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Abstract 
The base of this paper was a new method for the detection 
of exact and approximate reflective symmetries. The 
algorithm was based on the definition of the so called 
symmetry-parameter which is a rate of the symmetry, a 
number between 0 and 1 without a dimension and its value 
does not depend on geometrical measures. A so called 
symmetry-diagram in other name a shape-diagram was 
determined from the symmetry-parameters computed for 
various lines crossing the gravity centre and for points 
surrounding it. Beside the possibility of the symmetry 
recognition, the shape-diagram shows an individual shape 
property of the 2D figures, independently from geometrical 
measures. In this paper we show a process in which similar 
and approximately similar 2D figures are sorted out from a 
multitude of different figures independently from 
geometrical measures using the definition of the symmetry-
diagram. 
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I. INTRODUCTION 
 
The problem of symmetry detection has been extensively 
studied in numerous fields including visual perception, 
computer vision, robotics, computational geometry and 
reverse engineering. Early methods concentrated on finding 
perfect symmetries in 2D or 3D point sets [1], [2]. Since the 
restriction to exact symmetries limits the use of these 
methods for real-world objects, a method was introduced for 
computing approximate global symmetries in 3D point sets 
[3], but the complexity of the algorithm makes it impractical 
for large data sets. The notion of approximate symmetry was 
formalized by expressing symmetry as a continuous 
feature [4]. The examination of the correlation of the 
Gaussian image was proposed to recover 
global reflective and rotational symmetries [5]. A shape 
descriptor was introduced that concisely encodes global 
reflective and rotational symmetries [6], [7]. Different 
applications based on generalized complex moments [8], 
grouping feature points [9], [10], [11], isometric transforms 
[12], planar reflective symmetry transform [13] and 
generalized symmetry transform [14], [15] are used in image 
processing and mesh processing for detecting exact local 
and global reflection-symmetry and rotation- symmetry of 
2D and 3D images. 
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The symmetries are often not exactly present, but only 
approximately present, due to measurement errors in the 
scanning process, and approximation and numerical errors 
in model 
reconstruction during reverse engineering [16]. Beside this, 
different CAD systems often use different tolerances [17], 
and what is symmetric in one CAD system may be only 
approximately symmetric in another. To solve these 
problems new algorithms based on the B-rep model were 
developed to find approximate rotational and translational 
symmetries of 3D forms built from simple geometric units 
[18] and complex 3D forms [19] in reverse engineering.  
In the most prevalent methods of symmetry detection a 
number of pixels are aligned to the contour. The 
perpendicular bisectors of various pixel pairs are regarded as 
hypothetical symmetry axes. The exact and approximate 
symmetry axes are searched from the set of the 
perpendicular bisectors e.g. using a symmetry map created 
from the parameters of the perpendicular bisectors [18], 
[19], or optimizing the gradient orientations of pixel pairs 
[14], [15].  In this paper a new method is shown for the 
detection of exact and approximate  reflective symmetry. 
The new method is worked out for 2D case based on the fact 
that the symmetry axes cross the gravity centre. Accordingly 
the hypothetical symmetry axes are the lines crossing the 
gravity centre and the exact and approximate symmetry axes 
are selected from the set of these lines. The searching 
algorithm is based on the definition of the so called 
symmetry-parameter which is a rate of the symmetry, a 
number between 0 and 1 without a dimension and its value 
does not depend on geometrical measures. A so called 
shape-diagram is determined from the symmetry-parameters 
computed for various lines crossing the gravity centre. The 
shape-diagram is applicable to find every exact and 
approximate symmetry axis.  
Beside this the shape-diagram shows an individual property 
of the 2D figures, it is independent from geometrical 
measures but it is characteristic of the shape of the 2D 
figures, independently of the fact that the 2D figure is 
symmetric or not. In this paper we show a process in which 
similar 2D figures are sorted out from a multitude of 
different figures, independently from geometrical measures, 
using the definition of the shape-diagram. 
 
 
 

II. THE ALGORITHM OF THE SYMMETRY 
DETECTION 

 
The algorithm consists of several simple steps.  
We have proceeded from the fact that the symmetry axes of 
a 2D figure cross the gravity centre because a symmetry axis 
divides the figure to two coincident parts therefore a 
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symmetry axis is a median, too. A median has to cross the 
gravity centre. 
The algorithm scans the multitude of the lines crossing the 
gravity centre and studies how favourable these lines as 
symmetry axes are. If there is no exact symmetry axis 
crossing the gravity centre, a best approximate symmetry 
axis crossing an area surrounding the gravity centre is 
searched with similar method. Namely, since an exact 
symmetry axis crosses the gravity centre, an approximate 
symmetry axis has to cross an area surrounding the gravity 
centre. 
In the followings we detail the steps of the algorithm. 
 
