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Abstract-In this paper, a multi-item production 

inventory model is considered within a given time 

horizon that consists of different time periods. For each 

product, production, demand, and deterioration rates in 

each period are known. Shortage for each product is 

allowed but it is completely backlogged . The objective 

is to find the optimal production and restarting times for 

each product in each period so that the overall total 

inventory cost for all products is minimized. In this 

paper, a formulation of the problem is developed and 

optimization techniques are performed to show 

uniqueness and global optimality of the solution.  

 

Keywords - Multi-item production, Inventory, Varying 

demand, Deterioration, Optimality.  

 

                 I. INTRODUCTION 

Inventory is known as materials, commodities, 

products,..etc, which are usually carried out in 

stocks in order to be consumed or benefited from 

when needed. In fact, most of economic, trading, 

manufacturing, administrative,…etc, systems 

regardless of its size, needs to deal with its own 

Inventory Control System . Keeping inventory in 

stores  has its own various costs which may, 

sometimes, be more than the value of the 

commodity being carried out in stores. As 

examples, nuclear and biological weapons, blood 

in blood banks, and some  kinds of sensitive 

medications. However, any inventory system 

must answer the following two main questions. 

(i) How much to order or to produce for each 

inventory cycle?. (ii) When to order or to produce 

a new quantity?. Answering these two questions  

for  certain inventory system leads to the so  

called “ Optimal Inventory Policies” which “ 
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Minimize the Total Inventory Costs” of  this 

system. It is  expected that all systems, in which 

controlling and managing inventory is an 

important factor that has great effects on its 

performance, can greatly benefit from this 

research results so as to minimize their relevant 

inventory cost operations. In fact, many classical 

inventory models concern with single item. 

Among these are Resh, Friedman, and Barbosa [19] 

who considered a classical lot size inventory 

model with linearly increasing demand. Hong, 

Standroporty, and Hayya [15] considered an 

inventory model in which the production rate is 

uniform and finite where he introduced three 

production policies for linearly increasing 

demand. A new inventory model in which 

products deteriorate at a constant rate and in 

which  demand , production rates are allowed to 

vary with time has been introduced by Balkhi and 

Benkherouf [2]. In this model, an optimal 

production policy that minimizes the total 

relevant cost is established.Subsequently, Balkhi 

[1], [3], [4], [5], [6], [8], [9], and Balkhi, Goyal, 

and Giri [7]  have introduced several inventory  

models in each of which, the demand, production, 

and deterioration rates are arbitrary functions of 

times, and in some of which, shortages are 

allowed but are completely backlogged. In each 

of the last mentioned seven papers, closed forms 

of the total inventory cost was established, a 

solution procedure was introduced and the 

conditions that guarantee the optimality of the 

solution for  the considered inventory system 

were introduced.  Though so many papers have 

dealt with single item optimal inventory policy 

and though the literature concerned with multi-

item are sparse, the analysis of multi-item  

optimal inventory policies, is, almost, parallel to 

that of single item.The multi-item inventory 

classical inventory models under resource 

constraints are available in the well known books 

of Hadley and Whitin [14] and in Nador [18] . 

Ben-Daya and Raouf [11] have developed an 
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approach for more realistic and general single 

period  for multi-item with budgetary and floor 

,or shelf space constraints , where the demand of 

items follows a uniform probability distribution 

subject to the restrictions on available  space and 

budget. Bhattacharya [12]  has studied two-item 

inventory model for deteriorating items . Lenard 

and Roy [17] have used different approaches for 

the determination of optimal inventory policies 

based on the notion of efficient policy and 

extended this notion to multi-item inventory 

control by defining the concept of family and 

aggregate items. Kar,  Bhunia, and  Maiti [16] 

obtained some interesting results about multi 

deteriorating items with constraint space and 

investment. Rosenblatt [20] has discussed multi-

item inventory system with budgetary constraint 

comparison between the Lagrangan and the fixed 

cycle approach, whereas, Rosenblatt and 

Rothblum [21] have studied a single resource 

capacity where this capacity was treated as a 

decision variable . Recently, Balkhi and Foul [10]  

have applied a multi-item production inventory 

model to the Saudi Basic Industries Corporation 

(SABIC), which is one of the world’s leading  

manufacturers of fertilizers, plastics, chemicals 

,and metals ,in Saudi Arabia.For more details 

about multi-item inventory system, the readers 

are advised to consult the survey of Yasemin and 

Erenguc [23] and the references therein.  

