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    Abstract— The transmission of Plasmodium falciparum and 
Plasmodium vivax malaria of Thais and Burmese is studied through a 
mathematical model. The population is separated into two groups, 
Thai and Burmese.  Each population is divided into susceptible and 
infectious subclasses. The loss of immunity by individuals in the 
infectious class causes them to move back into the susceptible class. 
Standard dynamical method is used to analyze the behavior of the 
model. Two stable equilibrium states, a disease free state and an 
epidemic state are found to be possible in each population.  A disease 
free equilibrium state in the Thai population occurs when there are 
no infected Burmese entering into the community. When there are 
infected Burmese enters into the Thai community, the epidemic state 
can occur. It is found that the disease free state is stable when the 
threshold number R0 is less than one. The epidemic state is stable 
when (where these threshold numbers are for the 

individual populations) are greater than one. The numerical 
simulations of our model illustrate what the results would be for our 
theoretical model. 
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I. INTRODUCTION 
ALARIA is ranked among the top six of the world’s 
serious diseases in the world by the World Health 
Organization (WHO).There are more than 3 hundred 

million cases of malaria each year; with between 1 and 1.5 
million death annually (mostly in children). Malaria is a 
mosquito-borne disease caused by the protozoan parasites of 
the genus Plasmodium (phylum Apicomplexa) a parasite. In 
humans, malaria is caused by four species, P. falciparum, P. 
vivax, P. malariae and P. ovale.  The two most common 
causes are the first two. P. falciparum causes 90% of the 
malaria in Africa and is the cause of over 2-3 million (mostly 
children) people in the world (mainly Africa) [1,2]. P. vivax is 
the cause of 50% of the malaria outside of Africa. Malaria is a 

major public health problem in Thailand. It has not been 
eradicated for many reasons. First, Thailand has the physical 
features of the land that is suitable for mosquitoes to breed in. 
Parts of the population are also at a higher risk, for example 
the migrant worker and people who work in the forest. 
Finally, malaria is developing resistance to the malaria drugs. 

     Manuscript received October 13, 2008: Revised version received 
December 5, 2008.  

P. Pongsumpun is with the Department of Mathematics and Computer 
Science, Faculty of Science, King Mongkut’s Institute of Technology 
Ladkrabang, Chalongkrung road, Ladkrabang, Bangkok 10520, Thailand. 
(corresponding author phone: 662-737-3000 ext. 6196; fax: 662-326-4344 
ext.284; e-mail: kppuntan@kmitl.ac.th).  

I.M. Tang is with the Department of Physics, Faculty of Science, Mahidol 
University, Rama 6 road, Bangkok 10400, Thailand. 
 
 

           Due to the differences in the economic conditions 
between Thailand and Myanmar, temporary migration of 
Burmese into Thailand occurs every year. The heaviest 
economic migrations occur at the beginning of the rainy 
season (May-June) and a lesser amount at the end of the year 
at harvest time.  More than 60% of the Burmese in some 
groups (in Mae Sot and Bo Basi, (two provinces in Thailand 
along the border)) are infected with mefloquine-resistant 
malaria [3].  These economic migrations from neighboring 
countries into Thailand have caused problems to the malaria 
control program in Thailand [4].  Especially troubling is the 
problem of multi-drug resistance malaria whose presence is 
now seen in the high transmission areas around the market 
centers along the migratory routes.  The first cases of malaria 
resistance were found along Thai-Kampuchean border, 
another border where the economic conditions on the two 
sides of the border are quite different.  It is believed that the 
areas where the parasites having the highest drug resistance 
are along this latter border.  From the medical data on Malaria 
cases in Thailand between 2003 and 2006 [5], most of the 
malaria infections in Thailand was due to P. falciparum and P. 
vivax (See Figure 1).  The nationality of the malaria patients 
during these years are indicated on Figure 2. 
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Fig.1  Situation of Malaria in Thailand classified by 
          type of Malaria. 
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Fig.2  Situation of Malaria in Thailand classified by  
          nationality of patients. 

