
 

 

  
Abstract— One common approach to image quality and 

performance evaluation is to evaluate if the reference image and the 
processed image still remain a high level of similarity However, 
existing image quality metrics regarded one of the reference and 
processed image or both as perfect. In reality, it is not easy to obtain 
a perfect reference image because pre-processing procedures always 
generated noise into these images. In this paper, the reference and 
processed images are considered as imperfect and we propose a 
functional metric using the coefficient of determination for 
unreplicated linear functional relationship model as a measure of the 
similarity, which in turn may be used as a definition for image 
quality and performance indicator for some image processing 
applications. The sensitivity of the proposed metric is also studied 
and it provides a consistent interpretation for the distortion area of a 
processed image. Our experimental results showed that the proposed 
functional metric is a good quality measure for JPEG compressed 
image and it is sensitive in differentiating the performance or low-
pass and high-pass filtered image. 
 

Keywords— functional quality metric, linear functional 
relationship, performance evaluation, similarity measure.  
 

I. INTRODUCTION 
IGITAL image is the most economical and efficient 
medium for communicating information [1] and its 
applications are wide and have greatly influenced the 

modern lifestyle such as recording a historical event, 
illustrating a meaningful story or disseminating useful 
information. For example, a just married couple would like to 
capture their happy moments of marriage in pictures. While, 
businessmen used pictures to advertise their product. Through 
running a sequence of images, it becomes a movie. All these 
activities are widely happen in our daily life. 

The demand for a higher quality image as a result of rapid 
progress in imaging technologies gave rise to the need to 
reduce intrinsic distortion of an image. In many image 
processing algorithms, the main objective of the algorithms is 
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to filter the noise of a distorted image in order to obtain a 
processed image, which is closer to the original (reference) 
image. In other applications, the original image is being 
compressed and reconstructed (processed image) with 
minimum loss of information. The common interest is to study 
the performance of these processing algorithms in producing 
the desired processed image quality. One common approach to 
performance evaluation is to evaluate if the reference image 
and the processed image still remain a high level of similarity. 
We say that the algorithm has a good performance if the 
similarity value is high or vice versus. In other words, a good 
performance algorithm will also produce a high processed 
image quality. This evaluation process can be easily done 
visually. However, visual inspection is a highly subjective 
process and it is depends on the requirements of a given 
application [2]. Hence inconsistency results may occur 
because of human fatigue and subjective judgement. 
Consequently, many full reference objective metrics such as 
peak signal-to-noise ratio (PSNR) [3], root mean square error 
(RMSE) [4], mean structural similarity measure (MSSIM) [5], 
neighborhood-based similarity (SNBS) [6], linear correlation 
coefficient (Rs

2) [7], fuzzy discrimination information measure 
[8], subband coded image quality control [9] and global image 
quality index [10] have been proposed as a quality 
measurement between two images, which in turn may be used 
as an indicator for algorithms performance evaluation.  

One fundamental idea when defining the above metrics is 
to regard one of the original and processed images or both as 
‘perfect’ or majority of the digital image analysts have to 
depend on the physical hardware available such as scanner 
and digitizer. In reality, it is not easy to obtain a perfect 
reference image because pre-processing procedures always 
resulted the existence of noise in the reference image. Wang 
& Bovik [11] has also pointed out that the assumption of 
perfect reference is reasonable only for image/video coding 
and communication applications. 

In this paper, we propose a new statistical-based image 
quality metric (IQM) in which both reference image ( , )X i j  
and processed image ( ),Y i j  are subjected to errors. As such 
the relationship between images X and Y may be modeled by 
the unreplicated linear functional relationship (ULFR) model 
[12], and it’s coefficient of determination (COD) [13] is an 
indicator of performance.  Definition and derivations of the 
ULFR model and it’s COD are given in Section III. A 
simulation image is generated in Section IV to investigate the 
sensitivity of the proposed metric. Experiments using JPEG 
compression and de-noising filters are devoted in Section V 
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and conclusion is presented in Section VI. We will begin with 
some literature review on the existing IQMs in the Section II. 

