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Abstract— This paper is concerned with the boundary stabiliza-
tion problem of a string with two rigid loads which is described by
two kinds of hyperbolic equations. In our previous work, a control
law that made an energy function of the system non-increasing was
derived, and the asymptotic stability of the closed-loop system with
the controller was proved by using the LaSalle’s invariance principle.
Moreover, a simplified lumped parameter model was considered in
connection with the string with two rigid loads, and the design method
to determine an optimal feedback gain for the model was proposed. In
this paper, it is shown that the controller with an optimal gain based
on a finite differnce approximation works more effectively than the
one based on our previous method for the original system through
numerical simulations.

Keywords— Boundary stabilization problem,C0-semigroup, de-
scriptor system, finite difference approximation, hyperbolic equation,
LaSalle’s invariance principle, string.

I. I NTRODUCTION

IN the field of distributed parameter systems, the stabilization
and optimal control of strings without natural damping are

challenging topics. Since old times, several types of problems
in this direction have been investigated by many researchers
(see, for example, [1]–[3], [4, Chapter 6], [5], [6, Chapter
6], [7]–[13], and the references therein). Especially, from the
engineering point of view, Rao has treated the stabilization
problem of suppressing the vibration of a distributed parameter
overhead crane model with one rigid load [8]. In that paper,
after deriving a control law, the energy multiplier method is
applied to the closed-loop system and the exponential stability
of the energy is proved. d’Andréa-Novel and Coron have
proposed a back-stepping approach for the similar problem [2].
Also, Grabowski andŻołopa have solved the output motion
planning problem [5].

In this paper, we study the stabilization problem of a string
with two rigid loads which is described by two kinds of
hyperbolic equations. Especially, the system can be regarded
as a distributed parameter overhead crane model with two
rigid loads. Here, it is supposed that the flexible cable of the
overhead crane has a constant length. For the string with two
rigid loads, an energy function is defined and a control law
such that the energy becomes non-increasing is derived. In
[9], we have given the proof of the asymptotic stability for the
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closed-loop system with the controller, by using the LaSalle’s
invariance principle. However, how to determine an optimal
gain of the controller remains an open problem. There, in
our previous work [10], we considered a simplified lumped
parameter model in connection with the string with two rigid
loads, and proposed the design method to determine an optimal
feedback gain for the model. In the paper, it was shown that
the controller with the optimal gain works effectively to some
extent for the original system through numerical simulations.
The purpose of this paper is to improve the method, namely,
to propose a method to determine a more optimal feedback
gain based on a finite difference approximation.

This paper is organized as follows: In Section II, we
explain the model treated in this paper. In Section III, we
review our previous results concerning control law, closed-
loop stability, optimal feedback gain based on a simplified
model. Section IV is our main part of this paper, in which
the calculation method of an optimal feedback gain based on
a finite difference approximation is proposed. In Section V,
the result of numerical simulations is given. Finally, this paper
is summarized in Section VI.
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Fig. 1. Distributed parameter overhead crane model with
two rigid loads.
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II. SYSTEM DESCRIPTION

Let b be a constant such that0 < b < 1. We shall consider
the following string with two rigid loads:



∂2y

∂t2
(t, x) =

∂

∂x

(
a(x)

∂y

∂x
(t, x)

)
,

t > 0, x ∈ (0, b),
∂2y

∂t2
(t, x) =

∂

∂x

(
ã(x)

∂y

∂x
(t, x)

)
,

t > 0, x ∈ (b, 1),

a(0)
∂y

∂x
(t, 0) = u(t), t > 0,

y(t, b−) = y(t, b+), t ≥ 0,

M1
∂2y

∂t2
(t, b) = ã(b+)

∂y

∂x
(t, b+)

−a(b−)
∂y

∂x
(t, b−), t > 0,

M2
∂2y

∂t2
(t, 1) = −ã(1)

∂y

∂x
(t, 1), t > 0,

y(0, x) = p(x),
∂y

∂t
(0, x) = q(x), x ∈ [0, 1].

(1)

In the above,u(t) denotes the control force, anda(x) :=
g(M1 + M2 + 1 − x) (0 ≤ x < b) and ã(x) := g(M2 +
1 − x) (b < x ≤ 1) the tension force of the cable at the
point x, where g is the gravitational acceleration, andM1

and M2 the masses of rigid loads. System (1) expresses a
distributed parameter overhead crane model with two rigid
loads (see Fig. 1). Here, it is assumed that each load is a mass
point and that the mass of the cart, which is sufficiently small
compared with the one of each load, is neglected. Moreover,
it is supposed that the displacementy(t, x) and its derivative
yx(t, x) are small through the cable and that the total mass of
the cable is 1, i.e., the line density is equal to 1.

Remark 1: We note that, under zero control input, the
vibration does not decay at all, since no damping terms are
contained in system (1) withu(t) ≡ 0.

