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Abstract—The influence of noise kurtosis on underdamped
motion of a harmonic oscillator with fluctuating frequency
subjected to an external periodic force and an additive thermal
noise is considered. The colored fluctuations of the oscillator
frequency are modeled as a trichotomous noise. It is established
that the spectral amplification and variance of the output signal
exhibits a nonmonotonic dependence on the noise kurtosis,
thus demonstrating the phenomenon of noise kurtosis controlled
stochastic resonance. Some unexpected effects such as hypersen-
sitive response of spectral amplification to small variations of
noise amplitude, encountered in the case of a large kurtosis of
colored noise are also discussed.

Index Terms—Hypersensitive response, noise kurtosis, thermal
noise, trichotomous noise, stochastic resonance, stochastic oscil-
lator.

I. I NTRODUCTION

One of the key issues in ecology is how environmental
fluctuations and species interactions may determine the os-
cillations in population sizes displayed by many organisms in
nature as well as in laboratory cultures [1]- [6]. Ecologists
have mainly been interested in the dynamical consequences
of population interaction, often ignoring environmental vari-
ability altogether. However, the essential role of environmen-
tal fluctuations has recently been recognized in theoretical
ecology. Noise-induced effects on population dynamics have
been subject to intense theoretical investigations [7]- [11].
Moreover, ecological investigations suggest that population
dynamics is sensitive to noise correlation time (noise color)
[11]- [16]. In spite of the obvious significance of this circum-
stance, the role of nonequilibrium fluctuations (colored noise)
of environmental parameters has not been much investigated
in the context of ecosystems [15]- [17].

Recently, noise-induced anomalous transport phenomena
of Brownian particles in nonlinear periodic structures have
been the topic of a number of physical investigations. Among
them, we can mention the ratchet effect [18], hypersensitive
response [19], noise-enhanced stability [20], and absolute
negative mobility [21], to name but a few. Active analytical
and numerical investigations of various models in this field
have been stimulated by their possible applications in chemical
physics, molecular biology, nanotechnology, and for separation
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techniques of nanoobjects [18], [22]–[24]. For example, the
feasibility of particle transport by man-made devices has been
experimentally demonstrated for several ratchet types [25].
One of the objects of special attention in this context is the
noise-driven harmonic oscillator. The harmonic oscillator is
the simplest toy model for different phenomena in nature and
as such it is a typical theoretician’s paradigm for various
fundamental conceptions [26].

The problem of noise-driven dynamics of a Brownian
harmonic oscillator was earlier formulated and solved by
Chandrasekhar [27], using the Langevin and Fokker-Planck
equations. Since then the Chandrasekhar model and its many
variants have been reappearing in literature. For example, the
study of a harmonic oscillator with random frequency is a
subject that has been extensively investigated in different fields
including physics [28], biology [29], chemistry [30], etc. In
most of the previous analysis the influence of white noise
is considered. However, more realistic models of physical
systems, such as, e.g., the dynamics of a dye laser and the
transport of proteins in cells in the presence of thermal noise
and colored noise of biological origin, require considering
a system simultaneously driven by white noise and colored
noise. It has been shown that the influence of colored noise
on the oscillator frequency may lead to different resonant
phenomena.

◦ First, it may cause energetic instability, which manifests it-
self in an unlimited increase of the second-order moments of
the output with time, while the mean value of the oscillator
displacement remains finite [28], [31]. This phenomenon is a
stochastic counterpart of classical parametric resonance [28],
[32].

◦ Second, if the oscillator is subjected to an external periodic
force and the fluctuations of the oscillator frequency are
colored, the behavior of the amplitude of the first moment
shows a nonmonotonic dependence on noise parameters, i.e.,
stochastic resonance [33], [34].

To avoid misunderstandings, let us mention that we use the
term stochastic resonance (SR) in the wide sense, meaning the
nonmonotonic behavior of the output signal or some function
of it (moments, autocorrelation functions, signal-to-noise ratio)
in response to noise parameters [33].

It is generally acknowledged that kurtosis is an important
characteristic of environmental variability, or noise. Theoreti-
cal investigations suggest that population dynamics is sensitive
to noise kurtosis [15], [35]. Surprisingly, in spite of the obvious
significance of this circumstance, the existence of SR in the
case of a stochastic harmonic oscillator has never been linked
to the potential influences of changes in noise kurtosis.
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Thus motivated, we consider a model similar to the one
presented in [33], except for some details of the noises, i.e.,
a harmonic oscillator with fluctuating frequency subjected to
an external sinusoidal force and an additive thermal noise.
The fluctuations of the frequency are modeled as a three-
level Markovian noise (trichotomous noise) [35]. Note that
in the model presented in [33] the thermal noise is absent
and the colored fluctuations of the frequency are assumed
to be a dichotomous noise. Although both dichotomous and
trichotomous noises may be useful in modeling natural colored
fluctuations, the latter is more flexible, including all cases
of dichotomous noise. Furthermore, it is remarkable that for
trichotomous noises the kurtosisκ, in contrast to the Gaussian
colored noise,κ = 0, and symmetric dichotomous noise,
κ = −2, can be anything from−2 to ∞. This extra degree of
freedom can prove useful in modeling actual fluctuations.