 
Step 1: Collecting of the input data 
 
The contour of the form is needed for the computation.  
The input data set is defined as a set of points aligned to the 
contour. Such a point set can be created by the use of 
different tools of electronic image processing e.g. the 
MatLab. In order to decrease the measure of the point set 
file and the run time of the algorithm, the point set can be 
optimized:  the points can be fixed rare or thickened 
depending on the complexity of the geometry. Fewer points 
are needed at greater curvature and more points are needed 
at smaller curvature, Figure 1. Such an optimization of the 
input point set is not required, but if we perform it, it can 
speed the run of the computer codes.  The original contour is 
approximated with the stretches determined by these points. 
We name these stretches as perimeter stretches.  
The input of the algorithm is the table of the points. The 
points follow each other in a clockwise direction. Such a 
table can be created manually and also recorded digitally 
from a pixel set. 

 
 
 
 
 

 

 
 
 
Step 2: Determination of the gravity centre 
 
We determine the gravity centre of the 2D figure with the 
method used in the geographic information systems. In order 
to compute the area of the 2D figure trapeziums are defined  
so that the points aligned to the contour are projected to the 
horizontal axis of the coordinate system, Figure 2. 
The area of the ith trapezium is:  
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where   (xi , yi) and (xi+1 , yi+1) are the end points of the ith 
perimeter stretch.  The points have to follow each other in a 
clockwise direction, in contrary case a negative value is 
derived for the area. The coordinate system is defined so 
that if the 2D figure is revolved around the gravity centre it 
always has to remain in the first plane quarter.  
The area of the 2D figure is the sum of the areas of the 
trapeziums:     
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where n is the number of the trapeziums. 

The co-ordinates of the gravity centre are determined in 
general case by 

∫ ⋅=⋅
A

g dAxAx                                                (4) 

∫ ⋅=⋅
A

g dAyAy                                                (5) 

 

 

Figure 1 Collecting of points (Pi) on the boundary. 
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In our case (because of the trapeziums) the integration 
reduces itself to a simple summing up:  
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Step 3: Scanning 
 
The vertical line crossing the gravity centre is regarded as 
symmetry axis in the case of an optional starting orientation 
of the 2D figure, Figure 2. The algorithm analyses whether 
the 2D figure is symmetric for this hypothetical symmetry 
axis. For this purpose the algorithm scans the figure with 
horizontal lines (so called ‘measuring lines’) following each 
other with equal distances, Figure 3. The hypothetical 
symmetry axis is vertical and the measuring lines 
corresponding to the scanning levels are perpendicular to the 
axis namely they are horizontal. 
In the course of the scanning the so called measuring 
stretches are determined. A measuring stretch is the distance 
between the vertical hypothetical symmetry axis and the 
intersection of a measuring line and a perimeter stretch. In  
Figure 4 ‘l’ and ‘r’ are the measuring stretches. In a 
horizontal scanning level there could be more measuring 
stretches, as well. 
 
 
 
 
The complete area of the 2D figure is scanned with 
measuring lines proceeding from up to down, from the 

maximum (Ymax) to the minimum (Ymin) vertical coordinate 
of the points aligned to the contour. The accuracy of the 
method depends on the distance between the measuring 
lines: the shorter the distance is the more accurate the result 
is, however it affects the running time of the computer code 
as well. 
 
 
 
 
Step 4: Computing the symmetry parameter 
 
The symmetry parameter Z shows the deviation from the 
perfect symmetry numerically. This value between 0 and 1 
can be a rate of the symmetry. In order to define it we 
introduce first a Zk parameter for the kth scanning level. In 
the simplest case when there is one measuring stretch on the 
left and on the right side of the hypothetical symmetry axis, 
Figure 4, Zk can be computed simple: 
 
 

 

 
where:  
’l’ is the measuring stretch on the link side of the symmetry 
axis, 
’r’ is the measuring stretch on the right side of the symmetry 
axis, 
Lmax is the maximum of the measuring stretches in the 
course of the scanning. 
 
 
 
 
 
 
 

Figure 2  Definition of trapeziums for the computation of the area in the example of a hexagon.

(7) 
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Figure 4 Definition of the measuring stretches in a simple case 

 
 
 
 
Zk is defined so that: 

- Zk=1 if l=r when the kth scanning level is 
symmetrical to the hypothetical symmetry axis, 

- Zk=0 if l=0 and r>0, or r=0 and l>0  when a 
measuring stretch does not have a pair on the other 
side of the hypothetical symmetry axis which is the 
worst case regarding the symmetry, 

-   0<Zk<1 when l>0 and r>0 and the figure is not 
symmetrical to the hypothetical symmetry axis, and 
the closer this value is to 1 the better the kth 

scanning level approximates the exact symmetry. 
 