III. D ERIVATION OF CONTROL LAW AND CLOSED-LOOP

STABILITY

A. Derivation of Control Law

Let us define the following energy functionE(t) for system
(1):

E(t) :=
1
2

[∫ b

0

{a(x)y2
x(t, x) + y2

t (t, x)}dx

+
∫ 1

b

{ã(x)y2
x(t, x) + y2

t (t, x)}dx

+αy2(t, 0) + M1y
2
t (t, b) + M2y

2
t (t, 1)

]
,

whereα > 0. DifferentiatingE(t) with respect tot, and using
(1) and integration by parts yields

d

dt
E(t) = −yt(t, 0)(u(t) − αy(t, 0)).

Here, choosing the control inputu(t) as

u(t) = αy(t, 0) + γyt(t, 0), γ > 0, (2)

we have
d

dt
E(t) = −γy2

t (t, 0) ≤ 0.

Consequently, the energyE(t) for system (1) becomes non-
increasing under the control law (2).

Remark 2: In [8], an energy function of this type is used
and the same control law is derived for a distributed parameter
overhead crane model with one rigid load. In that paper, the
energy multiplier method is applied to the closed-loop system
and the exponential stability of the energy is proved.

B. Closed-Loop Stability

The closed-loop system consisting of (1) and (2) is described
by



ytt(t, x) = (a(x)yx(t, x))x, t > 0, x ∈ (0, b),

ytt(t, x) = (ã(x)yx(t, x))x, t > 0, x ∈ (b, 1),

a(0)yx(t, 0) = αy(t, 0) + γyt(t, 0), t > 0,

y(t, b−) = y(t, b+), t ≥ 0,

M1ytt(t, b) = ã(b+)yx(t, b+) − a(b−)yx(t, b−),

t > 0,
M2ytt(t, 1) = −ã(1)yx(t, 1), t > 0,

y(0, x) = p(x), yt(0, x) = q(x), x ∈ [0, 1].
(3)

In order to formulate this closed-loop system in an abstract
space, let us introduce the Hilbert space

X =
{




y(·)
z(·)
ỹ(·)
z̃(·)
ξ
η



∈ H1(0, b) × L2(0, b) × H1(b, 1)

×L2(b, 1) × R × R ; y(b) = ỹ(b)
}

with the inner product

〈f1, f2〉X
=

∫ b

0

{a(x)y1x(x)y2x(x) + z1(x)z2(x)}dx

+
∫ 1

b

{ã(x)ỹ1x(x)ỹ2x(x) + z̃1(x)z̃2(x)}dx

+αy1(0)y2(0) + M1ξ1ξ2 + M2η1η2,

for f1 = [y1, z1, ỹ1, z̃1, ξ1, η1]T ∈ X,

f2 = [y2, z2, ỹ2, z̃2, ξ2, η2]T ∈ X.

In the above,H1(0, b) and H1(b, 1) are the usual Sobolev
spaces. Here, we define the operatorA : D(A) ⊂ X → X as
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follows:

A




y(·)
z(·)
ỹ(·)
z̃(·)
ξ
η




=




−z(·)
−(a(·)yx(·))x

−z̃(·)
−(ã(·)ỹx(·))x

− ã(b+)ỹx(b+) − a(b−)yx(b−)
M1

ã(1)ỹx(1)
M2




,

for




y(·)
z(·)
ỹ(·)
z̃(·)
ξ
η



∈ D(A),

D(A) =
{




y(·)
z(·)
ỹ(·)
z̃(·)
ξ
η



∈ H2(0, b) × H1(0, b)

×H2(b, 1) × H1(b, 1) × R × R ;
ξ = z(b) = z̃(b), η = z̃(1),

a(0)yx(0) = αy(0) + γz(0), y(b) = ỹ(b)
}

.

And, denotingy(t, x) restricted to0 ≤ x ≤ b by y(t, x), and
y(t, x) restricted tob < x ≤ 1 by ỹ(t, x), and moreover in-
troducing the new variablesz(t, ·) = yt(t, ·), z̃(t, ·) = ỹt(t, ·),
ξ(t) = yt(t, b)(= yt(t, b−) = ỹt(t, b+)), η(t) = ỹt(t, 1), the
closed-loop system (3) can be written as

d

dt
f(t) = −Af(t), (4)

where

f(t) := [y(t, ·), z(t, ·), ỹ(t, ·), z̃(t, ·), ξ(t), η(t)]T .

Then, the solution of (4) is expressed as

f(t) = e−tAf(0),

since the operator−A generates aC0-semigroup of contrac-
tions e−tA on X [9]. Moreover, the operator(I + λA)−1 :
X → X is compact for everyλ > 0 [9]. Based on these
facts, the following fact has been proved by using the LaSalle’s
invariance principle.

Theorem 1: ([9]) The closed-loop system (4) is asymptoti-
cally stable, namely, for everyf(0) ∈ X , ‖e−tAf(0)‖X goes
to zero ast goes to infinity.

C. Optimal Feedback Gain Based on a Simplified Model
(Former Method [10])

In connection with system (1), we shall consider the follow-
ing lumped parameter overhead crane model with two rigid

loads (see Fig. 2):




εÿ0 = T1 sin θ1 − u,

M1ÿ1 = T3 sin θ2 − T2 sin θ1,

M2ÿ2 = −T4 sin θ2,

y0 + b sin θ1 = y1,

y1 + (1 − b) sin θ2 = y2,

(5)

where ε is a sufficiently small positive constant which ex-
presses the mass of cart.T1 := g(M1 + M2 + 1), T2 :=
g(M1 + M2 + 1 − b), T3 := g(M2 + 1 − b), T4 := gM2

denote the tension forces.
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Fig. 2. Lumped parameter overhead crane model with two
rigid loads I.