Our main concern in this study is to find the optimal 

production and restarting times for each product in each 

period so that the overall total inventory cost for all 

products is minimized. In this paper, a formulation of 

the problem is developed and optimization techniques 

are performed to show uniqueness and global optimality 

of the solution. Optimal number of units to be 

produced from each of the products are determined 

by a simple linear program. Having found these 

optimal numbers of units, we establish optimal 

inventory policies for  the different products, which 

means that we determine the optimal stopping and 

restarting production times for each produced item 

so that the total relevant  inventory cost of all items 

is minimum. The paper is organized as follows. 

First, we introduce our assumptions and notations, 

then we build the mathematical model of the 

underlying problem. The solution procedure of the 

developed model is established in section 4 , and 

the optimality of the obtained solution is proved in 

section 5.  Finally we introduce a conclusion in 

which we summarize the main results of the paper 

as well as our proposals for further research . 

II.  ASSUMPTIONS AND NOTATIONS 

Our assumptions and notations for our model are as 

follows: 

1. m  different items are produced and held in stock 

over a known and finite planning horizon of  H 

units long which is divide into n different cycles. 

2. The items are subject to deterioration when they 

are effectively in stock and there is no repair or 

replacement of deteriorated items. 

3. The demand, production and deterioration rates 

of item i in cycle j are item and cycle dependent , 

and  are denoted by Dij, Pij and θij  respectively. 

4. Shortages are allowed for all items, but are 

completely backlogged. 

5.  The following notations are used in the sequel , 

where  i = 1,2,…m and j = 1,2,…n  

 Iij(t) Inventory level of item i in cycle j at time t. 

  tij  Time at which the inventory level of item i in 

cycle j reaches its maximum.  

   Tij  Time  at which the inventory level of  item i in 

cycle j  starts to fall below zero and shortage starts 

to  accumulate. 

   Sij  Beginning of cycle j for item i, with Sio=0 and 

Sin=H. 

    sij  Time  at which the shortage for item i reaches 

its maximum in cycle  j. 

     hij     Inventory holding cost in cycle j  per unit of 

item i per unit of time . 

    bij     Shortage cost in cycle j per unit of item i per 

unit of time.  

      kij    Set up cost for item i in cycle j. 

     cij  Unit production cost of  item i in cycle j.  

 

III.  MODEL FORMULATION 

For each item i (i = 1,2,…m) and each cycle time j 

(j = 1,2,…n), the system operates as follows. The 

production starts at time Sij-1 to build up the 

inventory level at a rate Pij - Dij - θij Iij(t)  until time 

tij where the production stops. Then the stock level 

depletes at a rate Dij - θij Iij(t) until it reaches zero at 

time Tij  where shortages start to accumulate with  

rate  -Dij  up to time  sij, after which the production 

is restarted with rate  Pij - Dij until time Sij to fulfill 

both the shortage and the demand.  A typical 

behavior of the system is shown in Fig. 1. 
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Before writing the mathematical formulation of the 

problem,  we note that the jth cycle can be divided 

into four intervals. That is, Sij-1 ≤ t < tij , tij ≤ t < Tij , 

Tij ≤ t < sij  , sij ≤ t < Sij.  For  item i and cycle j, the 

inventory level Iij(t)  is governed by the following 

differential equations :   

d Iij(t)/dt = Pij - Dij - θij Iij(t)      Sij-1 ≤ t < tij,    (1) 

with initial condition       Iij(Sij-1) = 0,    

d Iij(t)/dt = - Dij - θij Iij(t)          tij ≤ t < Tij        (2) 

with ending condition       Iij(Tij) = 0,   

 d Iij(t)/dt = - Dij     
 
                Tij ≤ t < sij           (3) 

with initial condition      Iij(Tij) = 0 ,  and  

 d Iij(t)/dt = Pij - Dij - θij Iij(t)      sij ≤ t < Sij      (4) 

with ending condition       Iij(Sij) = 0, 

The solution to (1), (2), (3), and (4) is given by: 

 Iij(t) =  

           

  Iij(t) =    

  Iij(t) = -             

Iij(t) = -            

 respectively .Integrating the right hand side of  

the last four equations, we obtain : 

  Iij(t) =   ;  

                                   (5) 

 Iij(t) =      ;   

                                         (6) 

Iij(t) =  ;     (7) 

Iij(t) =  

(8) 

Now, the amount  of  item i  being held in stock in 

period [   is given by   

 Iij( × 

  

Hence, the holding cost is  .  

Similarly the amount  of  item i being held in stock 

in period [   is given by   

 

Fig1. The variation of the inventory system in the given period 

 

Time 

Inventory level  

 Sij-1         tij 

 

Tij  sij   Sij 

H=Sin 

 

0=Si0 ti1 
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Iij(  

 

And hence the holding cost is  . 