The main contribution of this paper is as follows. We
provide exact formulas for the analytic treatment of the de-
pendence of SR characteristics (variance of the output signal,
and spectral amplification) on various system parameters: viz.
temperature, correlation time, kurtosis, noise amplitude, and
frequency of the input signal. On the basis of exact expressions
for the SR characteristics we find a number of cooperation
effects arising as a consequence of interplay between multi-
plicative trichotomous noise, thermal noise and a deterministic
force, e.g.:
◦ a resonant-like behavior versus the noise kurtosis of the

output variance and spectral amplification (SPA);
◦ for large values of the noise kurtosis the SR characteristics

are very sensitive to small variation of noise amplitude – a
phenomenon called hypersensitive response;

◦ the noise-induced doubly unidirectional transitions between
the stable regimes and unstable energetic states of the
oscillator.
The structure of the paper is as follows. In Section 2 we

present the model investigated. A description of the output
SR quantifiers is given and exact formulas are found for
analysing the long-time behavior of SPA and variance. In
Section 3 the conditions of energetic instability are considered.
The SR phenomenon versus noise kurtosis is demonstrated in
Section 4. In Section 5 we analyze the dependence of the SR
characteristics on noise amplitude, while the conditions for the
appearance of hypersensitivity are also discussed. Section 6
contains some brief concluding remarks.

II. M ODEL

As an archetypical model for an oscillatory system strongly
coupled with a noisy environment, we consider the stochasti-
cally perturbed harmonic oscillator with a random frequency

Ẍ + γẊ + [ω2 + Z(t)]X = A0 sin Ωt + ξ(t), (1)

whereẊ ≡ dX/dt, X(t) is the oscillator displacement,γ is
a damping parameter, and the driving forceξ(t) is a Gaussian
white noise with a zero mean and with a delta-correlated
correlation function given by

〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′). (2)

Fluctuations of the frequencyω2 are expressed by a Markovian
trichotomous noiseZ(t), which consists of jumps between
three values:z1 = a, z2 = 0, z3 = −a, a > 0 [16]. The
jumps follow, in time, the pattern of a Poisson process, the
values occurring with the stationary probabilities

ps(a) = ps(−a) = q, ps(0) = 1 − 2q, (3)

where 0 < q < 1/2. In a stationary state the fluctuation
processZ(t) satisfies

〈Z(t)〉 = 0, 〈Z(t + τ)Z(t)〉 = 2qa2e−ντ , (4)

where the switching rateν is the reciprocal of the noise
correlation time

τc = 1/ν, (5)

i.e., Z(t) is a symmetric zero-mean exponentially correlated
noise. The trichotomous process is a particular case of a
kangaroo process [36] with the kurtosis

κ =
〈Z4(t)〉
〈Z2(t)〉2 − 3 =

1

2q
− 3. (6)

In this work we will restrict ourselves to the case where, for all
states of the trichotomous noise, the frequency of the oscillator
is positive, i.e.,

a < ω2. (7)

To find the first and second moments ofX we use the
well-known Shapiro-Loginov procedure [37], which for an
exponentially correlated noiseZ(t) yields

d

dt
〈Zm〉 = 〈Z dm

dt
〉 − ν〈Zm〉, (8)

wherem is some function of the noise,m = m(Z).
From Eqs. (1) and (8), we thus obtain an exact linear

system of six first-order differential equations for six variables,
M1,1 ≡ 〈X〉, M1,2 ≡ 〈Ẋ〉, M1,3 ≡ 〈ZX〉, M1,4 ≡ 〈ZẊ〉,
M1,5 ≡ 〈Z2X〉, M1,6 ≡ 〈Z2Ẋ〉:

Ṁ1,1 = M1,2,

Ṁ1,2 = −γM1,2 − ω2M1,1 − M1,3

+A0 sin(Ωt),

Ṁ1,3 = M1,4 − νM1,3,

Ṁ1,4 = −(γ + ν)M1,4 − ω2M1,3 − M1,5,

Ṁ1,5 = M1,6 − νM1,5 + 2qa2νM1,1,

Ṁ1,6 = −(γ + ν)M1,6 − ω2M1,5 − a2M1,3

+2qa2νM1,2 + 2qa2A0 sin(Ωt), (9)

where Ṁ ≡ dM/dt. The solution of equations (9) can be
represented in the form

M1,i = A2i−1 sin(Ωt) + A2i cos(Ωt) +

6
∑

j=1

CjLi,je
ρjt, (10)

where the coefficientsLij , i, j = 1, . . . , 6, are given by

L1,j = 1, L2,j = ρj ,

L3,j = −[ω2 + ρj(ρj + γ)],

L4,j = (ρj + ν)L3,j ,

L5,j = −L3,j [(ρj + ν)(ρj + ν + γ) + ω2],

L6,j = (ρj + ν)L5,j − 2qa2ν, (11)
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Cj are constants of integration determined by the initial
conditions, and{ρj , j = 1, . . . , 6} is the set of roots of the
algebraic equation