 
 

II. LITERATURE REVIEW 
 
Over the years, there are a number of surveys and 

comparisons done on the image quality metrics (IQM). 
Michael et al. [14] discussed quality metrics applied to the still 
image compression problem. This paper classified the 
objective quality into four major categories, which are 
Mathematical metrics, metrics which incorporate the CSF and 
luminance adaptation, Metrics which incorporate observer 
preferences for suprathreshold artefact and Threshold 
perceptual metrics. Zhang [15] had discussed the assessment 
of image segmentation using empirical goodness methods and 
empirical discrepancy methods. Meanwhile, Eskiciogu and 
Fisher [16] had compared the performance of a set of metric 
under the compression problems. Avcibas et al. [17] 
considered the objective image quality metrics using Pixel 
different-based, non-statistical Correlation-based, Edge-based, 
Spectral distance-based, Context-based and HVS-based 
measures. On the other hand, Rubner et al. [18] divided the 
dissimilarity measures into 2 categories, which are the 
Distance Measure for Histograms and Non parametric test 
statistic. And, Eskiciogu [19] divided the subjective quality 
metrics into absolute and comparative categories, while the 
objective quality metrics are divided into numerical and 
graphical categories. Finally, Kim et al. [20], and Kinape and 
Amorim [21] discussed generally on a selected quality 
metrics. 

The above studies showed that statistical-based IQMs 
have not been fully studied and their potential contributions 
have been overlooked. In fact, our reviewed on 278 related 
research papers reveal that pixel-based approach has the 
largest amount of image quality metrics for the past 26 years 
from year 1980 to 2006 (see Table 1). This is followed by the 
statistical-based and structural-based approaches.  

 
 

IQM metrics FR RR NR Total 
Statistical based 55 0 11 66 
Pixel based 78 1 9 88 
Structural based 40 1 1 42 
Neighborhood based 14 0 1 15 
HVS based 19 0 1 20 
Graphical based 11 0 0 11 
Subjective 24 0 0 24 
Unclassified 11 0 1 12 
Total 252 2 24 278 

Table 1: Number of full reference image quality metrics from 
year 1980 to 2006 according to different approaches. 

 
 
It was found that the number of statistical-based IQMs 

has increased over the mentioned periods as shown in Figure 
1. There are a total of 55 FR and 11 NR statistical-based 

IQMs. In particular, there are seven statistical-based IQMs in 
years 1980 to 1989. The number of new statistical-based 
IQMs was increased to 26 from years 1990 to 1999 and it 
recorded 33 new statistical-based IQMs in the first six years of 
the twenty first century. We also noted that there is no study 
carried out on Statistical-based IQM for Reduced Reference 
(RR) until year 2006. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Summary of the FR and NR statistical-based IQM from 
year 1980 – 2006. 

 
From our literature review, we discovered two problems 

common to the existing image quality metrics. They are 
1. the existing full reference image quality metrics regarded 

one of the reference image and processed image, or both as 
perfect image. However, in reality, it is not easy to obtain a 
perfect reference image because pre-processing procedures 
always resulted in the existence of noise in the reference 
image.  

2. some full reference image quality measures are good for 
certain type of images only, they will gave inconsistent 
interpretation of the quality index for different types of 
images. 
The following sections propose a solution to accommodate 

the above-mentioned problems. 
 

III. UNREPLICATED LINEAR FUNCTIONAL RELATIONSHIP 
MODEL 

A. ULFR Model 
The conventional linear regression model assumes that the 

explanatory variable is fixed. However, this may not be 
realistic in many situations [22]. For the example in image 
processing, image manipulations occur in different 
preprocessing stages including image acquisition and we may 
think of ( , )X i j  as having ‘inherited’ noise from the 
preprocessing stage. This suggests a new relationship between 
the two variables called ULFR model (see e.g. [12], [22], 
[23]). 