When |θ1| and |θ2| are sufficiently small, system (5) is
approximated as




εÿ0 = −â1y0 + â1y1 − u,

ÿ1 = â2y0 − â3y1 + â4y2,

ÿ2 = â5y1 − â5y2,

where â1 := T1/b, â2 := T2/M1b, â3 := T2/M1b +
T3/M1(1 − b), â4 := T3/M1(1 − b), â5 := T4/M2(1 − b).
Here, by lettingε go to zero, we have the following descriptor
system:

Eż = Az + Bu, (6)

where

z := [y0, ẏ0, y1, ẏ1, y2, ẏ2]T ,
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E :=




1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,

A :=




0 1 0 0 0 0
−â1 0 â1 0 0 0
0 0 0 1 0 0
â2 0 −â3 0 â4 0
0 0 0 0 0 1
0 0 â5 0 −â5 0




,

B := [0,−1, 0, 0, 0, 0]T .

When we apply the control law

u = αy0 + γẏ0 = Fz

to system (6), the closed-loop system becomes

Eż = (A + BF)z, (7)

where
F := [α, γ, 0, 0, 0, 0].

Now, let us consider the functional

J [u] :=
∫ ∞

0

(zT (t)Qz(t) + Ru2(t))dt (8)

for system (6), where Q is a positive definite matrix and R is
a positive number. The problem of determing the control law
for system (6) such thatJ [u] is minimized is called the linear
quadratic regulator problem. Using the admissible solution
(X, Y) to the generalized algebraic Riccati equation

AT X + YA + Q− YBR−1BT X = 0,

ET X = YE,

the solution to the problem is given by

u = Kz, K := −R−1BT X

(see [14]). In this,(X, Y) is calculated according to the way
stated in [14]. Then, the closed-loop system consisting system
(6) and the optimal control is given by

Eż = (A + BK)z. (9)

Then, we can determine the parametersα andγ such that the
characteristic polynomial of (7)

ϕF(s) = det(sE− (A + BF))
= f1s

5 + f2s
4 + f3s

3 + f4s
2 + f5s + f6

approaches the one of (9)

ϕK(s) = det(sE− (A + BK))
= k1s

5 + k2s
4 + k3s

3 + k4s
2 + k5s + k6

as much as possible, by solving the following optimization
problem:

Find the pair (α, γ) that attains

min
{ ‖f − k‖ ; α > 0, γ > 0

}
, (10)

where f := [f1, f2, f3, f4, f5, f6]T , k := [k1, k2, k3, k4,
k5, k6]T , and the norm ‖ · ‖ is the Euclidean norm. Hereafter,
we denote the solution to the optimization problem (10) by
(α, γ).

IV. OPTIMAL FEEDBACK GAIN BASED ON A FINITE

DIFFERENCEAPPRO- XIMATION (PROPOSEDMETHOD)

Let I, J be positive integers. Assume thatb is chosen such
that

b = I∆x,

where∆x := 1/(I + J). Hereafter, we setai := a(i∆x) for
i = 0, 1, · · · , I, and ãI+i := ã((I + i)∆x) for i = 0, 1, · · · , J .

x
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1

M1

M2

u(t) Cart

∆x

2∆x

3∆x

(I − 1)∆x

(I + 1)∆x

(I + J − 1)∆x

...

...

v0(t)

vI(t)

vI+J (t)

v1(t)
v2(t)
v3(t)

vI−1(t)

vI+1(t)

vI+J−1(t)

Fig. 3. Lumped parameter overhead crane model with two
rigid loads II.

Introducingv = y, w = ẏ, the first equation of system (1)
is written as {

v̇ = w,

ẇ = a(x)v′′ − gv′,
(11)

where˙ = ∂/∂t, ′ = ∂/∂x. Similarly, the second equation of
system (1) is written as{

v̇ = w,

ẇ = ã(x)v′′ − gv′.
(12)

Here, definingvi(t) := v(t, i∆x), wi(t) := w(t, i∆x) (see
Fig. 3) and approximatingv′(t, i∆x), v′′(t, i∆x) as

v′(t, i∆x) ∼= vi+1(t) − vi−1(t)
2∆x

,

v′′(t, i∆x) ∼= vi+1(t) − 2vi(t) + vi−1(t)
∆x2

,

it follows from (11) that{
v̇i = wi,

ẇi = αivi−1 + βivi + γivi+1,
(13)
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for i = 1, 2, · · · , I − 1, where

αi :=
ai

∆x2
+

g

2∆x
, βi := − 2ai

∆x2
,

γi :=
ai

∆x2
− g

2∆x
.

Similarly, from (12) we have{
v̇I+i = wI+i,

ẇI+i = α̃I+ivI+i−1 + β̃I+ivI+i + γ̃I+ivI+i+1,
(14)

for i = 1, 2, · · · , J − 1, where

α̃I+i :=
ãI+i

∆x2
+

g

2∆x
, β̃I+i := −2ãI+i

∆x2
,

γ̃I+i :=
ãI+i

∆x2
− g

2∆x
.