 
 
Since a ratio of lengths is used in (7) Zk is a number without 
a dimension and its value does not depend on the measures. 
 
 
 

 
 
 
If there are more than 2 measuring stretches in a scanning 
level (l1, l2, …, ln on the left side and r1, r2, … , rm on the 
right side of the hypothetical symmetry axis, Figure 5) then 
li and ri are ordered into pairs and Zk is defined according to  
 (8). Let us assume that there are more measuring stretches 
on the left side: n>m. In this case the pairs have to be 
defined so that ri=0 for every li i=m+1, m+2, … , n. In 
general case Zk is computed as the average of the expression 
defined by (7) from the pairs: 
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where n is the number of the pairs in a scanning level. 
  

 
 

Figure 3 The horizontal measuring lines
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The symmetry-parameter Z is defined as the average of Zk: 
 

               
N
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where N is the number of the scanning levels (measuring 
lines) from Ymax to Ymin. 
 
 
Since Z is defined with averages according to (7), (8) and 
(9), Z keeps the original properties of  Zk: 

− the value of Z can change  between 0 and 1, 
− Z=1 is the case of an exact symmetry, 
− Z=0 is the worst case regarding the symmetry (e.g. 

the full figure is on the left side of the axis), 
− in the case of 0<Z<1 the closer the value is to 1 the 

better the figure approximates the exact symmetry, 
− Z is a number without a dimension, it does not 

depend on the measures, it depends only on the 
shape.   

 
 
 
Step 5: Rotation of the geometry 
 
After the determination of the symmetry-parameter for the 
starting orientation the 2D figure is scanned by rotating the 
hypothetical symmetry axis, as well. The computation is 
simpler if the hypothetical symmetry axis is fixed vertically 
and the figure is rotated with small angles, step by step, 
Figure 6. The accuracy of the computation depends on the 
steps (angles) of the rotation. After every step of rotation the 
symmetry-parameter is computed. 
 

 
 
The method scans the entire 2D figure in such a way that it 
rotates the examined figure by 180 degrees. Since the 
algorithm examines the figure both above and below the 
gravity center, the rotation by 180 degrees means a complete 
coverage. 
 
 
 
Step 6: The symmetry-diagram in other word: the shape-
diagram   
      
The symmetry-parameter Z is computed for every rotational 
step. The values of Z are saved together with the angles of 
rotation. After the full (1800) rotation a diagram is drawn 
where the independent variable is the angle of rotation and 
the dependent variable is Z. From this diagram the results 
can be evaluated. Let us name it shape-diagram. Exact 
symmetry exists where Z=1 and the closer Z is to 1 the 
better the figure approximates the exact symmetry at a given 
angle.   
 
The shape-diagram of a square can be seen in Figure 7. The 
lines signed with numbers (1, 2, 3, 4) are the exact 
symmetry axes of the square and accordingly these 
correspond to the angles of rotation where Z=1 (α=00 or 
1800, α=450 , α=900 and α=1350). 
 
The shape-diagram shows an individual property of the 2D 
figures. Since Z is independent of geometrical measures the 
shape-diagram is a shape parameter of the 2D figures 
(therefore the name is ‘shape-diagram’). The shape-diagram 
is the same for similar 2D figures having different measures. 
But if there is a smallest change on the shape of the 2D 
figure the shape-diagram changes, as well. 
 

 
 

Figure 5 Definition of Zk in general case
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Figure 6 Rotation of the 2D figure with small angles 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       
 
 

 
 

Figure 7 The definition of the shape-diagram 
 
 

 
Figure 8 Shape-diagrams for modified squares 
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We show examples for the individuality of the shape-
diagram in Figure 8. Three variously modified squares can 
be seen and the shape-diagrams are different, as well. In 
Figure 8a the  
corners of the square are cut, the number and the place of 
the original symmetry axes have not changed but the 
minimum values have increased from Z=0.58 to Z=0.65. In 
Figure 8b a part of the square is cut out, only 1 symmetry 
axis has remained and a weakly approximate symmetry axis 
signed with  number 3 can be found at a local maximum of 
the diagram. The other two local maximums signed with 
number 2 and 4 correspond to only very weakly 
approximate symmetry axes. In Figure 8c several small parts 
are cut out from the square, the exact symmetry axes have 
not changed but the curve between the maximums is 
basically other.  
 
The algorithm does not have limits in 2D case. It is 
applicable even if the contour consists of several closed 
loops. In Figure 9 a circle with two holes can be seen. 
 

It is obvious that the shape-diagram is the constant 1 
function in the case of a circle because every line crossing 
the centre is an exact symmetry axis. Since there are two 
holes on the circle in Figure 9 accordingly there are only 
two exact symmetry axes signed with number 1 and 2 where 
Z=1.  
 
