
 

 

  
      Abstract— Malaria is an infectious disease caused by the 
bite of female Anopheles mosquitoes. There are four species, 
namely, Plasmodium vivax, Plasmodium falciparum, 
Plasmodium ovale and Plasmodium malariae causing human 
malaria. The difference between P.vivax malaria and P. 
falciparum malaria is that a person suffering from P. vivax 
infection can suffer relapses of the disease. The effect of a 
time delay on the transmission of this disease is studied. The 
time delay is the period in which the P.vivax parasite develops 
inside the mosquito (vector) before the vector becomes 
infectious (i.e., pass on the infection). The model is analyzed 
by using standard dynamic modeling method. Two stable 
equilibrium states are found to be possible.  It is found that the 
disease free equilibrium state is stable when a newly defined 
basic reproduction number L is less than one.  If L is greater 
than one, the endemic equilibrium state is stable. The 
conditions for the endemic equilibrium state to be a stable 
spiral node are found. For realistic values of the parameters in 
the model, it is found that solutions in phase space are 
trajectories spiraling into the endemic equilibrium state. The 
bifurcation diagrams of our model are discussed. It is shown 
that the limit cycle and chaotic behaviors can occur with only 
unrealistic situations.   
 

Keywords—Limit cycle, local stability, Plasmodium Vivax, time 
delay.  

I. INTRODUCTION 
  HE top six of the world’s serious diseases in the world is 
Malaria. In each year, there are more than three hundred 
million cases due to this disease with between 1 and 1.5 

million death annually (mostly in children). The evolutional 
biology [1] of the parasite Plasmodium vivax determines to a 
great extent the mathematical model needed to describe the 
transmission cycle of the human disease caused by this 
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parasite. After being bitten by an infected mosquito, 
sporizoites (one of the stages of the malaria parasite) are 
introduced into the blood stream of the human. These then 
move to the liver of the human.  Some of them transform 
themselves into merozoites, which then invade the blood cells 
and cause the illness.  The remaining sporizoites are 
transformed into hypnozoites which then lay dormant in the 
liver.  The relapses occur when some of the hypnozoites 
transform themselves into schizents and then into merozoites.   

These new merozoites then reinvade the blood and cause 
the illness again.  These relapses can occur up to three years 
after the initial infection.  Only a small number of the P. vivax 
merozoites remain in the blood between the relapse episodes. 
The hypnozoite stage does not occur in the three other types 
of malaria, P.falciparum, P. malariae and P. ovale. 
   The absence of the hypnozoite stage in the malaria caused 
by the P. falciparum parasite makes the transmission models 
used to describe P. falciparum malaria invalid for describing 
the transmission of the malaria caused by the P. vivax parasite.  
The reasons for P. falciparum malaria to be studied more than 
P. vivax malaria are (1) most of the deaths due to malaria (2-3 
million a year) occur in Africa [2] (2) 90% of the malaria 
cases in Africa is due to P. falciparum malaria and (3) P. 
falciparum malaria is a life threatening disease, whereas P 
.vivax malaria is not. It was commonly assumed that 
information about vivax could be extrapolated from the 
falciparum research.  This assumption was challenged at a 
recent conference convened by the Multilateral Initiative on 
Malaria [3].  The transmission of malaria is usually described 
by the Ross-MacDonald (RM) model [4].  However, this 
model is only suitable for the transmission of the P. 
falciparum malaria since it does not contain the possibility of 
relapses of the illness.  One of the present authors (IMT) has 
introduced a simple mathematical model [5] to describe the 
transmission of P. vivax malaria. The authors (PP & IMT) 
have presented the transmission model of P.vivax malaria with 
the effect of relapse but we did not consider the transmission 
of this disease when limit cycle and chaotic behaviors occur 
[6]. In the model, we included a dormant class in which there 
are no merozoites in the blood, only dormant hypnozoites in 
the liver.  A person can be re-infected when the hypnozoites 
are re-activated.  