 
       To better understand the problems facing the public 
health officials in Thailand, a new mathematical model must 
be introduced to understand the situations when two different 
forms of malaria are in co circulation in a population [6].  The 
transmission of malaria is usually described by the Ross-
MacDonald (RM) model [7]. One of the present authors 
(IMT) has introduced a simple mathematical model [8] to 
describe the transmission of P. vivax malaria.  In that model, 
we did not consider the effect of the Malaria transmission 
between Thai and Burmese. 
       In this study, we formulate a model in which different 
mathematical models are used to describe separately the 
transmission of P.   falciparum and of P. vivax. In the present 
state of concern for medical safety, there is no place for 
human experimentation to see what would happen if new 
therapies were adopted.   Mathematical modeling allows one 
to simulate what would occur. Since we are interested in 
applying the model to the situation along the Thai-Myanmar 
border (and to a lesser extent the Thai-Kampuchean border), 
we include rates which depend on whether the infecting 
malaria is P. falciparum (denoted by ‘F’) or P. vivax (denoted 
by ‘v’) or the person is a Thai (denoted by T) or a Burmese 
(denoted by B).  We introduce in Section 2, the modification 
of the model which would make it applicable to the 
transmission of P. falciparum and P. vivax between Thai and 
Burmese. In Section 3, we analyze our model to find the 
conditions for the local stability of each equilibrium point. 
The numerical simulations are shown to confirm the local 
stability of the endemic equilibrium point.  
 

II. MATHEMATICAL MODEL  
     The mathematical modeling of the epidemiology of malaria 
(P. falciparum) was started by Ross [9] in 1911 and improved 

on by MacDonald [10].  In the Ross model, an individual in 
the human population is classified as being in a non-infected 
or infected state.  This gives rise to what is known as a SIS 
(susceptible-infected-susceptible) model.  It has been 
suggested [10] that the human population should instead be 
divided into three states; non-infected, infected but without 
any acute clinical signs, infected with acute clinical sign, to 
better reflect the clinical status of the individual.  Others 
believe that the population should be divided into susceptible, 
infected but not infectious and infectious. 
      In our model, we consider the transmission cycle between 
human in the two populations and in the vector populations. 
Both human populations (Thai and Burmese) and the vector 
populations are separated into susceptible and infectious 
subclasses.  We let  

)t(S'
T  is the number of susceptible Thai human, 

)t(S'
B  is the number of susceptible Burmese human, 

)t(I'
T   is the number of infectious Thai human, 

)t(I'
B  is the number of infectious Burmese  human, 

)t(S'
v  is the number of susceptible vector, 

)t(I'
v  is the number of infectious vector, 

An infectious human can recover and reenter into susceptible 
class. However, an infected mosquito can not recover. In 
Figure 3, we show the flow chart describing what is occurring 
in the human population and vector populations.  It is easy to 
interpret λNT as the number of Thais entering into the 

susceptible class through birth and as 
the numbers of infected Thais who were infected with P. 
falciparum malaria or with P. vivax malaria, respectively, who 
have recovered.  The rate at which susceptible Thais are lost 
by becoming infected with P. falciparum is 

and by becoming infected with P. vivax 

is .  A susceptible Thais will only be 
infected by the P. falciparum (P. vivax) parasite if it is bitten 
by a mosquito carrying the particular parasite.  To take this 

into account, the infection rates, and , should be 
proportional to the fraction of the infected mosquitoes with 
the particular type of parasite.   
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                            a) 

                          
                          b) 

                       
                            c) 

 
Fig.3  Flow chart of the model.    
         3a) For the Thai human population    
         3b) For the Burmese human population      
         3c) For the vector population. 

 
 
 The time rate of change of the number of susceptible 
members is equal to the number entering minus the number 
leaving.  This gives us the following differential equation for 
the time rate of change of the susceptible Thai human; 

(t))Ir(r(t)(t)SI )γ(γ-Sμ-λN(t)S
dt
d '

TvF
'
T

'
v

'
Tvh

'
TFh

'
ThT

'
T +++=       

(1) 

                      

Applying similar considerations to the other population 
classes, we obtain          

(t)I-(t))Ir(r(t)(t)SI )γ(γ(t)I
dt
d '

Th
'
TvF

'
T

'
v

'
h

'
h

'
T TvTF μ+−+=

                          (2)   

(t)α)S(μ-(t))Ir(r(t)(t)SI )γ(γPBB(t)S
dt
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Bh
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B
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v
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h

'
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dt
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Bh
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B