[ω2 + ρ(ρ + γ)][ω2 + (ρ + ν)(ρ + ν + γ)]2

−a2[ω2 + ρ(ρ + γ) + 2qν(2ρ + γ + ν)] = 0. (12)

Note that the momentsM1,j are independent of the thermal
noise ξ(t). One can check up the stability of the solution
(10), which means that the solution of Eq. (12) cannot have
roots with a positive real part. According to the Routh-Hurwitz
theorem this requirement is met by the sixth-order polynomial
in ρ in Eq. (12) for all values of the parameters, if the
inequality (7) holds. Thus in the long time limit,t → ∞,
the momentsM1,j are given by

M1,i|t→∞ = M
(as)
1,i = A2i−1 sin(Ωt) + A2i cos(Ωt), (13)

where i = 1, . . . , 6. Particularly, the first momentM (as)
1,1 =

〈X〉as reads
〈X〉as = A sin(Ωt + ϕ), (14)

where

A2 = A2
1 + A2

2 =
A2

0[f
2
1 + (f2 + 2qa2)2]

f2
3 + f2

4

, (15)

tan ϕ =
f1f3 − f4(f2 + 2qa2)

f1f4 + f3(f2 + 2qa2)
, (16)

and the quantitiesfi, (i = 1, . . . , 4) are determined by

f1 = 2Ω(γ + 2ν)[ν(γ + ν) + ω2 − Ω2],

f2 = [ν(γ + ν) + ω2 − Ω2]2

−Ω2(γ + 2ν)2 − a2,

f3 = [f2(ω
2 − Ω2) − Ωγf1] − 2qa2ν(ν + γ),

f4 = [Ωγf2 + (ω2 − Ω2)f1] − 4qa2νΩ. (17)

Our next task is to evaluate the long-time behavior of the
moments:M2,1 ≡ 〈X2〉, M2,2 ≡ 〈XẊ〉, M2,3 ≡ 〈ZX2〉,
M2,4 ≡ 〈ZXẊ〉, M2,5 ≡ 〈Z2X2〉, M2,6 ≡ 〈Z2XẊ〉, M2,7 ≡
〈Ẋ2〉, M2,8 ≡ 〈ZẊ2〉, M2,9 ≡ 〈Z2Ẋ2〉.

From Eqs. (1) and (8) nine linear differential equations can
be obtained for the momentsM2,i, i = 1, . . . , 9.

Ṁ2,1 = 2M2,2,

Ṁ2,2 = M2,7 − γM2,2 − ω2M2,1 − M2,3

+A0M1,1 sin(Ωt),

Ṁ2,7 = −2γM2,7 − 2ω2M2,2 − 2M2,4

+2A0M1,2 sin(Ωt) + 2D,

Ṁ2,3 = −νM2,3 + 2M2,4,

Ṁ2,4 = M2,8 − (γ + ν)M2,4 − ω2M2,3 − M2,5

+A0M1,3 sin(Ωt),

Ṁ2,8 = −(2γ + ν)M2,8 − 2ω2M2,4 − 2M2,6

+2A0M1,4 sin(Ωt),

Ṁ2,5 = −νM2,5 + 2M2,6 + 2qa2νM2,1,

Ṁ2,6 = M2,9 − (γ + ν)M2,6 − ω2M2,5 − a2M2,3

+2qa2νM2,2 + A0M1,5 sin(Ωt),

Ṁ2,9 = −(2γ + ν)M2,9 − 2ω2M2,6

−2a2M2,4 + 2qa2νM2,7

+2A0M1,6 sin(Ωt) + 4qa2D (18)

with Ṁ ≡ dM/dt.
Starting from Eqs. (18) and (13), we obtain that in the limit

t → ∞ the momentsM (as)
2,i = M2,i|t→∞ are given by

M
(as)
2,i = Ni + J2i−1 sin(2Ωt) + J2i cos(2Ωt),

i = 1, . . . , 9, (19)

where the constantsNi and Jk are determined with sets of
algebraic linear equations. Note that the result (19) is correct
only under the implicit assumption of energetic stability, i.e.,
the roots of the characteristic polynomial equation of the
nine first-order differential equations determining the moments
M2,i, i = 1, . . . , 9, cannot have positive real parts. This
characteristic polynomial equation reads

(ρ + γ + ν)

{

(ρ + γ)(ρ + γ + ν)[4ω2

+ρ(ρ + 2γ)]{[4ω2 + (ρ + ν)(ρ + ν + 2γ)]2

−16a2} − 8qa2ν{ν[4ω2 + ρ(ρ + 2γ)]

+(2ρ + 2γ + ν)3}
}

= 0. (20)

By the condition (7), Eq. (20) and the Routh-Hurwitz theorem
yield the necessary and sufficient condition for energetic
stability, namely

a2 < a2
cr =

ω2γ(γ + ν)[4ω2 + ν(2γ + ν)]2

16ω2γ(γ + ν) + 2qν[4ω2ν + (2γ + ν)3]
. (21)