Because there is no place for human experimentation to see 
what would happen if new therapies are adopted,   
mathematical model allows one to simulate what would occur. 
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We introduce in Section 2, the modification of the model 
which would make it applicable to the transmission of P. 
vivax malaria   In Section 3, we analyze our model to find the 
conditions for the local stability of each equilibrium point. 
The numerical simulations confirm the local stability of the 
endemic equilibrium point. Conditions for Hopf bifurcation 
are found. We found that limit cycle behavior and chaotic 
behavior can occur for the unrealistic parameter values.  
 

II. TRANSMISSION MODEL 
In 1911, Ross started the mathematical modeling of the 

epidemiology of malaria (P. falciparum) [7]. In the Ross 
model, an individual in the human population is separated to a 
non-infected and infected state.  This gives rise to what is 
known as a SIS (susceptible-infected-susceptible) model. It 
has been suggested [8] that the human population should be 
divided into three states; non-infected, infected but without 
any acute clinical signs, infected with acute clinical sign, to 
better reflect the clinical status of the individual.  Others 
believe that the population should be further divided into 
susceptible, infected but not infectious and infected and 
infectious.  

The transmission of P. vivax is constructed by dividing the 
host (human) population into susceptible  ),S( h infected )I( h , 

dormant  )D( h and recovered  )R( h classes. The last category, 
the recovered are susceptible to further infections and so they 
reenter into the hS class. λNT humans are entering into the 

susceptible class through birth and h1Ι)r-(1 θ  , h3 Dr  and 

(t)hr R6  through the recovery of members of the infected and 
dormant categories (with λ being the birth rate; NT, the total 
human population; r1, the recovery rate of a person in the 
infected category; r3, the recovery rate of a member of the 
dormant population and θ being the percentage of infected 
people in whom some hypnozoites remain dormant in the 
liver).   (1-θ) is the percentage of infected humans who 
recover and become susceptible again.  The time rate of 
change of the number of susceptible members is equal to the 
number entering minus the number leaving.  This gives us the 
following differential equation for the time rate of change of 
the susceptible population; 
 

(t),Rr(t)S-(t)S)t(I-                   

(t)Ir)-(1(t)DrN(t)S
dt
d

h4hhhv
'
h

h1h3Th

+μγ

θ++λ=
 

  
(1.1) 
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(t)I)(r-(t)S)t(I(t)I
dt
d

h5h2

hh1hv
'
hh

−+

μ+γ=
                                                         

 (1.2)          

(t)D)μr(r(t)Iαr(t)D
dt
d

hh32h1h ++−=                                                     

 (1.3)                     
and          

(t)R)μ(r(t)Ir(t)R
dt
d

hh2h5h +−=                                (1.4) 

where the parameters in the above equations are given by 
λ    = the birth rate of human population,  
μh  = the death rate of human population,  
NT  = the total number of human population,  
α   = the percentage of infected human in whom  
 some hypnozoites remain dormant in the liver,  
r1   = the rate at which a person leaves the infected 

class by recovering or by entering into the dormant 
class, 

r2   = the rate at which the dormant human relapses 
back to the infected human, 

r3     = the recovery rate of the dormant human, 
r4   = the rate at which the recovered human relapses 

back to the susceptible human, and 
r5   = the rate at which the infected human recovers. 

Because P. vivax infection is non lethal, the death rates will be  
the same for all human classes then we have  

TNhRhDhhS =+++ I  

The term (t)S(t)Iγ hv
'
h  is contained in equation (1a). This 

term represents the lost of the susceptible person due to a bite 
of an infected mosquito.  γ’h is the rate at which the P. vivax 
parasite is transmitted from the mosquito to the human and is 
given by [9]                                                              

  
mTN

hβchγ' +
=                (2) 

where c is the specie-dependent biting rate of the mosquitoes; 
m is the population of other animals that the mosquitoes can 
feed on and βh is the probability the parasite passed on by the 
mosquito will continue to thrive in the human.  βh depends 
partly on the immune response of the host to the infection.  

vI  is the number of infected mosquitoes.  The dynamics 
equations of the mosquitoes are given by   

(t)Sμ(t)I(t)SγV(t)S
dt
d

vvhv
'
vv −−=                             (3.1) 

(t)Iμτ)e(tIτ)(tSγ(t)I
dt
d

vvv-
hv

'
vv −−−= τμ                  (3.2) 

In this study, we are interested in the time rate of change of 
the infectious vector at time t and  τ  is the number of days for 
the infected vector to become infectious. We consider the 
number of susceptible vector who bit an infected human at 
time t - τ  not at time t. Fraction of the infected mosquito 
would have died between the time t and t - τ . 