For the time being, we suppose that the cart has a sufficiently
small massε > 0. Then, the third equation of system (1) is
replaced by

εytt(t, 0) = a(0)yx(t, 0) − u(t).

Here, by approximatingyx(t, 0) as

yx(t, 0) ∼= v1(t) − v0(t)
∆x

,

we have {
v̇0 = w0,

εẇ0 = −cv0 + cv1 − u,
(15)

where c := a0/∆x. Moreover, by approximatingyx(t, b+),
yx(t, b−) in the fifth equation as

yx(t, b+) ∼= vI+1(t) − vI(t)
∆x

,

yx(t, b−) ∼= vI(t) − vI−1(t)
∆x

,

and,yx(t, 1) in the sixth equation as

yx(t, 1) ∼= vI+J (t) − vI+J−1(t)
∆x

,

we get {
v̇I = wI ,

ẇI = dvI−1 − (d + d̃)vI + d̃vI+1,
(16)

{
v̇I+J = wI+J ,

ẇI+J = ẽvI+J−1 − ẽvI+J ,
(17)

where

d :=
aI

M1∆x
, d̃ :=

ãI

M1∆x
, ẽ :=

ãI+J

M2∆x
.

Combining (13), (14), (15), (16), and (17), we get

Eεż = Az + Bu, (18)

where

z := [v0, v1, · · · , vI+J , w0, w1, · · · , wI+J ]T ,

Eε :=




II+J+1 OI+J+1

OI+J+1




ε 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1





 ,

A :=
[

OI+J+1 II+J+1

A21 OI+J+1

]
,

A21 :=




−c c 0 · · · 0
α1 β1 γ1 · · · 0
...

...
...

...
...

0 · · · α̃I+J−1 β̃I+J−1 γ̃I+J−1

0 · · · 0 ẽ −ẽ


 ,

B :=
[

O(I+J+1)×1

B2

]
, B2 := [−1, 0, · · · , 0]T .

In this, II+J+1 denotes the(I + J + 1) × (I + J + 1) unit
matrix, andOI+J+1 the (I +J +1)× (I +J +1) zero matrix.
Here, by lettingε ↘ 0 in (18), we obtain

Eż = Az + Bu, (19)

where

E :=




II+J+1 OI+J+1

OI+J+1




0 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1





 .

In this way, we have a finite difference approximated model
for system (1), which is a descriptor system since the matrix
E is singular.

When we apply the control law

u = αv0 + γw0 = Fz

to system (19), the closed-loop system becomes

Eż = (A + BF)z, (20)

where
F := [α, 0, · · · , 0, γ, 0, · · · , 0].

Therefore, we can calculate the gain(α, γ) such that the
closed-loop system (20) approaches a specified optimal closed-
loop system as much as possible, by using the method ex-
plained in Subsection III-C.

V. NUMERICAL SIMULATIONS

Let us setg = 9.8, M1 = 0.7, M2 = 1.0, and b = 0.7
in system (1). And, we set the initial conditions asp(x) =
0.001(e5x − 1) + 0.1 and q(x) = 0.0 for x ∈ [0, 1]. In the
following subsections, we give the simulation results by the
two design methods.
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A. Former Method

According to the design method explained in Subsection III-
C, we calculate the optimal parametersα andγ of the control
law (2). In functional (8), let us set the positive definite matrix
Q and the positive number R as

Q = 3.9 × I6, R = 1.0,

whereI6 denotes the6 × 6 unit matrix. Then, the admissible
solution (X, Y) to the generalized algebraic Riccati equation
is computed as

X =




82.3290 −0.0000 −80.9112 3.8153
4.4200 2.0000 −3.6929 1.9566

−80.9112 0.0000 274.4085 −0.0837
3.8153 0.0000 −0.0837 4.0363
5.3371 0.0000 −186.8889 −0.2641
3.3132 −0.0000 3.5054 1.6151

5.3371 3.3132
2.7370 1.6991

−186.8889 3.5054
−0.2641 1.6151
187.2904 −0.5427
−0.5427 8.5941




,

Y =




82.3290 3.3645 −80.9112 3.8153
−0.0000 1.9500 0.0000 0.0000
−80.9112 −2.6556 274.4085 −0.0837

3.8153 1.9077 −0.0837 4.0363
5.3371 2.6686 −186.8889 −0.2641
3.3132 1.6566 3.5054 1.6151

5.3371 3.3132
0.0000 −0.0000

−186.8889 3.5054
−0.2641 1.6151
187.2904 −0.5427
−0.5427 8.5941




.

Therefore, the optimal feedback gain is calculated as

K =
[

4.4200 2.0000 −3.6929 1.9566
2.7370 1.6991

]
,

and the characteristic polynomial of the optimal closed-loop
system is calculated as

ϕK(s) = det(sE− (A + BK)) = [s5, s4, s3, s2, s, 1]k,

where

k = 103 × [
0.0020 0.0422 0.3449 3.9696

7.3901 4.5264
]T

.