We note that in the case of dichotomous noise this condition
for stability is in accordance with the results of [31]. Hence-
forth in this Section we shall assume that the condition (21) is
fulfilled. Turning now to Eq. (19), we consider the quantityN1

in more detail. It follows from Eqs. (18) and (19) that the time-
homogeneous part of the second momentM

(as)
2,1 = 〈X2〉as is

given by

N1 =
1

S2

{

S1 + 2D(ν + γ)
[

[4ω2 + ν(ν + 2γ)]2

−16a2(1 − 2q)
]}

, (22)

where

S1 = A0

{

(2γ + ν){8A11 + 4(2γ + ν)A9

−[4ω2 + ν(2γ + ν)][2A7 + (2γ + ν)A5]}
+(γ + ν)(γA1 + A3){[4ω2 + ν(2γ + ν)]2

−16a2} + 8qa2ν(2A3 − νA1)
}

,

S2 = 2ω2γ(γ + ν)[4ω2 + ν(2γ + ν)]2
[

1 −
(

a

acr

)2]

, (23)
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and

A1 =
A0[f1f4 + f3(f2 + 2qa2)]

f2
3 + f2

4

,

A2 =
A0[f1f3 − f4(f2 + 2qa2)]

f2
3 + f2

4

,

A3 = −ΩA2, A4 = ΩA1,

A5 = A0 + (Ω2 − ω2)A1 + ΩγA2,

A6 = (Ω2 − ω2)A2 − ΩγA1,

A7 = νA0 + [ν(Ω2 − ω2) + γΩ2]A1

+Ω[νγ − (Ω2 − ω2)]A2,

A8 = ΩA0 + Ω[(Ω2 − ω2) − νγ]A1

+[γΩ2 + ν(Ω2 − ω2)]A2,

A9 = ΩA8 − ω2A5 − (ν + γ)A7,

A10 = −ΩA7 − ω2A6 − (ν + γ)A8,

A11 = νA9 − ΩA10 − 2qa2νA1,

A12 = ΩA9 + νA10 − 2qa2νA2. (24)

Particularly, the time-homogeneous part of the variance of
the oscillator displacementX can be expressed as

σ2(X) =
Ω

2π

∫ 2π/Ω

0

(〈X2〉as − 〈X〉2as)dt = N1 −
A2

2
. (25)

Evidently, if the noise amplitudea tends to the critical value
acr, the second moment〈X2〉as diverges.

Finally, we emphasize that for all figures throughout this
work we use a dimensionless formulation of the dynamics
with ω = 1 andA0 = 1.

III. VARIANCE INSTABILITY

Our next task is to find the boundaries of the region of
energetic instability in the parameter space(ν, γ). From Eq.
(21) one can discern two cases (see Fig. 1). First, if the
damping is sufficiently strong,γ > γ∗, then the function
a2

cr(ν) increases monotonically from the valueω4 to infinity
as the switching rateν increases. Thus, by the condition (7)
the system is stable, i.e., no energetic instability can occur.

0 0.2 0.4 0.6 0.8 1.0
Ν

0.98

1.0

1.02

1.04

a c
r2

H1L

H2L

Fig. 1. Dependence of the critical noise amplitudea2
cr

on the noise switching
rate ν, obtained from Eq. (21). The parameter values:ω = 1, q = 0.35.
The solid curve (1) and the dashed curve (2) correspond to the values of
the damping parameterγ = 0.335 and γ = 0.295, respectively. Note the
nonmonotonous dependence ofa2

cr
on ν for γ = 0.295.
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Fig. 2. A plot of the phase diagram in theν−γ plane atω = 1. The shaded
domain in the figure corresponds to the region where noise-induced energetic
instability is possible. The lines depict the borders of the energetic instability
regions for two values of the noise parameterq [see Eq. (29)]. The curves
(1) and (2) correspond to the values of the parameterq = 0.1 andq = 0.5,
respectively.

The critical damping parameterγ∗ is given by the system of
algebraic equations:

d

dν
a2

cr(ν) = 0,
d2

dν2
a2

cr(ν) = 0, (26)

wherea2
cr(ν) is given by Eq. (21). For example, in the case

of dichotomous noise,q = 1/2, the critical parameter

(γ∗)2 = (3
√

3 − 5)ω2. (27)

Second, in the case ofγ < γ∗, Eq. (21) demonstrates that
the functional dependence ofa2

cr on the noise correlation
time τc = 1/ν exhibits a resonance form asτc is varied [cf.
curve (2) in Fig. 1]. For increasing values ofν, the critical
noise amplitudeacr starts from the valueω2, increasing to a
local maximumacr max, next it decreases, attaining a local
minimum acr min, and thenacr tends to infinity asν → ∞.
Relying on Eqs. (7) and (21) one can find the necessary and
sufficient conditions for the emergence of energetic instability
(and reentrant transition) due to noise correlation time varia-
tions. Namely, energetic instability appears for the parameter
values:

γ < γ∗, a2
cr < ω4, a2

cr min < a2 < ω4, (28)

where a2
cr min corresponds to the local minimum of the

function a2
cr(ν). This case is characterized by the following

scenario: For small values of the switching rate,ν < ν1, where
a < acr(ν), the system is stable. Atν = ν1, i.e.,a = acr(ν1),
the system becomes unstable. In the intervalν1 < ν < ν2

of the switching rate there appears an instability, where the
second moments of the oscillator displacements diverge. At
ν = ν2, where a = acr(ν2), the energetic instability dis-
appears and the system approaches the stable regime, thus
making a reentrant transition. Now, we will briefly consider
the necessary condition for instability,a2

cr < ω4.
Figure 2 shows a phase diagram in theν − γ plane at two

values ofq. As the damping parameterγ increases the region
of instability narrows down and disappears at the critical value
of the damping parameterγcr(q). Hence, there is an upper
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Fig. 3. Dependence of the critical damping parameterγcr on the noise
parameterq at ω = 1.

limit γcr(q) for the damping parameter at greater values of
which the instability cannot occur. The boundary of the region
of the instability phase and the critical parameterγcr(q) are
given by the fourth-order polynomial equation

[ν(ν + 2γ) + 4ω2][νω2 − γ(ν + γ)(ν + 2γ)]

= (1 − 2q)ω2[4ω2ν + (ν + 2γ)3]. (29)

In the case of dichotomous noise,q = 1/2, Eq. (29) reduces
to a second-order equation and the boundary of the instability
ν±(γ) reads

ν±(γ) =
1

2γ

(

ω2 − 3γ2 ±
√

ω4 + γ4 − 6ω2γ2
)

. (30)

Thus, in this caseγcr(
1
2 ) = ω(

√
2−1). The tendency apparent

in Fig. 2, viz. a decrease ofγcr as the kurtosisκ = 1
2q − 3

of the noiseZ increases, is a general feature ofγcr(q) (see
Fig. 3). Thus, energetic instability is possible only if

γ < ω(
√

2 − 1). (31)

Another important critical parameter isacr min, because of
the conditions (28) for the occurrence of energetic instability.
It follows from Eq. (21) thata2

cr decreases monotonically
as the noise parameterq increases or as the damping coef-
ficient decreases. The functional dependence ofacr on the
noise switching rateν is more complicated, exhibiting several
extrema. To get more information, we shall study it in the
asymptotic limit of low damping. In general, the parameter
acr min can be found by numerical calculations from Eq.
(21). In the low-damping limit, we allowγ to become small
γ ≪ γcr, and useγ as a perturbation parameter. In this case
the critical parameteracr min and the corresponding switching
rateνm can be given as

a2
cr min ≈ 2γω3

q
, νm ≈ 2ω − (2 − q)γ

q
. (32)

The interesting feature of the result (32) is that Eq. (32)
establishes a quantitative connection between stochastic oscil-
lator instability and the parametric instability of a deterministic
oscillator. Note that one of the trademarks of parametric reso-
nance of the deterministic harmonic oscillator with a periodic
perturbed frequencyω is that the most pronounced instability

is induced by a superharmonic perturbation with the frequency
ωp ≈ 2ω, [32]. Thus, the minimal value of the noise amplitude
at which the instability of the oscillator develops corresponds
to the noise switching rate, which coincides with the leading
frequency of the parametric resonance for a deterministic
oscillator.

IV. RESPONSE TO NOISE KURTOSIS

The qualitative behavior of the SR characteristicsA2 and
σ2 versus the noise kurtosisκ is sensitive to values of other
system parameters. In the case exposed in Fig. 4 the variance
exhibits a single-peak form of SR at small and moderate
values of the noise switching rateν. As ν increases the SR
phenomenon disappears and in this case the variance is rather
an increasing function ofq = 1/[2(κ + 3)]. It is remarkable
that in the transition regime (ν≈ 0.25 in Fig. 4) the variance
is nearly constant over a finite range ofκ values. In contrast to
the variance, SPA (A2) is a monotonically decreasing function
of q, i.e., in this parameter regime the SR phenomenon for SPA
is absent (see Fig. 5).

The phenomenon of noise-kurtosis-induced SR is not re-
stricted to the simple-peak form of SR. Figure 6(a) depicts a
more complicated behavior of the variance as a function of
noise kurtosis for different values of the noise amplitude. In
the parameter regime considered by the curve (1) in Fig. 6(a),
for increasing values ofq, the variance starts from zero,
increasing to a local maximum, next it decreases, attaining
a local minimum, and thenσ2 tends to infinity asq tends
to the valueqcr ≈ 0.325. Such a combined SR phenomenon,
i.e., first an enhacement, next a suppression and finally a rapid
increase of the output variance, is significantly associated with
the critical characteristics of stochastic parametric resonance.
Namely, the critical valueqcr of the noise parameterq at which
the variance tends to infinity corresponds to the appearance of
noise-induced energetic instability [cf. Eq. (21)]. Hence, the
key factor for the appearance of SR with two local extrema in
σ2 versusκ is the occurrence of energetic instability at some
values of the noise kurtosisκ. As a rule, in the parameter
regimes considered in Fig. 6 the SR phenomenon for SPA is
absent [see Fig. 6(b)].