 The total number of female mosquitoes at the equilibrium 
state will be V/μv. V is the rate at which the mosquitoes are 
recruited and μv is the death rate for the mosquitoes.  It should 
be observed that a mosquito can not be infected through a bite 
of a human belonging to the dormant class.  γ’v is the rate at 
which the mosquitoes become infected with the Plasmodium 
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Vivax parasite once the mosquito has bitten an infected 
human. γ’v is defined by [9]  

mTN
β

cγ' v
v +

=  

where m is the number of other animals that the mosquitoes 
can bite and βv is the probability the parasite passed to the 
mosquito by biting human. We also assume vIvSVN += . 
The working equations of the model are obtained by dividing 
(1.1), (1.2), (1.3) and (1.4) by NT and (3.1) and (3.2) by V/μv.  
This would give us six equations expressed in terms of the  
renormalized variables; 

Thh /NSS = , Thh /NII = , Thh /NRR = , )/(V/SS vvv μ=  

and )/(V/II vvv μ= .   
The conditions Sh + Ih+ Dh + Rh = 1 and Sv + Iv = 1, leads to 

only four of these equations being needed.  We pick the four 
equations to be 

(t))D-(t)I-(t)S-(1r                   
(t)Sμ-(t)(t)SIγ-                   

(t)Iα)r-(1(t)Drμ(t)S
dt
d

hhh4

hhhvh

h1h3hh
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++=

                                                               

                                                                                         (4.1)  

(t)Ir(t)Dr(t))Iμ(r-(t)(t)SIγ(t)I
dt
d

h5h2hh1hvhh −++=                                                                                               

                                                                                     (4.2)                   

  (t)))Dμr(r(t)Iαr(t)D
dt
d

hh32h1h ++−=      

                                                                                         (4.3) 
and                                             

   (t)Iμτ)e-I(t τ))-(tI-(1γ(t)I
dt
d

vv
τvμ-vvv −=          (4.4) 

where the new transmission rates are γh = γ’h(V/μv) and γv 

=γ’vNT.   The domain of solutions is  

           
1}IS0  1,RDIS0         

 Iv),S,R,D,I,(S{Ω

vvhhhh

vhhhh

≤+≤≤+++≤

=
 

We have substituted τ)-I(t by I(t) since the density of 
infectious human is not anticipated to vary much over the 
period τ  which is much less than the life expectancy of 
human. 

III. ANALYSIS OF THE MATHEMATICAL MODEL 

A. Analytical Results  
     The equilibrium states are found by setting the RHS's of 
(4.1) to (4.4) to zero. We obtain two equilibrium states: the 
disease free equilibrium state EO = (1, 0, 0, 0) and the endemic 
equilibrium state   E1 = )I,D,I,(S *

v
*
h

*
h

*
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                                                                                               (6) 
  Endemic equilibrium state exists for 0

τvμ Le−  greater than 
1 or τ  must be in the interval v)/μ0(lnLτ0 << .  Let L = 

0
τvμ Le− then L is the basic reproduction number. It denotes 

the number of secondary infections resulting from a primary 
infection.  The local stability of each equilibrium state is 
determined by the sign of all eigenvalues.  If all eigenvalues 
have negative real parts, then that equilibrium state is locally 
stable. Eigenvalues for each equilibrium state are obtained by 
solving the characteristic equation         

                        0λI)det(J =−                                      (7)    
where J is the Jacobian matrix calculated at the equilibrium 
state. 