Hence, the optimal parameters are determined asα = 3.46,
γ = 5.62. Then,‖f − k‖ takes the minimum value407.6082
at the point(α, γ). The broken lines of Figs. 4–6 show the
evolution of inputu(t) and displacementsy(t, 0.7), y(t, 1) in
the closed-loop system (3), respectively.

B. Proposed Method

In order to apply our proposed method to the problem, we
first set

I = 7, J = 3,

namely,∆x = 0.1. Since we have setb = 0.7, the condition

b = I∆x

is satisfied. In this case, the matrices A and E are of22 ×
22 size, and the matrix B is of22 × 1 size. According to
the design method proposed in Section IV, we calculate the
optimal parametersα andγ of the control law (2). In functional
(8), let us set the positive definite matrix Q and the positive
number R as

Q = 3.9 × I22, R = 1.0,

whereI22 denotes the22× 22 unit matrix. Here, we note that
the same coefficient3.9 is used for the matrix Q to compare
with the result in Subsection V-A. Then, the admissible so-
lution (X, Y) to the generalized algebraic Riccati equation is
computed as

X = 104 ×




0.0644 −0.0600 −0.0083 0.0057
−0.0600 0.2567 −0.2340 0.0486
−0.0083 −0.2340 0.4959 −0.3118

0.0057 0.0486 −0.3118 0.5025
−0.0037 −0.0144 0.0766 −0.2997

0.0024 −0.0008 −0.0215 0.0728
−0.0004 0.0042 −0.0001 −0.0236

0.0032 −0.0069 0.0098 0.0172
0.0041 0.0390 −0.0386 −0.0469

−0.0151 −0.0522 0.0576 0.0603
0.0090 0.0221 −0.0261 −0.0248
0.0065 −0.0043 −0.0043 0.0029
0.0007 0.0004 −0.0016 0.0007

−0.0002 0.0013 −0.0002 −0.0015
0.0001 −0.0005 0.0014 −0.0002

−0.0000 0.0003 −0.0007 0.0012
0.0000 −0.0001 0.0004 −0.0005
0.0000 0.0001 −0.0002 0.0003
0.0003 0.0004 −0.0003 −0.0003
0.0002 −0.0001 −0.0004 0.0008

−0.0002 0.0009 0.0007 −0.0009
0.0004 −0.0000 −0.0006 0.0004

−0.0037 0.0024 −0.0004 0.0032 0.0041
−0.0144 −0.0008 0.0042 −0.0069 0.0390

0.0766 −0.0215 −0.0001 0.0098 −0.0386
−0.2997 0.0728 −0.0236 0.0172 −0.0469

0.4686 −0.2760 0.0634 −0.0287 0.0231
−0.2760 0.4293 −0.2318 0.0020 0.0651

0.0634 −0.2318 0.3419 −0.1501 0.0061
−0.0287 0.0020 −0.1501 0.5048 −0.6396

0.0231 0.0651 0.0061 −0.6396 1.3704
−0.0055 −0.0604 −0.0215 0.3393 −1.0375
−0.0035 0.0189 0.0122 −0.0499 0.2556
−0.0019 0.0012 −0.0002 0.0016 0.0021
−0.0004 0.0002 −0.0000 0.0001 0.0005

0.0007 −0.0004 0.0002 0.0001 0.0002
−0.0012 0.0005 −0.0003 0.0004 −0.0007
−0.0002 −0.0009 0.0003 −0.0000 −0.0005

0.0008 −0.0002 −0.0005 −0.0005 0.0009
−0.0003 0.0005 −0.0002 −0.0008 0.0013

0.0000 0.0005 0.0009 −0.0001 −0.0012
0.0005 −0.0009 −0.0013 0.0014 −0.0001

−0.0011 −0.0001 0.0007 0.0002 −0.0001
0.0005 0.0003 −0.0000 −0.0002 0.0002
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−0.0151 0.0090 −0.0000 0.0007 −0.0002
−0.0522 0.0221 0.0000 0.0004 0.0013

0.0576 −0.0261 −0.0000 −0.0016 −0.0002
0.0603 −0.0248 0.0000 0.0007 −0.0015

−0.0055 −0.0035 −0.0000 −0.0004 0.0007
−0.0604 0.0189 0.0000 0.0002 −0.0004
−0.0215 0.0122 −0.0000 −0.0000 0.0002

0.3393 −0.0499 0.0000 0.0001 0.0001
−1.0375 0.2556 0.0000 0.0005 0.0002

1.1739 −0.4395 0.0000 −0.0012 −0.0007
−0.4395 0.2273 −0.0000 0.0006 0.0004
−0.0077 0.0046 0.0002 0.0004 −0.0001
−0.0012 0.0006 0.0000 0.0001 −0.0000
−0.0007 0.0004 −0.0000 −0.0000 0.0001

0.0009 −0.0003 0.0000 0.0000 −0.0000
0.0011 −0.0006 −0.0000 0.0000 0.0000
0.0001 −0.0003 −0.0000 0.0000 0.0000

−0.0007 0.0000 0.0000 0.0000 0.0000
−0.0003 0.0005 −0.0000 0.0000 0.0000
−0.0000 0.0000 0.0000 0.0000 −0.0000
−0.0002 0.0001 −0.0000 −0.0000 0.0000
−0.0002 −0.0000 0.0000 0.0000 0.0000