0 0.1 0.2 0.3 0.4 0.5
q

5

10

15

20

25

30

Σ
2

Fig. 4. Variance of the output signal (σ2) versus the noise parameterq for
different values of the noise switching rateν [Eq. (25)]. The system parameter
values:A0 = ω = Ω = 1, D = 0, a = 0.8, γ = 0.1. Solid line,ν = 0.05;
dashed line,ν = 0.15; dotted line,ν = 0.25
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Fig. 5. Dependence of the SPA (A2) computed from Eqs. (15) and (17)
for A0 = ω = Ω = 1, a = 0.8, γ = 0.1, on the noise parameterq at
several values of the noise switching rateν. Solid line, ν = 0.05; dashed
line, ν = 0.15; dotted line,ν = 0.25.

As mentioned above, there are certain ranges of system
parameters for which the behavior of SR characteristics can
be qualitatively different. A plot (Fig. 7) of SPA versus the
noise parameterq for different parameters shows a typical
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Fig. 6. SR characteristics [(a) variance(σ2) and (b) SPA(A2)] as functions
of the noise parameterq for different values of the noise amplitudea
[Eqs. (22), (25), (15), and (17)]. The system parameter values:A0 = ω = 1,
D = 0, Ω = 1, γ = 10−4, ν = 0.4. Solid line, a = 0.04; dashed line,
a = 0.03; dotted line,a = 0.015. Note that energetic instability occurs for
the curve (1) in the panel (a). The critical value ofq at which the energetic
instability appears isqcr ≈ 0.325. Ā2

≡ 10−7A2 and σ̄2
≡ 10−7σ2.
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Fig. 7. Dependence of the SPA(A2) computed from Eqs. (15) and (17)
for A0 = ω = 1, Ω = 0.9, γ = 0.01, on the noise parameterq. Solid line,
a = 0.9, ν = 1.6; dashed line,a = 0.25, ν = 0.058; dotted line,a = 0.3,
ν = 0.2.

resonance with nonmonotonic behavior of the functionA2(q).
From Fig. 7 one can discern two cases. First, if the noise
switching rateν is relatively small, then the SR phenomenon
for SPA exhibits in the form of suppression ofA2 at some
values ofq [cf. curve (2) in Fig. 7]. Actually, in the case of very
small values of the damping parameterγ and the switching
rate ν the effect of suppression can be very strong, i.e., at
the local minimum of the functionA2(q) SPA tends to zero.
Second, in the case of moderate values of the switching rate
ν a local enhancement of SPA versusq occurs [curve (1) in
Fig. 7]. It is remarkable that the peak ofA2(q) quite strongly
depends onν as both its magnitude and its position change.
For example, ifν increases, the position of the peak shifts
towards greater values of the noise parameterq.

Let us note that the SR phenomenon versus kurtosis also
appears in the case of adiabatic noise. At the long-correlation-
time limit, ν → 0, the SPA and variance saturate at the values:

A2 = A2
0

{

[(ω2 − Ω2)2 + Ω2γ2 − (1 − 2q)a2]2

+4a2(1 − 2q)Ω2γ2

}

×
{

[(ω2 − Ω2)2 + Ω2γ2][(ω2 − Ω2 − a)2

+Ω2γ2][(ω2 − Ω2 + a)2 + Ω2γ2]

}−1

, (33)

σ2 = A2
0qa

2[(ω2 − Ω2)2 + Ω2γ2 + a2

×(1 − 2q)]

{

[(ω2 − Ω2)2 + Ω2γ2]

×[(ω2 − Ω2 − a)2 + Ω2γ2][(ω2 − Ω2

+a)2 + Ω2γ2]

}−1

, (34)

respectively. From (33) it follows that by the conditions

a2 > (ω2 − Ω2)2 − Ω2γ2 > 0,

γ2 > Ω2 − 2ω2 (35)
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the SPA reaches the minimum

A2
min = 4A2

0Ω
2γ2(ω2 − Ω2)2

{

[(ω2 − Ω2)2

+Ω2γ2][(ω2 − Ω2 − a)2 + Ω2γ2]

×[(ω2 − Ω2 + a)2 + Ω2γ2]

}−1

(36)

at

q = qm ≡ 1

2a2
[a2 + Ω2γ2 − (Ω2 − ω2)2]. (37)

Note that the inequalities (35) are the necessary and sufficient
conditions for the SR phenomenon of SPA in the adiabatic
limit. Evidently, if the damping parameterγ is low, the
suppression of SPA atq = qm is very pronounced, i.e.,A2

min

tends to zero asγ vanishes [see Eq. (36)]. The necessary
and sufficient conditions for the existence of a resonant-like
amplification of the output varianceσ2 read as

ω4 > a2 > (ω2 − Ω2)2 + Ω2γ2,

0 < γ2 < 2ω2 − Ω2. (38)

Relying on Eq. (34) we obtain that the maximum of the output
variance exhibits at

q = qmax ≡ 1

4a2
[a2 + Ω2γ2 + (Ω2 − ω2)2]. (39)

It is seen from Eq. (39) that in the adiabatic regime the SR
phenomenon for the varianceσ2 is possible only if the values
of the noise kurtosisκ are in the interval (-2,-1).