The correspondent eigenvalues for each equilibrium state 
are found by solving the characteristic equation; which is in 
the form 

             0
e

),(F),(E
v

=
τλ

+τλ
τμ

                         (8) 

where 
   )()()()(),( 01

2
2

3
3

4 τλτλτλτλτλ xxxxE ++++=              (9)                      

    )(y)λ(y)λ(y)λ(y),(F 01
2

2
3

3 τ−τ+τ+τ=τλ      (10) 
and  

01230123 y,y,y,y,x,x,x,x  are functions of the time delay 
(τ ). 

For 0=τ , the correspondent eigenvalues for each 
equilibrium state are found by solving the characteristic 
equation; which is in the form   

43
3

2
210 )0()0()0()0( λλλλ ++++ xxxx . 

The coefficients )0(x),0(x),0(x),0(x 0123  are constants in 
this case. We let 

)0(),0(),0(),0( 00112233 xzxzxzxz ====  
By Routh-Hurwitz criteria [10], each equilibrium point is 

locally stable when the following conditions are satisfied; 
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             I)  03 >z ,                                     (11) 
            II) 01 >z ,                                                    (12) 
           III) 0z0 > ,                                           (13) 

           IV) 0
2
3

2
1123 zzzzzz +>                            (14) 

    The above conditions are checked by using 
MATHEMATICA (Wolfram Research, Champaign, IL), then 
we found that for 1L0 < , 0E will be locally stable and for 

1L0 > , 1E will be  locally stable. 

B. Bifurcation Conditions for the Endemic State 
    Ruan, Wei [11], Klan and Greenhalgh [12] obtained the 
characteristic equations for their models: 

                          λ3 + pλ2 + qλ + r = se-λτ  ,                         (15) 

while the characteristic equation studied by Tam [12] has the 
form 

                   λ3 + pλ2 + (q + re-λτ)λ + s = ue-λτ                      (16) 

The constants values p, q, r, s and u  in (15) and (16) are 
defined in the respective references.  The important thing to 
note is that these constant do not depend on τ. 

To determine the conditions for Hopf bifurcation, we apply 
the techniques used in [11],[12] and [14].Substituting  λ = r + 
si (where r and s are real numbers and may be functions of τ) 
into (8) and separating the real and imaginary parts, we obtain 
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      We now let cττ = . At this point, 0)( =cr τ .We denote 
)( cs τ  as s~ , (17) and (18) become  
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Squaring (19) and (20) and adding them together, we obtain 
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  We note that )(),(),(),( 0123 rrrr hhhh ττττ  are real. Critical 
point value cτ  is always determined from the requirement 
that 0)( =rc τ . In the technique used here, the critical point is 
determined from the condition that at least one root of (21) be 
real and positive, otherwise 0δ=d  ( 0δ  is the root of the 
equation) would be imaginary. The existence of an imaginary 
part of the eigenvalue depends on whether equation (21) has a 
positive real root. 
     We use MATHEMATICA (Wolfram Research, 
Champaign, IL) to check whether equation (21) has a positive 
real root. 

C. Numerical Results 

     C.I. Realistic Parameter Values 
The numerical simulations of the endemic equilibrium state 

are displayed in each case, in this section. The parameters are 
determined by real life observations. =hμ 0.0000421-1 day 
corresponds to the real life expectancy of  65 years for human. 

14/11 =r -1 day corresponds to the 14 days of a person leaves 
the infected class by recovering or by entering into the 
dormant class. )3*365/(12 =r -1day corresponds to the 3 
years of the relapse of the human. 25/13 =r -1day 
corresponds to the 25 days of the recovery of the dormant 
human, )10*365/(14 =r -1day satisfy 10 years of the 
recovered human relapses back to the susceptible human. 

3/15 =r -1day satisfy 3 days of the recovery of the infected 
human. =vμ 0.04-1 day corresponds to the mean life 

expectancy of 25 days for vector. vh ,, γγθ  are arbitrarily 

constants. We choose vh ,, γγθ  equal 0.55, 0.22, 0.16, 
respectively.  
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Case 1; 0=τ  
 
 

 
 

1a) 

 
 

 
1b) 

Fig 1.  1a) Time series of hhh D,I,S and vI  when there is  
                  no time delay and 0L  = 3.5. 
          1b) Stable spiral trajectories and the parameters are  

      similar to fig.1a).  
 