0.0001 −0.0000 0.0000 0.0000 0.0003
−0.0005 0.0003 −0.0001 0.0001 0.0004

0.0014 −0.0007 0.0004 −0.0002 −0.0003
−0.0002 0.0012 −0.0005 0.0003 −0.0003
−0.0012 −0.0002 0.0008 −0.0003 0.0000

0.0005 −0.0009 −0.0002 0.0005 0.0005
−0.0003 0.0003 −0.0005 −0.0002 0.0009

0.0004 −0.0000 −0.0005 −0.0008 −0.0001
−0.0007 −0.0005 0.0009 0.0013 −0.0012

0.0009 0.0011 0.0001 −0.0007 −0.0003
−0.0003 −0.0006 −0.0003 0.0000 0.0005

0.0001 −0.0000 0.0000 0.0000 0.0002
0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 −0.0000 0.0000 −0.0000 0.0000

−0.0000 0.0001 −0.0000 0.0000 0.0000
0.0000 −0.0000 0.0001 −0.0000 0.0000

−0.0000 0.0000 −0.0000 0.0001 0.0000
0.0000 0.0000 0.0000 0.0000 0.0006

−0.0000 0.0000 0.0000 −0.0000 −0.0002
0.0000 0.0000 −0.0000 −0.0000 0.0001
0.0000 0.0000 0.0000 0.0000 0.0002

0.0002 −0.0002 0.0004
−0.0001 0.0009 −0.0000
−0.0004 0.0007 −0.0006

0.0008 −0.0009 0.0004
0.0005 −0.0011 0.0005

−0.0009 −0.0001 0.0003
−0.0013 0.0007 −0.0000

0.0014 0.0002 −0.0002
−0.0001 −0.0001 0.0002
−0.0000 −0.0002 −0.0002

0.0000 0.0001 −0.0000
0.0001 −0.0001 0.0002
0.0000 −0.0000 0.0000

−0.0000 0.0000 0.0000
−0.0000 0.0000 0.0000

0.0000 0.0000 0.0000
0.0000 −0.0000 0.0000

−0.0000 −0.0000 0.0000
−0.0002 0.0001 0.0002

0.0005 −0.0002 0.0001
−0.0002 0.0004 −0.0001

0.0001 −0.0001 0.0009




,

Y = 104 ×




0.0644 −0.0600 −0.0083 0.0057
−0.0600 0.2567 −0.2340 0.0486
−0.0083 −0.2340 0.4959 −0.3118

0.0057 0.0486 −0.3118 0.5025
−0.0037 −0.0144 0.0766 −0.2997

0.0024 −0.0008 −0.0215 0.0728
−0.0004 0.0042 −0.0001 −0.0236

0.0032 −0.0069 0.0098 0.0172
0.0041 0.0390 −0.0386 −0.0469

−0.0151 −0.0522 0.0576 0.0603
0.0090 0.0221 −0.0261 −0.0248

−0.0000 0.0000 −0.0000 0.0000
0.0007 0.0004 −0.0016 0.0007

−0.0002 0.0013 −0.0002 −0.0015
0.0001 −0.0005 0.0014 −0.0002

−0.0000 0.0003 −0.0007 0.0012
0.0000 −0.0001 0.0004 −0.0005
0.0000 0.0001 −0.0002 0.0003
0.0003 0.0004 −0.0003 −0.0003
0.0002 −0.0001 −0.0004 0.0008

−0.0002 0.0009 0.0007 −0.0009
0.0004 −0.0000 −0.0006 0.0004

−0.0037 0.0024 −0.0004 0.0032 0.0041
−0.0144 −0.0008 0.0042 −0.0069 0.0390

0.0766 −0.0215 −0.0001 0.0098 −0.0386
−0.2997 0.0728 −0.0236 0.0172 −0.0469

0.4686 −0.2760 0.0634 −0.0287 0.0231
−0.2760 0.4293 −0.2318 0.0020 0.0651

0.0634 −0.2318 0.3419 −0.1501 0.0061
−0.0287 0.0020 −0.1501 0.5048 −0.6396

0.0231 0.0651 0.0061 −0.6396 1.3704
−0.0055 −0.0604 −0.0215 0.3393 −1.0375
−0.0035 0.0189 0.0122 −0.0499 0.2556
−0.0000 0.0000 −0.0000 0.0000 0.0000
−0.0004 0.0002 −0.0000 0.0001 0.0005

0.0007 −0.0004 0.0002 0.0001 0.0002
−0.0012 0.0005 −0.0003 0.0004 −0.0007
−0.0002 −0.0009 0.0003 −0.0000 −0.0005

0.0008 −0.0002 −0.0005 −0.0005 0.0009
−0.0003 0.0005 −0.0002 −0.0008 0.0013

0.0000 0.0005 0.0009 −0.0001 −0.0012
0.0005 −0.0009 −0.0013 0.0014 −0.0001

−0.0011 −0.0001 0.0007 0.0002 −0.0001
0.0005 0.0003 −0.0000 −0.0002 0.0002

−0.0151 0.0090 0.0057 0.0007 −0.0002
−0.0522 0.0221 −0.0035 0.0004 0.0013

0.0576 −0.0261 −0.0042 −0.0016 −0.0002
0.0603 −0.0248 0.0029 0.0007 −0.0015

−0.0055 −0.0035 −0.0019 −0.0004 0.0007
−0.0604 0.0189 0.0012 0.0002 −0.0004
−0.0215 0.0122 −0.0002 −0.0000 0.0002