There was an exact symmetry axis in every example shown 
above, i.e. Z=1 value(s) could be found in every shape-
diagram computed for the lines crossing the gravity centre.  
In the case when there is no exact symmetry axis, it is not 
sure, that the best approximate symmetry axis can be found 
in the lines crossing the gravity centre. However we can 
assume that the best approximate symmetry axis has to pass 
near by the gravity centre in the case of approximate 
symmetrical 2D forms. In this case it is advisable to repeat 
the Steps 3-5 so that the shape-diagram is created for the 
points surrounding the gravity centre, as well. For the best 
approximate symmetry axis we have to search the shape-
diagram where the maximum Z value can be found. 

 
 
 
 
 
 
 
 
 
 
 
           
 
 
 

 
Figure 9 Example of a 2D figure having a contour with several closed loops 

 
 
 
 
III. ALGORITHM FOR SORTING OUT SIMILAR AND 
APPROXIMATELY SIMILAR FORMS 
 
In numerous studies the tool of the pattern recognition is a 
neural network algorithm, [20-23]. In this chapter we show 
that the symmetry-diagram can be used as tool of the pattern 
recognition independently of geometrical measures. 
In this stage of this research work the sorting algorithm is 
applicable for the case when there are no overlaps between 
the 2D figures in the multitude.  
In the followings we detail the steps of the algorithm 
parallel with a case study shown in Figure 10 and Figure 11. 
As an example for the input of the sorting algorithm a 
multitude of different 2D figures are shown in Figure 10. 12 
independent 2D figures can be seen. Similar figures having 
different size can be seen.  Several figures are deformed a 
bit and in these cases the broken lines sign the figure which 
would be geometrically similar to other figures. For example 
the figures signed by numbers 1 and 8 are geometrically 
similar and the figure signed by number 11 is only 
approximately similar to them. The geometrical similarity  

 
would be exact in the case of the contour signed with broken 
lines.  
 
 
Step 1: Collecting of the input data 
 
The input data set is defined as a set of points aligned to the 
contours of the 2D figures in the multitude. Such a point set 
can be created by the use of different tools of electronic 
image processing e.g. the MatLab. The point set consists of 
the x, y coordinates of the points scanned along the 
contours. 
 
 
Step 2: Sorting of the input data 
  
The subsets of the points are sorted out for the independent 
2D figures which are not overlapped. In our example 12 
subsets of the contour points could be separated, accordingly 
we signed by number 1-12 the separated figures 
corresponding to the 12 subset in Figure 10.  
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Step 3: Computation of the shape-diagrams 
 
In this step the algorithm computes the shape-diagram for 
every subset. In our example 12 shape-diagram are 
computed which are shown in Figure 11. 
 
Step 4: Sorting of the shape diagrams 
 
Geometrically similar 2D figures have the same shape-
diagram. The identical diagrams can be easily separated.  

 
 
The only problem in this case is that the shape-diagrams are 
drawn in different period. In order to avoid this problem by 
the comparison of two diagrams the orientation of α=00 is 
chosen at the place of the maximum in every shape diagram. 
 
Allowing a small threshold value for the differences 
between the diagrams, approximately similar figures can be 
sorted out, as well. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10 An example for the multitude of 2D figures 

 
 
 
 
In our example four groups of the shape-diagrams could be 
separated, Figure 11. Three-three equal or almost equal 
curves could be sorted out in the four groups. In Figure 11 
the equal (drawn with green and black colours) or almost 
equal curves (drawn with red colour) are drawn in the same 
co-ordinate system. Near the diagrams, on the right side the 
numbers of the 2D figures having equal or almost equal 
shape-diagram are represented. The shape diagrams of the 
geometrical similar stars, pentagons, isosceles triangles and 
isosceles trapezium can be distinguished unambiguously. 
There is only small differences between the shape diagrams 
of the approximately similar figures. 
Using the shape diagrams the similar or almost similar 2D 
figures could be separated.  

IV. SUMMARY 
 
The new algorithm of the symmetry detection gives a new 
possibility to detect exact and approximate symmetry axes 
of 2D figures. Beside the known methods of symmetry 
detection the new algorithm defines the so called symmetry-
parameter which can be a rate for the symmetry using a 
number between 0 and 1.  
The symmetry diagram created from the values of the 
symmetry-parameter computed for various lines crossing the 
gravity centre is independent from geometrical measures 
and it shows an individual, characteristic shape property of 
the 2D figures. 
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The process of sorting of geometrically similar or almost 
similar 2D figures was shown on an example. The sorting 
algorithm is based on the use of the shape-diagram of the 2D 

figures. The algorithm works in the case of the multitudes of 
2D figures where there is no overlapping between the 
contours of the figures, in this stage of this research work.

 
 
 
 

 
 

Figure 11 The sorted shape-diagrams of the 2D figures 
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