'
v

'
h

'
h

'
BvF

'
B BvBF αμ ++++−= PB

                                                                                            (4)                 
where the others parameters in the above equations are 
defined as 
μh is the death rate of human population,  

α is the rate that Burmese moves out the country, 
P is the percentage of Burmese who are infectious when they 
are entering the community, 
B is the constant recruitment rate of Burmese. 
We assume that P. falciparum and P. vivax infections are non 
lethality, so the death rates will be the same for all human 

classes and we will have  and     
''

TN TT IS += ''
BN BB IS +=

The dynamics of the mosquito populations are given by   
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(t)Iμ(t)S (t))Iγ(t)I (γ(t)I
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'
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T

''
v B −+= Tv

                                              
                                                                                               (6) 
At equilibrium, the total number of female mosquitoes will be 
A/μv. A is the rate at which the mosquitoes are recruited and 

μv is the death rate for the mosquitoes. are the rate at 
which the mosquitoes become infected with the parasites once 
the mosquito has bitten an infected human (Thai and 

Burmese).  We also assume .The working 
equations of the model are obtained by dividing eqns. (1) and 
(2) by NT , eqns. (3) and (4) by NB and eqns. (5) and (6) by 
A/μv.  This would give us six equations expressed in terms of 
the renormalized variables;  

'
v

'
Bγ,γ Tv

'Iv+'SVN v=

T
'
TT /NSS = , , ,  T

'
TT /NII = B

'
BB /NSS = B

'
BB /NII =

v
'
v /NSS =v ,  v

'
v /NII =v

where  

αμ +
=

h

B
BN

,  v

A
μ

=vN
. 

The conditions  
,1IS TT =+  

= 1 1IS TT =+ , 1IS BB =+  
and Sv+Iv = 1, leads to only three of them being independent.  
We pick the three equations to be 

(t)I)()I-(1)I((t)I
dt
d

TTvT hvFhh rr
TvTF

μγγ ++−+=
                            

                                                 (7)     
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                                                                                               (8)                   
and                           

(t)Iμ-(t))I-(t))(1Iγ(t)Iγ((t)I
dt
d

vvvBvTvv
BT
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                                                                                           (9) 
where the new transmission rates are  
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The domain of solutions is  
                        

1}IS1,0IS0  1,IS0  )I,I,(I{Ω vvBBTTVBT ≤+≤≤+≤≤+≤=

                                                                                             
(11) 

III. ANALYSIS OF THE MATHEMATICAL MODEL 

A. Analytical Results 
    To find the equilibrium points, we set the RHS’s of (7) to 
(9.) to zero. Doing this, we get equilibrium state  
where  

)I,I,(I *
v

*
B

*
T

                                      

)rr(I)(

I)(
I

hvF
*
v

TvhTFh

*
v

TvhTFh*
T

μ+++γ+γ

γ+γ
=  ,                          (12) 

                                      

)rr(I)(

I)()(P
I

vFh
*
v

BvhBFh

*
v

BvhBFhh
*
B

++α+μ+γ+γ

γ+γ+α+μ
=                     (13) 

and  being the solutions of *
vI

                                            

                                 (14) 0a)t(Ia)t(Ia)t(I 3
*
v2

2*
v1

3*
v =+++

where 

)))]rr)((-        

))()(((        

 ))rr()rr(        

)P(P)([((        

))()((
1a

vFhvBv

TvBvTvhTFhBvhBFh

vFhTvvFv

BvvTvhBvvhTvhTFh

vTvBvTvhTFhBvhBFh
1

++μμ+γ

γ+γγ+γγ+γ−

++μγ++μ+

γ+μ+γα+μγ+μμγ+γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

μ+γ+γγ+γγ+γ
=

       (15) 

)))rr)(P()P(-     

 )P)(((rr))r(2 -     

)P((       

)(( rPrr2-      

)(r)(r      

  P  )( P -      

)()(([       

))()((
1a

vFhBvvBvv

BvTvTvhTFh
2
vvvFhv

hBvhBFhBv

TvTvhTFh
2
FvFhBvFvh

TvhTFhFTvBvhBFhFBv

2
hBvTvhTFhhBvv

2
h

TvhTFhhTvhBvBvhBFh

vTvBvTvhTFhBvhBFh
2

++μγ+μ−γ+μ

γ+γγ+γα+μ−+μμ

μ−γ+γγ+

γγ+γ+μ−μγ−μμ

γ+γγ+γ+γγ+

μγ−γ+γμγ+μμ

γ+γμγ+μγγ+γ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

μ+γ+γγ+γγ+γ
=

          

(16) 
and                                      
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The solution to eqn. (14) will be physically meaningless if the 
solutions are negative since the normalized infectious 
mosquito population must be non-negative real number. So 
we need to find all possible conditions for  to be real and 
positive.  P is the percentage of Burmese who are infectious 
when they are entering the community, so this parameter is in 
the range [0, 1]. We consider two cases: P = 0 and 0 < P ≤ 1. 