Re-label the pixel values of the processed image 
( ){ }, ; 1, 2, , , 1, 2, ,Y i j i M j N= =K K  as 1 2, , , MNy y yK , the 

pixel values of the reference image 
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( ){ }, ; 1, 2, , , 1, 2, ,X i j i M j N= =K K  as 1 2, , , MNx x xK , and 

the true ( ),Y i j  and ( ),X i j  values will be denoted by 

1 2, , , MNY Y YK  and 1 2, , , MNX X XK , respectively. 
Suppose that now the X and Y are two linearly related 

unobservable variables 

i F F iY X= +α β                                      (1) 

and the two corresponding random variables y and x are 
observed with error ε  and δ  respectively 

1,2, ,i i i

i i i

y Y ε
i MN

x X δ
= + ⎫⎪ =⎬= + ⎪⎭

K                 (2) 

where Fα  is the intercept and Fβ  is the slope of the functional 

model, and  ( )20i ~ N , εε σ  and ( )20i ~ N , δδ σ  are mutually 

independent and normally distributed random variables with 
mean 0 and constant, but with different variances.  Model in 
Equations (1) and (2) is known as the unreplicated linear 
functional relationship (ULFR) when there is only one 
relationship between the two variables Y and X. This model 

yields the 2-vector ( ),i ix y ′ , 1,2, ,i MN= K  distributed as 

2

2

0
~ ,

0
i i δ

i i ε

x X σ
N

y Y σ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

               (3) 

and the likelihood function is given by 

( )
( ) ( )

2 2
1

2 2

2 2
1

, , , , , ,

1 exp
2 2 2

δ ε n

n
i i

i δ ε

L β α σ σ X X

y α βX
σ σ=

⎡ ⎤− −
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
∏

L

( )
( ) ( )2 2

2 2

1 exp
2 22 n

δ εδ ε
σ σπ σ σ

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥⎣ ⎦

∑ ∑   (4) 

If the ratio of the error variances 
2

2
ε

δ

σ
λ

σ
=  is known and taking 

log for Equation (4), then the maximum likelihood estimators 
for Fα , Fβ , 2

εσ  and iX  are given as follows: 

F F
ˆˆ y x= −α β                                                  (5) 

( ) ( ){ }
1

2 224

2

yy xx yy xx xy

F
xy

S S S S S
ˆ

S

λ λ λ
β

− + − +
=                (6) 

( ) ( )222 1 1 ˆˆ ˆˆˆ
2 i i i F F ix X y X

nδσ λ α β
λ

⎡ ⎤= − + − −⎢ ⎥− ⎣ ⎦
∑ ∑      (7) 

and 
( )

2

ˆ ˆˆ
ˆ

i F i
i

F

λx y
X

λ
+ −

=
+

β α
β

               (8) 

where ix
x

n
= ∑ , iy

y
n

= ∑ , ( )2
xx iS x x= −∑ , 

( )2
yy iS y y= −∑ and ( )( )xy i iS x x y y= − −∑ . 
  

B. Functional Image Quality and Performance Metric 
In order to measure the quality of JPEG compressed 

image and the performance of de-noising filters, we propose 
the COD for ULFR model as functional image quality metric. 
The construction of the COD for ULFR model has been 
developed in our previous work in Chang et al. [13]. 

The Equations (1) and (2) can be rewritten as 
i F F i iy X= + +α β ε  for 1,2, ,i n= K . 

