2:J
APPENDIX A21(1+i,|+i)=beta_tilde(l+i-1);
Based on [14], we can write the MATLAB program to solveend
the admissible solutior{X,Y) to the generalized algebraic L
Riccati equation, the optlmal feedback gain K, and the chater i=2:J . o
acteristic polynomial of the optimal closed-loop system. d A21(1+i, I+ +1) =gamma_tilde(l+i-1);

% MATLAB program

As[ ALl Al2; A21 A22];

g=9.8 Bl=zeros(L+1,1);
ML=0. 7; B2=zeros(L+1,1);
Me=1. 0; B2(1,1)=-1,;
B=[ B1; B2];
| =7,
J=3; Ell=eye(L+1);
El2=zeros(L+1);
L=l +J; E21=zeros(L+1);
dx=1/L E22=eye(L+1);
E22(1, 1) =0;
a_0=g* (ML+M2+1- dx*0) ; E=[ E11 E12; E21 E22];
for i=1:1 q=3.9;
a(i)=g*(ML+M2+1- dx*i); r=1;
end q*eye(2*L+2);
R=r*eye(1);
for i=0:J
a_tilde(l+i)=g*(M+1-dx*(1+i)); Etilde=[E zeros(2*L+2) zeros(2*L+2,1);
end zeros(2*L+2) E zeros(2*L+2,1);
zeros(1, 2*L+2) zeros(1, 2*L+2) zeros(1)];
for i=1:1-1

al pha(i)=a(i)/ (dx"2)+g/ (2*dx);
beta(i)=-2*a(i)/(dx"2);
gamma(i)=a(i)/ (dx"2)-g/(2*dx);

Atilde=[ A zeros(2*L+2) B;

-Q-A zeros(2*L+2,1);
zeros(1, 2*L+2) B R];

end
[T,D =eig(Atilde, Etilde);
for i=1:J-1 TT=[T(:,1) T(:,3:4) T(:,7:8) T(:,11:12)
al pha_tilde(l+i) T(:,15:18) T(:,23:24) T(:,27:28) T(:,31:32)
=a_tilde(l+i)/(dx"2)+g/ (2*dx); T(:,35:36) T(:,39) T(:,41)];

beta_tilde(l+)=2*%a_tilde(l+)/(dx"2);
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UL=TT(1: 2*L+42, 1) ;
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U2=TT(2*L+3: 4*L+4, :);
U3=TT(4*L+5,:);
Vl1=zeros(2*L+2,1);

VI(L+2, 1) =1;
V2=V1;

11N

h=2;
Hx=h;

Hy=qg*r/ h;

X=real ([U2 V2*Hx]*inv([Ul V1]))

Y=real (([U2 V2*Hy]*inv([UL V1]))")
K=-inv(R)*B *X

[U'S, V] =svd(E);

EE=S(1: 2*L+1, 1: 2*L+1);
AA=U * ( A+B*K) *V,
AAT1=AA(1: 2*¥L+1, 1: 2*L+1);
AAL2=AA(1: 2*L+1, 2*L+2);
AA21=AA( 2*L+2, 1: 2*L+1);
AA22=AA( 2% L+2, 2* L+2);

k=det (- AA22) *det ( EE) *pol y(i nv( EE)
*(AAL1- AA12*i nv( AA22) * AA21))
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