 

The period of oscillation is approximated 3 years. We 
observe that the trajectories in the hh SI − , hh SD − , 

hv SI − , hh ID −  and hv II − phase planes spiral into the 
endemic equilibrium state. There is not clearly evident for the 
trajectory hv DI − phase plane, but this phase plane also 
spirals in.  
 
 

 

 

 
Fig.2. Bifurcation diagrams of equations (4a)-(4d), 
demonstrate the equilibrium solutions of infected, dormant 
human and infected vector populations (for 0=τ ), 
respectively. — represents the stable solutions and  ---  
represents the unstable solutions. For L < 1, 0E  will be stable. 

For L > 1,  1E   will be stable. 
 
case 2; 0≠τ  

In this case, τ must be in the interval v)/μ0(lnLτ0 << . 
According to our parameters, τ must belong to this interval:  
(0, 31.5). We choose τ = 15. 
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3a) 

 

 
3b) 

 
Fig.3.  3a) Time series of hh D,I and vI  when τ = 15.                      

3b) Stable spiral trajectories and the parameters are 
similar to fig.3a).  

 
The period of oscillation is 5.5 years. As we see, the 

trajectories in the two phase planes spiral into the endemic 
equilibrium state. We observe that the period of oscillations in 
this case is higher than when there is no time delay. 

    The time delay ( τ ) must be in the range v)/μ0(lnLτ0 <≤ . If  
τ  is not in this interval then the endemic equilibrium point 
will be negative. This is meaningless.  

   C.II Unrealistic Parameter Values 
To find the parameters such that a Hopf bifurcation is  

possible, we have chosen a set of parameter values: 
=hμ 0.0000391-1 day, 14/11 =r -1 day, )5*365/(12 =r -1day, 

30/13 =r -1day, )15*365/(14 =r -1day , 3/15 =r -1day, 
=vμ 0.04-1 day, 75.0=α , 20=τ , 24,24 vh =γ=γ . The 

numerical solutions are shown in fig.5. 
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Fig.4.  Behaviors of our model in two and three dimensions 
when limit cycle occurs. 
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       Fig. 5 shows the behaviors of our model when we 
simulate the another set of parameters: =hμ 0.0000421-1 day, 

14/11 =r -1 day, )5*365/(12 =r -1day, 30/13 =r -1day, 
)15*365/(14 =r -1day , 7/15 =r -1day, =vμ 0.04-1 day, 

75.0=θ , 20=τ , 27,27 vh =γ=γ .  
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Fig.5. Behavior of our model in two and three dimensions  
           when chaotic behavior occurs. 

 
 The parameters values in fig.4 and fig.5 give L = 16,019 

and 20,274, respectively. This means than one primary case 
need to produce 16,019 and 20,274 secondary cases, 

respectively.  These numbers are too much for a primary case 
can produce. This is impossible in the real life. 

IV. CONCLUSION 
     In this study, the mathematical model of P.Vivax is 
analyzed. The time delay is included to the model. We 
establish the condition for local stability of endemic 
equilibrium point. We show the numerical simulations to 
confirm these results. The conditions for Hopf bifurcation are 
shown. The numerical simulations show that limit cycle and 
chaotic behaviors can occur only for unrealistic parameter 
values. The possibility for the occurrence of Hopf bifurcation 
can happen only in unreal situations. When we did not include 
time delay into our model, the basic reproductive number for 
the endemic equilibrium state will prevail if and only if the 
basic reproductive number exceeds one (see fig.1). The 
disease free equilibrium state exists and is local stability if the 
basic reproductive number is less than one and become 
unstable when the basic reproductive number is more than one 
(see fig.2). The numerical simulations are used to confirm 
results in the previous section. The behavior of solutions can 
be described in terms of the basic reproductive number; if this 
number is less than or equal to one, so an infective replace 
itself with less than one new infective, the disease die out. 
Moreover, if the basic reproductive number is greater than 
one, the normalized infectious human, dormant human 
populations increase. These behaviors occur because there are 
enough susceptible human to be infected from infectious 
vector.  
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