If we substitute Xi by ( )i ix −δ , then we have the expression 
( )i F F i i F iy x ε β δ= + + −α β  

 +F F i ix V= +α β                    (9) 
where the errors of the model 

( ) ( )i i F i i F F iV ε β δ y α β x= − = − + , for 1,2, ,i n= K  is a 
normally distributed random variable with zero mean and 
variance 2 2 2

ε F δσ + β σ . If ˆFα  and ˆ
Fβ  are the estimates of Fα  and 

Fβ  respectively, then 
ˆˆ ˆ ˆ( )i i i i F F iV y y y α β x= − = − +                (10) 

for 1,2, ,i n= K , will be the residual of the model. From [23] 
and [24] that the sum of squared distances of the observed 
points from the fitted line or the residual sum of squares (SSE) 
is given as: 

( ){ }
( )

2

2

ˆˆ
SS

ˆ
i F i

E

F

y α β x

λ β

− +
=

+

∑
 

        
( )

2

2

ˆ ˆS 2 S S
ˆ

yy F xy F xx

F

β β

λ β

− +
=

+
                   (11) 

We shall consider here that the ratio of the error variances is 
equal to one (λ = 1). For those cases when λ ≠ 1, we can 
always reduce this to the case of λ = 1 by dividing the 
observed values of y by 

1
2λ  (see e.g. [23]). Hence, we have 

2

2

ˆ ˆS 2 S S
SS ˆ1

yy F xy F xx
E

F

β β

β

− +
=

+
                   (12) 

and the regression sum of squares which can be derived as 
SS S SSR yy E= −  

       
2

2

ˆ ˆS 2 S S
S ˆ1

yy F xy F xx
yy

F

β β

β

− +
= −

+
 

       
2 2

2

ˆ ˆ ˆS 2 S S
ˆ1

F yy F xy F xx

F

β β β

β

+ −
=

+
 

       
( )2

2

ˆ ˆS S 2 S
ˆ1

F yy xx F xy

F

β β

β

− +
=

+
                  (13) 
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 In the same way as ordinary linear regression, we can now 
define the COD of the ULFR ( )2

FR  as the proportion of 
variation explained by the variable x, that is 

2 R
F

yy

SS
R

S
=  

  yy E

yy

S SS
S
−

=  

  

2

2

ˆ ˆS 2 S S
S ˆ1

yy F xy F xx
yy

F

yy

β β

β
S

− +
−

+
=  

  
( )

2

2

ˆ ˆS S 2 S S
ˆ1

yy yy F xy F xx

yy F

β β

S β

− + −
=

+
 

  
( )

( )2

ˆ ˆ ˆS S 2S

ˆS 1

F F yy F xx xy
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β β β

β

− +
=

+
    

  
( )
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2
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ˆ ˆ S S

ˆS 1

F F xy xy

yy F

β β

β

+
=

+
       

  
( )

( )
2

2

ˆ ˆS 1

ˆS 1

F xy F

yy F

β β
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+
=

+
    

  
ˆ S
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F xy

yy
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C. Properties of the Functional Image Quality Metric 
There are several properties of the proposed functional 

quality metric. These properties verify the criteria for a good 
quality metric as proposed by [6]. 
 

1) Reflexivity property 
From the regression sum of squares, we obtained the range 

of the functional quality metric as 2 SS
0 1

S
R

F
yy

R≤ = ≤ .  The 2
FR  

has output one when the two images X and Y are identical and 
it approaches zero when the two images are dislike. This has 
been shown in the below experiments when the JPEG 
compression factor is at 100 and the noise level is at 
minimum. 
 

2) Reaction to enlightening or darkening 
Since image enlightening or darkening only involved 

constant translation of the intensity values, as other statistical 
correlation measures, the 2

FR  value, remain high for 
enlightens or darkens of an image. However, the 2

FR  value 
will drop with respect to an increasing enlightening or 
darkening percentage because more intensity values have 
converted to the value 1 (white color) or 0 (black color). 
 