*
vI

  For P = 0, a3 is zero and one of the solutions of eqn. (14) is 
 = 0.  The other solutions are the solutions of a quadratic 

equation.  The numerical values of these two solutions will 
depend on the numerical values of the parameters in the 
model.  These are often unknown.  Using standard dynamical 
analysis (based on the Hopf Bifurcation Theory [11,12,13]), 
we can establish the conditions for the stability of the disease 
free state.  We find the condition is  

*
vI

            R0 < 1        where         R0  = RT  + R B                    (18) 
with 

           ( )vFhv

Tv
TvhTFh

T rr

)(
R

++μμ

γγ+γ
=     and       

             ( )vFhv

Bv
BvhBFh

B rr

)(
R

++μ+αμ

γγ+γ
=  .                       (19) 

Determining whether the numerical values of the parameters 
satisfy eqn. (18), is not of direct concern to us in this paper.  
The important thing to remember is that the disease free state 
is one of the equilibrium state. This means that in the absence 
of any infectious Burmese entering into Thailand, malaria will 
not become epidemic in Thailand. 
         For 0 < P ≤ 1, the equilibrium state will not be the 
disease free state since a3 ≠ 0 unless for some unknown 
reasons, the values of the parameters are such that a3 = 0.  For 
this case, the equilibrium state will be the epidemic 
state . It remains to be determined if this 
stable is stable.  Performing an analysis similar to the one used 

)I,I,(IE *
v

*
B

*
T1 =
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to establish the conditions disease free state to be stable, we 
find that the epidemic state will be stable if 
                   
                      and .                1 R,1   R

BT EE >> 1   R
vE >

                                                                                        (20)  
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and 
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)I)(Iγ(γ)Ir(αI
R

BvhBFh

*
v

*
B

BvhBFh
*
Bv

*
B

vE +

+++++
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The numerical values of the equilibrium epidemic will again 
depend on the numerical values of the parameters.  The 
stability analysis of the eigenvalues of dynamical systems will 
place limits on the values of the parameters which would lead 
the epidemic state to be stable.  Again, what these values are 
is of no direct concern in this paper.  What is known is that the 
equilibrium state will not be the disease free state but will 
instead be an epidemic state. Without infectious Burmese 
entering into the community, there will be no infected 
population.  
 

B. Numerical Results 
    In this section, we present the results of our numerical 
simulations for the case of       P = 0 in Figure 4(a).  The 
values of the parameters are taken from real life observations.  
We have set =hμ 0.0000391 per day which corresponds to 
the real life expectancy of 70 years for human and 

30/1=vμ which corresponds to the life expectancy of 30 
days for the Anopheline mosquitoes.  The values 

per day, per day correspond to the time 
it takes people who are infected with P.  falciparum and P. 
vivax to loss their illness, i.e., 30 days for P. falciparum and 
25 days for P. vivax. 1/α is the average time, a Burmese stays 
in Thailand and we take this to be 

30/1=Fr 25/1=vr

000183.0=α per day.  

 are arbitrarily chosen.  

To have the disease free state as the stable equilibrium state, 
we set P = 0.  To have the stable equilibrium state to be the 
epidemic state, we set P = 0.6 [3]. 