V. HYPERSENSITIVE RESPONSE

Next we consider the dependence of SR characteristics
on the noise amplitudea. In Fig. 8 we depict, on two
panels, the behavior ofA2 and σ2, for various values of
the temperatureD. In the case considered, the critical noise
amplitude (acr ≈ 0.9619) is very close to the maximal
value of the noise amplitude,a = 1. Both SR characteristics
exhibit a nonmonotonic dependence on the noise amplitude,
i.e., a typical SR phenomenon continues to increasea. Clearly,
additive thermal noise does not affect the spectral amplification
A2, but the varianceσ2 increases rapidly as the temperature
D increases. For the parameter regimea ≪ acr, the main
contribution of the temperature appears as an additive term
D/γ in σ2 [cf. Eqs. (22)-(25)].

As shown in Fig. 8 (a) the curveA2 vs a first exhibits
a maximum and then a minimum appears, that is to say,
the SR exhibited first is followed by a suppression. Most
important, we observe that the resonance of SPA occurs for
the noise amplitudea ≈ |Ω2−ω2|, thus the resonance of SPA
corresponds to the resonance frequency of the deterministic
system for the fixed colored noise statez3 = −a. A resonance-
like peak of the varianceσ2 at a ≈ |Ω2 − ω2| is also
observed [Fig. 8(b)]. This behavior of the variance, i.e., a
strong amplification of the variance at the resonance peak of
SPA, is quite robust and occurs within a broad range of system
parameters. With increasing the noise amplitude, one observes
another region at the critical noise amplitude (a≈ acr), where
the enhancement of the variance vsa is extremely rapid.
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Fig. 8. SR characteristics [(a) SPA (A2) and (b) variance (σ2)] versus the
noise amplitudea at several temperatures:D1 = 0.05 (solid line),D2 = 0.5
(dashed line),D3 = 2 (dotted line) [Eqs. (15) and (25)]. Parameter values:
γ = 3 ∗ 10−4, ν = 0.01, q = 0.005, Ω = 0.8, ω = A0 = 1. Note that the
critical noise amplitudeacr ≈ 0.9619.

Particularly,σ2 increases unrestrictedly as energetic instability
appears.

An interesting peculiarity of Fig. 8 (a) is the rapid decrease
of SPA from the maximum to the minimum asa increases. It
is noteworthy that in the case of dichotomous noise such an
effect is absent. The effect is very pronounced at low values
of the switching rateν and a low dampingγ (see Fig. 9). To
throw some light on the physics of the above-mentioned new
effect, we shall now briefly consider the behavior of the SR
characteristicsA2 andσ2 in the parameter regime

ν2 ≪ γ2 ≪ q|ω2 − Ω2| ≪ ω2, q ≪ 1. (40)

In this case, it follows from Eqs. (17) and (15) that SPA
reaches the maximum

A2
max ≈ A2

0q
2/(Ω2γ2) (41)

at
a = amax ≈ |Ω2 − ω2|, (42)

and the minimum

A2
min ≈ A2

0Ω
2γ2/[q2(Ω2 − ω2)4] (43)

at
a = amin ≈ |Ω2 − ω2|/

√

1 − 2q. (44)
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Fig. 9. A plot of the dependence of SPA (A2) and variance (σ2) on the
noise amplitudea in a region of hypersensitive response [Eqs. (15) and (25)].
System parameter values:γ = 5∗10−6, ν = 5∗10−5, q = 0.008, Ω = 0.99,
D = 0.1, andA0 = ω = 1. The values ofA2 andσ2 at the local maximum
areA2

m
= 10421, σ2

m
= 7.78∗106. The solid line and dotted line correspond

to Ā2
≡ A2/A2

m
and σ̄2

≡ σ2/σ2
m

, respectively.

For sufficiently strong inequalities (40),A2
min tends to zero

and A2
max grows up to very large values. Thus in the case

considered SPA is extremely sensitive to small variation ofa:
∆a = amin−amax ≈ q|Ω2−ω2|. Note that this small interval
of the noise amplitude,

a ∈ (|Ω2 − ω2|, (1 + q)|Ω2 − ω2|), (45)

also contains a very narrow and high SR peak of the variance
with the maximal value

σ2
max ≈ A2

0q/(2Ω2γ2). (46)

The above formulas forA2
max and σ2

max indicate that the
main mechanism for the formation of SR in the SPA and
σ2 is the conventional amplitude-resonance generated by an
external periodic forcing with the frequencyΩ =

√
ω2 ± a.