3) Reaction to binary images 

When a IQM is applied to measure the quality of a binary 
image, the quality index shall returns a value between 0 and 1, 
but not only 0 or 1. This property is clearly shown in Section 
IV when a binary image was generated to examine the 
sensitivity of 2

FR . The results indicated that 2
FR returns a value 

between 0 and 1. 
4) Non-Symmetrical 
To examine the symmetry properties of the 2

FR , we 
consider a new ULFR model by replacing Equation (1) with 

F

* *
i F iX Y= +α β                   (15) 

This could be happened when yy xxS S> . It can be shown that 

the estimated slope ( )*ˆ
Fβ and coefficient of determination, say 

2
FR%  for the new model when 1λ =  are 

( ) ( ){ }
1

2 224

2

xx yy xx yy xy
*
F

xy

S S S S S
ˆ

S

− + − +
=β         (16) 

and 
( ) ( )2 2

2
4

2
F

*
xx yy xx yy xyxy

F
xx xx

ˆ S S S S SS
R

S S

− + − +
= =%

β
 

    
( ) ( )2 24

2
yy xx yy xx xy

xx

S S S S S

S

− − + − +
=  

    ( ) ( )2 21 4
2 yy xx yy xx xy

xx

S S S S S
S

⎡ ⎤= − − − − +⎢ ⎥⎣ ⎦
 

    ( ) ( )21 2
2 yy xx yy F yy xx

xx

S S S R S S
S

⎡ ⎤= − − − + −⎣ ⎦  

    
( )2 yy xxyy

F
xx xx

S SS
R

S S

−
= −             (17) 

Let yy xxS kS=  and 1k > , then ( )2 2 1 1F FR k R= − +% .     (18) 

Thus, our proposed 2
FR  is a non-symmetric metric. However, 

the failure of satisfying symmetric property does not create 
much problem to our method since yyS  and xxS  can always be 

determined and conversion between 2
FR  and 2

FR%  can be easily 
done. 

For consistency purpose, we consider the image with 
smaller variance as reference image and the image with larger 
variance as processed (compressed or de-noised) image. 

 

IV. SENSITIVITY OF THE QUALITY AND PERFORMANCE 
METRIC 

It is important to realize that all existing IQMs only indicate 
the quality of a distorted image as compared with the 
reference image. In other words, these IQMs only carry the 
information about the similarity or distance between the two 
images. They do not reflect the amount of distortion in the 
distorted image. For example, if a quality measure shows the 
value of 0.5, it does not mean that 50% of the image is 
corrupted. Furthermore, we learnt that some IQMs provide 
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good indication for certain type of images, but they show 
inconsistency in interpreting for different types of images. 

In this section we introduce a simple approach to investigate 
the sensitivity of the quality and performance metric based on 
the total distorted area. It does not only provides a consistent 
interpretation for different types of image, but it also give a 
physical meaning to our functional image quality and 
performance metric. A simple binary image J with size 

100100×  is created, as shown in Figure 2. Let dn  be the 
number of distorted pixels randomly generated into the image 
J. For each given dn , a set of 50 different distorted images is 
obtained and a mean performance index is calculated. Image 
J1, J2 and J3 in Figure 1 are examples of the distorted image 
for 100, 2000 and 10000dn = , respectively. Figure 3 shows 
the relationship between the performance indices (or quality 
value) and the percentage of distorted areas, η  for the 
proposed functional performance metric and two selected 
performance metrics; the current and well-established method, 
MSSIM and the classical method, RMSE. The fitted equations 
for these relationships are given as follow:  

 
( ) ( )

( )

2MSSIM

1 , 0.9607
1.0194exp 0.02 ,0.9607 100

FR≈

≤⎧
= ⎨ − < ≤⎩

η η

η
η η

  

(19) 
and 

( ) 2RMSE 0.00004 0.0081 0.0064= − + +η η η           (20) 
 

where 100%dn
MN

= ×η , and M N×  is the size of the image.  

 

J J1

J2 J3  
Fig. 2: Generated image and distorted images. J: simple binary 
image, J1: distorted image with nd = 100, J2: distorted image 
with nd = 2000, J3: distorted image with nd = 10000. 
 
 

It could be shown that the fitted equations for mean 
structural similarity index (MSSIM) and the proposed 
functional quality metric 2

FR  are very close to each others and 
they have an inverse exponential function to the percentage of 
distorted area. While, the mean square error (RMSE) is 

modeled by a quadratic equation. Similar estimated values 
could be obtained with different binary image sizes.  