0.3393 −0.0499 0.0016 0.0001 0.0001
−1.0375 0.2556 0.0021 0.0005 0.0002

1.1739 −0.4395 −0.0075 −0.0012 −0.0007
−0.4395 0.2273 0.0045 0.0006 0.0004

0.0000 −0.0000 0.0002 0.0000 −0.0000
−0.0012 0.0006 0.0003 0.0001 −0.0000
−0.0007 0.0004 −0.0001 −0.0000 0.0001

0.0009 −0.0003 0.0001 0.0000 −0.0000
0.0011 −0.0006 −0.0000 0.0000 0.0000
0.0001 −0.0003 0.0000 0.0000 0.0000

−0.0007 0.0000 0.0000 0.0000 0.0000
−0.0003 0.0005 0.0002 0.0000 0.0000
−0.0000 0.0000 0.0001 0.0000 −0.0000
−0.0002 0.0001 −0.0001 −0.0000 0.0000
−0.0002 −0.0000 0.0002 0.0000 0.0000
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0.0001 −0.0000 0.0000 0.0000 0.0003
−0.0005 0.0003 −0.0001 0.0001 0.0004

0.0014 −0.0007 0.0004 −0.0002 −0.0003
−0.0002 0.0012 −0.0005 0.0003 −0.0003
−0.0012 −0.0002 0.0008 −0.0003 0.0000

0.0005 −0.0009 −0.0002 0.0005 0.0005
−0.0003 0.0003 −0.0005 −0.0002 0.0009

0.0004 −0.0000 −0.0005 −0.0008 −0.0001
−0.0007 −0.0005 0.0009 0.0013 −0.0012

0.0009 0.0011 0.0001 −0.0007 −0.0003
−0.0003 −0.0006 −0.0003 0.0000 0.0005

0.0000 −0.0000 −0.0000 0.0000 −0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 −0.0000 0.0000 −0.0000 0.0000

−0.0000 0.0001 −0.0000 0.0000 0.0000
0.0000 −0.0000 0.0001 −0.0000 0.0000

−0.0000 0.0000 −0.0000 0.0001 0.0000
0.0000 0.0000 0.0000 0.0000 0.0006

−0.0000 0.0000 0.0000 −0.0000 −0.0002
0.0000 0.0000 −0.0000 −0.0000 0.0001
0.0000 0.0000 0.0000 0.0000 0.0002

0.0002 −0.0002 0.0004
−0.0001 0.0009 −0.0000
−0.0004 0.0007 −0.0006

0.0008 −0.0009 0.0004
0.0005 −0.0011 0.0005

−0.0009 −0.0001 0.0003
−0.0013 0.0007 −0.0000

0.0014 0.0002 −0.0002
−0.0001 −0.0001 0.0002
−0.0000 −0.0002 −0.0002

0.0000 0.0001 −0.0000
0.0000 −0.0000 0.0000
0.0000 −0.0000 0.0000

−0.0000 0.0000 0.0000
−0.0000 0.0000 0.0000

0.0000 0.0000 0.0000
0.0000 −0.0000 0.0000

−0.0000 −0.0000 0.0000
−0.0002 0.0001 0.0002

0.0005 −0.0002 0.0001
−0.0002 0.0004 −0.0001

0.0001 −0.0001 0.0009




.
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Fig. 4. Control inputu(t). α = 3.46, γ = 5.62 (broken line).
α = 6.65, γ = 9.28 (solid line).
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Fig. 5. Displacementy(t, 0.7) under the control law.
α = 3.46, γ = 5.62 (broken line).
α = 6.65, γ = 9.28 (solid line).
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Fig. 6. Displacementy(t, 1) under the control law.
α = 3.46, γ = 5.62 (broken line).
α = 6.65, γ = 9.28 (solid line).

Therefore, the optimal feedback gain is calculated as

K =
[

65.4234 −42.8421 −42.7786 29.3219
−19.0760 12.2423 −2.0152 16.4422 21.2656
−77.3222 45.9720 2.0000 3.5717 −0.9250

0.5276 −0.0517 0.1224 0.2131 1.6375
1.1730 −0.7989 1.8481

]
,

and the characteristic polynomial of the optimal closed-loop
system is calculated as

ϕK(s) = det(sE− (A + BK)) = [s21, s20, · · · , s2, s, 1]k,

where

k = 1031 × [
0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0003 0.0038 0.0536 0.3613

2.2526 5.8852 4.1896
]T

.
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See Appendix for the MATLAB program to solve the ad-
missible solution(X, Y) to the generalized algebraic Riccati
equation, the optimal feedback gain K, and the characteristic
polynomial of the optimal closed-loop system. Hence, the
optimal parameters are determined asα = 6.65, γ = 9.28.
Then, ‖f − k‖ takes the minimum value2.6628 × 1030

at the point (α, γ). The solid lines of Figs. 4–6 show the
evolution of inputu(t) and displacementsy(t, 0.7), y(t, 1) in
the closed-loop system (3), respectively. Thus, for the string
with two rigid loads, we see that this control law has a better
performance than that in Subsection V-A in the sense that the
vibration is suppressed more fast.