More precisely, consider an ensemble of realizations of the
stochastic oscillator for each of which a particular sequence
of switching times, between the states of the nonequilibrium
noiseZ(t), is chosen from the distribution of switching times.
For a given time momentt the relative amount of realizations
with the noise statez3 = −a is q. As the switching rateν and
the damping coefficientγ are small (the noise correlation time
is long) there is, between two switchings of the noiseZ(t),
enough time for a very strong amplification of the amplitude
of X(t), which happens in the noise statez3 = −a due to the
conventional resonance atΩ =

√
ω2 − a. Particularly, in the

statez3 = −a all these realizations are strongly synchronized
because of the phase lagϕ = −π/2 between the periodic
driving force and the periodic response of the system by
resonance. Therefore, although the fraction of such realizations
is low (q ≪ 1), the contribution of these realizations still
dominates by the formation of SR in the SPA because of
high amplitudes and synchronization. As the noise amplitude
increases, the drastic decrease of SPA and also the appearance
of the resonant amplification of the variance (see Fig. 9)
indicate a rapid desynchronization of the realizations of the
stochastic oscillator. Note that the above scenario accords with
calculations of the phase lagϕ for the mean displacement of

the oscillator [Eq. (16)]. For example, in the case of the system
parameters used in Fig. 9 the result is as follows: asa is
gradually increased from zero and swept through the resonant
amplitudea ≈ 0.02, ϕ first decreases very slowly and later
quickly from zero, passes through−π/2 whena ≈ 0.02, and
quickly approaches zero whena > 0.02.

VI. CONCLUSIONS

In the present work, we have analysed the phenomenon
of stochastic parametric resonance within the context of a
noisy, harmonic oscillator with a fluctuating frequency driven
by sinusoidal forcing and by an additive thermal noise. The
frequency fluctuations are modeled as a colored three-level
Markovian noise. The Shapiro-Loginov formula [37] allows
us to find a closed system of equations for the first-order and
second-order cumulants and the exact expressions for the long-
time behavior of several SR characteristics, such as SPA, and
variance.

As the main result we have established the phenomenon
of noise-kurtosis-controlled stochastic resonance. The phe-
nomenon is more pronounced for moderate values of the noise
correlation time. Notably, in the fast-noise limit the effect is
absent. Depending on the values of the noise parameters the
SR versus noise kurtosis appears as an enhancement or as
a suppression of the output SR characteristics. For example,
the enhancement of SPA occurs, as a rule, at smaller values
of the noise correlation time as a suppression of SPA. To
our knowledge, neither the resonant-like enhancement nor the
suppresion of output SR characteristics versus noise kurtosis
have been noticed or discussed before.

It is interesting that the results of the present paper can
be iterpreted in terms of cross-correlation intensity between
two dichotomous noises. Namely, the trichotomous noise
Z(t) in Eq. (1) can be presented as the sum of two cross-
correlated zero-mean symmetric dichotomous noisesZ1(t)
and Z2(t), i.e., Z(t) = Z1(t) + Z2(t). The dichotomous
noisesZ1(t) andZ2(t) are characterized as follows:z1, z2 ∈
{(1/2)a,−(1/2)a} with ν1 = ν2 = ν and the correlation
function

〈Zi(t)Zj(t
′

)〉 = ρij
a2

4
e−ν|t−t

′

|, i, j = 1, 2, (47)

whereρi,i = 1, andρi,j = ρ ∈ (−1, 1) with i 6= j is the cross-
correlation intensity of the noisesZ1 andZ2. In this case the
probabilityq = (1+ρ)/4, where it follows that the correlation
coefficientρ and the kurtosisκ of the trichotomous noiseZ(t)
must be related asκ = −(1+3ρ)/(1+ρ). It is obvious that the
noise kurtosisκ = −1 corresponds toρ = 0, i.e., to the case
of two statistically independent dichotomous noises. Let us
note that such a cross-correlation between dichotomous noises
may result from the following two reasons: the two noises are
either partly of the same origin or are influenced by the same
factors. Notably, some cross-correlation-induced effects have
earlier been considered in the context of ratchet models [38],
[39], where it has also been suggested that cross-correlation
between colored noises may provide some understanding as
to why structurally very similar motor proteins with two
heads, such as kinesin and dynein motor families, move in
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opposite directions on the micro-tubules despite sharing the
same environment and experiencing the same periodicity, like
in the case of the conventional kinesin and ncd [40].

Another result is that for a harmonic oscillator colored fluc-
tuations of the frequency can cause correlation-time-induced
transitions from energetic stability to instability as well as in
the opposite direction. Furthermore, the transition is found to
be reentrant, e.g., if the damping coefficient is lower than a
certain threshold value, then the energetic instability appears
above a critical value of the noise correlation time, but disap-
pears again through a reentrant transition to the energetically
stable state at a higher value of the noise correlation time.

As the third main result we have established the effect
of a very sensitive response of SR characteristics to small
variations of noise amplitude (see Fig. 9), where, e.g., SPA
displays a quick jump from a very high value to a low one
as the noise amplitude increases but a little. It is remarkable
that in the case of dichotomous noise(q = 1/2) such
an effect is absent. This feature of the stochastic oscillator
suggests that investigation of output SR characteristics versus
noise amplitude can reveal important information about input
signal in oscillator-devices, even in the case of a small input
signal-to-noise ratio,A2

0/D ≪ 1 [see Eqs. (1) and (2)].
This conjecture presents an objective that is worthwhile to
be addressed in greater detail in some future.

We believe that the results obtained are of interest also in
population biology, where the proposed model can be applied
for investing the influence of a fluctuating environment on the
oscillatory dynamics of predator–prey communities [17], [41],
[42].
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