In general, the above result shows that the proposed 
metric is sensitive to the image distortions. With this model, 
we can find the desired index value by setting the percentage 
of distorted area in controlling the quality of image or we can 
estimate the percentage of distorted area from the performance 
index obtained using the reverse of Equation (19) as follow. 

 
2

2
2

100 , 0.1379608

50ln ,0.1379608 1
1.0194

F

F
F

R

R
R

⎧ ≤
⎪

= ⎛ ⎞⎨
− < ≤⎜ ⎟⎪

⎝ ⎠⎩

η            (21) 

 
For example, if we try to keep the quality of an image to 

be less than 10% of the total number of distorted areas (or 
1000=dn  distorted pixels in this case) from the original 

image, then the minimum performance index for 2
FR  value is 

0.8187 calculated from Equation (19). 
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Fig. 3: Relationship between the mean quality value (or 
average performance index) and the percentage of distorted 
area. Note that Rf2= 2

FR . 

 

V. EXPERIMENTS AND RESULTS 
Two experiments are discussed. In the first experiment we 

will investigate and compare different metrics as performance 
indicator for JPEG compression. The proposed metric is 
compared with some selected objective metrics based on their 
popularity. The second experiment studies the performance of 
some noise removal techniques to remove Gaussian noise. The 
proposed metric is used to compare the quality of enhanced 
image obtained from the noise removal techniques with the 
original image. A set of six frequently used standard test 
images from the literature review is being considered in these 
studies. These standard test images are Lena, Baboon, 
Airplane, Bridge, Boat and Peppers (see Figure 4). These test 
images are saved in bitmap format and converted to grey scale 
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image if they are colored.  
 

 
 
 
 
     
 
 
 
 
 
 
 
 
 

Fig. 4: Standard test images. Top (left to right): Lena (size 
256 256× ), Baboon (size 256 256× ), Airplane (size 
512 512× ). Bottom (left to right): Bridge (size 145 145× ), 
Boat (size 512 512× ), Peppers (size 512 512× ). 

 

A. Image Quality Assessment for JPEG Compression 
Figures 5 to 10 show the plots of performance (quality) 

index versus the JPEG compression factor of range 1 to 100 
obtained from the test images for various performance 
metrics, 2

FR , 2
SR , MSSIM and RMSE. It is expected that 

higher compression factor produces greater compressed image 
quality (better performance) with higher similarity value or 
lower distance value. The performance indices are nearly 1 
(and zero for RMSE) when the compression factor is 100. The 
performance indices decreased with respect to a decreasing 
(increasing for RMSE) compression factor.  

It is observed that the performance metrics work 
reasonably well except for the RMSE. As the JPEG 
compression factor increase (or the percentage of discard 
decrease), the performance metrics 2

FR , 2
SR  and MSSIM show 

an increasing index in compressed quality. Like the peak 
signal to noise ratio and mean square error methods, the 
RMSE is not correlated well with human visual system. This 
is reflected from the RMSE plots that the distances between 
decompressed image and original image remain very low as 
the compression factor decreased. 
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Fig. 5: Plot of performance index versus compression factor 
for Lena test image. Note that Rf2= 2

FR  and Rs2= 2
SR . 
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Fig. 6: Plot of performance index versus compression factor 
for Baboon test image. Note that Rf2= 2

FR  and Rs2= 2
SR . 
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Fig. 7: Plot of performance index versus compression factor 
for Airplane test image. Note that Rf2= 2

FR  and Rs2= 2
SR . 

 

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

JPEG Compression Factor

P
e
r
fo

r
m

a
n

c
e
 I
n

d
e
x

Rs2

Rf2

MSSIM

RMSE

Fi
g. 8: Plot of performance index versus compression factor for 
Bridge test image. Note that Rf2= 2

FR  and Rs2= 2
SR . 
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Fig. 9: Plot of performance index versus compression factor 
for Boat test image. Note that Rf2= 2

FR  and Rs2= 2
SR . 
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Fig. 10: Plot of performance index versus compression factor 
for Peppers test image. Note that Rf2= 2

FR  and Rs2= 2
SR . 