VI. CONCLUSION

In this paper, we studied the stabilization problem of a
string with two rigid loads which was described by two kinds
of hyperbolic equations. Since the controller that assured the
closed-loop stability contained free parametersα, γ > 0,
we considered a finite difference approximated model and
proposed the design method to determine an optimal feedback
gain (α, γ). Through numerical simulations, it was shown
that the performance of the control law which was designed
based on the descriptor expression of the finite difference
approximated model was better than that of the previous
control law. How to determine the optimal feedback gain
by the direct method, namely, by the one not based on the
approximated model is still remained as an open problem.

APPENDIX

Based on [14], we can write the MATLAB program to solve
the admissible solution(X, Y) to the generalized algebraic
Riccati equation, the optimal feedback gain K, and the char-
acteristic polynomial of the optimal closed-loop system.

% MATLAB program

g=9.8;
M1=0.7;
M2=1.0;

I=7;
J=3;

L=I+J;
dx=1/L;

a_0=g*(M1+M2+1-dx*0);

for i=1:I
a(i)=g*(M1+M2+1-dx*i);

end

for i=0:J
a_tilde(I+i)=g*(M2+1-dx*(I+i));

end

for i=1:I-1
alpha(i)=a(i)/(dxˆ2)+g/(2*dx);
beta(i)=-2*a(i)/(dxˆ2);
gamma(i)=a(i)/(dxˆ2)-g/(2*dx);

end

for i=1:J-1
alpha_tilde(I+i)

=a_tilde(I+i)/(dxˆ2)+g/(2*dx);
beta_tilde(I+i)=-2*a_tilde(I+i)/(dxˆ2);

gamma_tilde(I+i)
=a_tilde(I+i)/(dxˆ2)-g/(2*dx);

end

c=a_0/dx;
d=a(I)/(M1*dx);
d_tilde=a_tilde(I)/(M1*dx);
e_tilde=a_tilde(I+J)/(M2*dx);

A11=zeros(L+1);
A12=eye(L+1);
A22=zeros(L+1);

A21(1,1)=-c;
A21(1,2)=c;
A21(I+1,I)=d;
A21(I+1,I+1)=-(d+d_tilde);
A21(I+1,I+2)=d_tilde;
A21(I+J+1,I+J)=e_tilde;
A21(I+J+1,I+J+1)=-e_tilde;

for i=2:I
A21(i,i-1)=alpha(i-1);

end

for i=2:I
A21(i,i)=beta(i-1);

end

for i=2:I
A21(i,i+1)=gamma(i-1);

end

for i=2:J
A21(I+i,I+i-1)=alpha_tilde(I+i-1);

end

for i=2:J
A21(I+i,I+i)=beta_tilde(I+i-1);

end

for i=2:J
A21(I+i,I+i+1)=gamma_tilde(I+i-1);

end

A=[A11 A12; A21 A22];

B1=zeros(L+1,1);
B2=zeros(L+1,1);
B2(1,1)=-1;
B=[B1; B2];

E11=eye(L+1);
E12=zeros(L+1);
E21=zeros(L+1);
E22=eye(L+1);
E22(1,1)=0;
E=[E11 E12; E21 E22];

q=3.9;
r=1;
Q=q*eye(2*L+2);
R=r*eye(1);

Etilde=[E zeros(2*L+2) zeros(2*L+2,1);
zeros(2*L+2) E’ zeros(2*L+2,1);
zeros(1,2*L+2) zeros(1,2*L+2) zeros(1)];

Atilde=[A zeros(2*L+2) B;
-Q -A’ zeros(2*L+2,1);
zeros(1,2*L+2) B’ R];

[T,D]=eig(Atilde,Etilde);
TT=[T(:,1) T(:,3:4) T(:,7:8) T(:,11:12)

T(:,15:18) T(:,23:24) T(:,27:28) T(:,31:32)
T(:,35:36) T(:,39) T(:,41)];

U1=TT(1:2*L+2,:);
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U2=TT(2*L+3:4*L+4,:);
U3=TT(4*L+5,:);

V1=zeros(2*L+2,1);
V1(L+2,1)=1;
V2=V1;

h=2;
Hx=h;
Hy=q*r/h;

X=real([U2 V2*Hx]*inv([U1 V1]))
Y=real(([U2 V2*Hy]*inv([U1 V1]))’)
K=-inv(R)*B’*X

[U,S,V]=svd(E);
EE=S(1:2*L+1,1:2*L+1);
AA=U’*(A+B*K)*V;
AA11=AA(1:2*L+1,1:2*L+1);
AA12=AA(1:2*L+1,2*L+2);
AA21=AA(2*L+2,1:2*L+1);
AA22=AA(2*L+2,2*L+2);

k=det(-AA22)*det(EE)*poly(inv(EE)
*(AA11-AA12*inv(AA22)*AA21))
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