,,
TvTF hh γγ ,

Bv Tv ,γ,
BF hh γγ

Bvγ

   

 
a) 

 

                       

 
(b) 

 
Fig. 4 4a) Time series of and .  BT I,I vI
                 The parameters for the transmission rate are as  
                 follows:     ,005.0,04.0

TvhTFh =γ=γ

                  ,004.0,008.0
BvhBFh =γ=γ

                 .  035.0γ,045.0γ
BvTv ==

                The other parameters are on the text and = 0.9. 0R
         4b) The solution trajectories of our model. 
                 The parameters are similar to fig.4a).  
      As we see in Figure 4(a), the three infectious populations 
( ) go to zero as t → ∞, meaning that 
the equilibrium state is the disease free state.  The numerical 

TI (t), B vI (t) and I (t)
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values of the parameters lead to a threshold number R0 = 0.9.  
The trajectories of the solutions in 

and the 2D 

are shown in Figure 4b.  The arrows in these 
planes show the directions of the trajectories as t → ∞, which 
are towards the disease free state.  The numerical simulation is 
therefore in agreement with the behavior predicted when R0 < 
1.   

B T v Tthe 2D I I  plane, the 2D I I  plane− −

v BI I  plane−

 

 
a) 

 
b) 

 
Fig. 5  5a) Time series of and .  BT I,I vI
                 The parameters for the transmission rate are as  
                  follows:  ,075.0,08.0

TvhTFh =γ=γ

                   ,06.0,07.0
Bvh =γ=

BFhγ

γ
Tv

R E

                  . The other parameters      08.0γ,09.0
Bv ==

                    are on the text and  , 1.64376R
TE =

                     and  .   2.15522
B

= 5.89R
vE =

             5b) The solution trajectories of our model.  
                    The parameters are similar to fig.5 a). 

 
 

 We now change the values of the parameters and set  
P = 0.6.  The values are given in the figure caption of Figure 
5.  These values give E TR = 1.644, E BR  2.155=  

and vR  5.89= .  These are the conditions for the epidemic 

state to be the stable equilibrium state.  This 
is indeed seen in Figure 5a.  The trajectories of the solutions 
in 

)*
v

 pl

I,I,(I *
B

*
T=

B T 2D I I

E1

the ve, the 2D I IT  planean− − and the 

2D v BI  planeI − are shown in Figure 5b.  As t → ∞, the 
trajectories tend to the limiting values indicated on Figure 5a. 

 

 

 
 

Fig. 6. Time series of and  for the different values  BT I,I vI
             of α. The values of parameters are  =μh 0.0000391,  

             30/1v =μ , 30/1rF = , ,           25/1rv = ,008.0
TFh =γ

             =  ,075.0
Tvh =γ ,07.0

BFh =γ
Bvhγ ,06.0

              ,08.0γ,09.0γ
BT vv == 30/1=vμ .   

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 3, 2009 24



 
 

 

 
Fig. 7. The solution trajectories of our model for the different  

             values of α. The parameters are similar to fig.6. 
  

 On Figure 6 and figure 7, we plot the time evolutions of the 
three infected populations (  ) and 

the trajectories of the solutions in the 2D 
TI (t), B v I (t) and I (t)

TB II −  plane, the 

2D  Tv II − plane and the 2D , respectively v BI  plane−I
for different values of α, the reciprocal of the time that the 
Burmese stay in Thailand before they return to Myanmar. As   
t → ∞, the trajectories tend to the limiting values indicated on 
Figure 6. The time evolutions of the three populations shown 
in Figure 5a are those when the Burmese stay a long time.  
The present behaviors are for the case when the Burmese stay 
1/6 day, 60 days and 6000 days.  Figure 6 shows that a higher 
number of Thais will be infectious if the Burmese stay in 
Thailand for shorter periods.  If the Burmese stay for longer 
periods, the number of Thais infectious at a given time will be 
lower.  The reason for this is that initially, the Burmese have a 
higher incident rate of active malaria infection.  They would 
be able to pass to the illness to the Thai at the beginning.  If 
they stay longer, they would develop the same incidence rate 
as the Thais and less likely to pass on the malaria  

IV.  CONCLUSION 
     In this study, we have analyzed a mathematical model of 
Malaria which describes the situation along the Thai-
Myanmar border.  Along this border, there are two types of 
malaria in circulation, P .Falciparum and P. Vivax.  There is a 
seasonal migration of Burmese into Thailand.  We find that 
there are two equilibrium states, a disease free state and an 
epidemic state.  We establish the threshold conditions needed 
for each of the equilibrium states to exist. The numerical 
results confirm our analytical results (see figure 4 and 5). 
When R0 is less than one, the normalized individual 
populations tend to the disease free state. The normalized 
individual population tend to the epidemic state when 

 and are greater than one.  
BT EE R,R

vER
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