 
 

Figures 5 to 10 indicated that 2
FR , 2

SR  and MSSIM are 
good performance indicators for JPEG compression. 
Unfortunately, these plots have no practical application due to 
two problems: (i) JPEG compression factor is usually 
unknown, and (ii) The same JPEG compression factor may be 
resulted in different performance index for different types of 
images. Figure 11 compares the original test images with their 
decompressed images at compression factors 74 and 50, 
respectively. Obviously, for instance, the decompressed Lena 
image has better visual quality as compared to Baboon image 
at a given compression factor. Instead, Lena decompressed 
image at compression factor 50 ( )2 0.7320FR =  has ‘similar’ 
image quality as Baboon decompressed image at compression 
factor 74 ( )2 0.7316FR = . 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11:  Lena, Baboon, Airplane, Bridge, Boat and Peppers 
(from top to bottom) images: original, decompressed image 
with factor 74, and decompressed image with factor 50 (From 
left to right). 

 
To overcome these problems, Equation (21) may be used 

to provide a consistent interpretation for the distortion area. 
We now estimate the percentage of distorted areas produced 
by JPEG compression for Lena test image. The experiment 
shows that the 2

FR  values obtained from the JPEG 
compression factors 90, 80, 50 and 25 are 0.9543, 0.9112, 
0.7320 and 0.2087, respectively. By substituting these 2

FR  
values into Equation (21), we found that the above mentioned 
compression factors produced 3.30%, 5.61%, 16.56% and 
79.30% of distortion areas, respectively. Similarly, the 
percentage of distorted areas produced by JPEG compression 
for Baboon test image at compression factors 90, 80, 50 and 
25 are 9.60%, 15.21%, 37.34% and 100%, respectively. 
Figure 12 to Figure 17 show the plots of the percentage of 
distorted area versus 2

FR  values for all test images. Given a 
2
FR  value, these plots show a consistent indication for the 

amount of distortion generated by JPEG compression, 
regardless of the image tested. For instance, when 2

FR  value is 
about 0.834, JPEG compression generated about 10% 
distorted area (pixels) on all tested images, which the results 
are corresponding to their image size. 
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Fig. 12: Plot of the percentage of distorted area versus 

2
FR  

value for Lena image. Note that Rf2= 2
FR . 
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Fig. 13: Plot of the percentage of distorted area versus 

2
FR  

value for Baboon image. Note that Rf2= 2
FR . 
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Fig. 14: Plot of the percentage of distorted area versus 

2
FR  

value for Airplane image. Note that Rf2= 2
FR . 
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Fig. 15: Plot of the percentage of distorted area versus 

2
FR  

value for Bridge image. Note that Rf2= 2
FR . 
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Fig. 16: Plot of the percentage of distorted area versus 
2
FR  

value for Boat image. Note that Rf2= 2
FR . 
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Fig. 17: Plot of the percentage of distorted area versus 
2
FR  

value for Peppers image. Note that Rf2= 2
FR . 

 

B. Performance Evaluation for Image De-noising Filters 
The second experiment used 2

FR  to evaluate the 
performance of some de-noising filters. Gaussian noise with 
mean zero and increasing variance values from 0 to 0.029 
were added into the original image. De-noising filters are then 
applied to enhance the quality of the distorted image. Ten de-
noising filters are tested in these experiments. Five of them are 
low-pass filter such as Average filter, Circular averaging 
filter, Gaussian low-pass filter, Motion filter and Median 
filter. Others are high-pass filters, i.e. Laplacian of Gaussian 
filter, approximating the 2-D Laplacian operator, Prewitt 
horizontal edge-emphasizing filter, Sobel horizontal edge-
emphasizing filter and Unsharp contrast enhancement filter. It 
is well known that high-pass filters are unable to remove 
Gaussian noise and Salt & Pepper noise. The high-pass filters 
are introduced here to proof that the proposed metric is 
sensitive in differentiating the performance of low-pass and 
high-pass filters. These filters are obtained from MATLAB 
7.1 with a default parameters applied. For each filtered image, 
its similarity value compare with the reference image (original 
image before add noise) is calculated from 2

FR .  
Figure 18 and Figure 19 show the plot of 2

FR  values for 
the ten de-noising filters of Lena and Baboon test images. The 

2
FR  values clearly show that all the high-pass filters produced 

bad-quality enhanced image with low similarity value. The 
experiment shows that the low-pass filters produced much 
better result, in which their enhanced image quality is closer to 
the original image. Note that the performance of Average 
filter is slightly better than other low-pass filters when the 
image was seriously distorted by Gaussian noise and it is 
consistent with all levels of Gaussian noise. The quality of 
enhanced image produced by Circular averaging filter and 
Motion filter are both lower than Average filter. While, the 
performance of Gaussian low-pass filter decreased as the 
variance of Gaussian noise increased, although it produced the 
highest enhanced image quality at lower level of Gaussian 
noise. Generally, the Average filter outperforms other low-
pass filters and it is considered the most ideal filter for 
removing Gaussian noise. The Average filter produced an 
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enhanced image with 2
FR  value of at least 0.9387 or less than 

4.12% distorted area calculated from Equation (21). 
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Fig. 18: Plot of 2

FR  (=Rf2) values against variances of 
Gaussian noise for different de-noising filters from Lena test 
image. 
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Fig. 19: Plot of 2

FR  (=Rf2) values against variances of 
Gaussian noise for different de-noising filters from Baboon 
test image. 
 

A similar experiment to remove Salt & Pepper noise was 
conducted and its results are depicted in Figure 20 and Figure 
21 for Lena and Baboon test images, respectively. Again, we 
notice that the high-pass filters perform badly in removing 
Salt & Pepper noise. Obviously, the low-pass Median filter is 
the best and consistent technique to remove Salt & Pepper 
noise at all levels of noise density. At noise density 0.3, for 
example, the enhanced image obtained from Median filter still 
remain at high quality as compared to the original image with 

2 0.9223FR =  or about 5% distorted area calculated from 
Equation (21). 
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Fig. 20: Plot of 2
FR  (=Rf2) values against density of Salt & 

Pepper noise for different de-noising filters from Lena test 
image. 
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Fig. 21: Plot of 2
FR  (=Rf2) values against density of Salt & 

Pepper noise for different de-noising filters from Baboon test 
image. 

 

VI. CONCLUSIONS 

As a conclusion from this study, the proposed 2
FR  is used as 

the performance indicator for JPEG compression and de-
noising filters. In JPEG compression, we observed that the 2

FR  
perform as good as 2

SR  and MSSIM. However, we believe 
that the proposed metric is more realistic as it considered both 
the reference image and processed image are random 
variables. The MSSIM also performed well in these examples, 
but a predefined parameter setting [5] from the user is needed 
for different applications and images. This is not possible 
when the properties of the images are unknown or the 
performance metric is implemented to an automatic system. 

Besides, this study provides an easy and consistent way 
of interpreting the 2

FR  value in the context where the 
percentage of distorted area is generated by JPEG 
compression. With the given formula, it is now possible to 
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estimate the amount of distortion in an image from its 2
FR  

value, regardless of the image tested.   
Lastly, the proposed 2

FR  is applied to identify the suitable 
filter for removing Gaussian noise and Salt and Pepper noise. 
The results indicate that average filter produced the most 
desired and consistent results than other selected type of filters 
in removing the Gaussian noise. In the case of Salt and Pepper 
noise, Median filter produces the highest quality of filtered 
image on almost all levels of noise density. 
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