The amount of shortage of item i in period [

  is given by  

Iij(     

 

Hence the shortage cost in period [   is 

  . Similarly , the shortage cost in 

period [   is  where 

Iij(    

 

Finally, the number of units produced from item i in 

cycle j is equal to   

    

Hence, the production cost of item i in cycle j  

is given by       

Thus the total net inventory cost of item i in cycle j 

, say     is given by   

 =   

 

 

 

 

The total net inventory cost for all items in the 

given time horizon of n cycles is given by  

    W =   

Thus, our problem is to minimize W as a function 

of  Sij-1 ,  tij , Tij ,  sij , and  Sij  subject to the 

following constraints :  

  Sij-1  < tij  < Tij  < sij  < Sij                      (11) 

  =  

                                         

(12) 

         

       i = 1,2,…m .    and          j = 1,2,…n 

Constraint  (11)  is a natural constraint which must 

be satisfied, otherwise the whole problem will be 

meaningful. Constraint (12) says that the inventory 

levels given by (5), and (6) at t = tij  are equal. 

Similarly, constraint (13) says that the inventory 

levels given by (6), and (7) at t = sij  are equal. 

Thus, our problem, call it (Q), is : 

  Minimize W =  

                                                   

For convenience, let us rewrite (12) and (13) as 

equality constraints : 

 

   = 0             (14)  

 

                                (15) 

 

IV.   SOLUTION PROCEDURE 

Consider problem (Q) where constraint (11) is 

ignored and suppose that the number of cycles n is 

fixed. Let’s call the new problem as (P). Clearly 

problem (P) is a nonlinear program with equality 

(Q) 
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constraints. Therefore the solution procedure used 

is  the Lagrangean technique. The Lagrangean 

function for problem (P)  is given by  

   =  W +  

  

 Where   =  

.    

For i = 1,2,…m , and  j = 1,2,…n. 

The first order necessary conditions for having a 

minimum are : 

 

 

Conditions (17) can be written explicitly as :  

 

 

  

 

 

  

  

  

 

 

  

for i = 1,2,…m , and   j = 1,2,…n-1. 

 

  

for i = 1,2,…m and  j = 1,2,….,n-1(see model 

assumptions) . Using  (21) and (22), we can express 

equations (18) and (20)  as : 

     

 

 
                                       

   From which, we get 

                              (24) 

(24) implies that (19a) and (23a) can be expressed 

as :  

× 

 

 

Let us denote by (S), the nonlinear system 

consisting  of  equations (19b), ,(21),(22),  (23b), 

and (24). Next we show that any solution that 

satisfies system (S) satisfies constraint (11). 

Theorem 1 . Any solution that satisfies system (S) 

satisfies constraint (11). 

Proof : From (14), we have:   
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which implies that 

   (a). 

Now, for j =1, we have  
 

 therefore  (a) s true for j=1. By 

induction on j, we can show that (a) holds for any j 

≥ 1.From (15), we have: 

  

which implies that  

    (b). 

Substituting (24) into (19a) and recalling (a), we get 

: 

 

 

                                       (c) 

But , the relation  needs not to be considered 

since the corresponding multiplier equals zero as an 

implication of  Kuhn-Tucker optimality conditions. 

Combining (a), (b), and (c), we get:  Sij-1  < tij  < Tij  

< sij  < Sij . This completes the proof of the theorem. 

As a consequence of theorem 1,  any solution to 

system (S) is a feasible solution to problem (P). 

V.  OPTIMALITY OF THE SOLUTION 

In this section, we derive conditions that guarantee 

the existence, uniqueness, and global optimality of 

solution to problem (Q). For that purpose, we first 

establish sufficient conditions under which the 

Hessian matrix of the Lagrangean function  

  is positive definite at any feasible 

solution of (P).  To compute the Hessian matrix of  

L we consider the following block matrices :  

  

  

After some calculations, we can easily show that 

the Hessian matrix has the following form : 
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By Balkhi and Benkherouf [2, Theorem 2], and 

Stewart [22], the above matrix is positive definite if  

                            (25a) , and 

 +  ,   j=2,3….n    (25b) 

  j=1,2, ….n      (26) 

  j=1,2, ….n-1   (27a) 

 and                           (27b) 

  

 j=1,2, ….n-1                                            (28) 

Recalling (14) and (15), we have : 

  

 

For i = 1,2,…m , and j = 2,3,…n, from (16) we 

have: 

  

 

𝜕2𝐿

𝜕𝑆𝑖𝑗 −1𝜕𝑡𝑖𝑗
=

−(𝑃𝑖𝑗  − 𝐷𝑖𝑗  )(ℎ𝑖𝑗 + 𝑐𝑖𝑗𝜃𝑖𝑗 )𝑒𝜃𝑖𝑗  𝑆𝑖𝑗 −1  – 𝑡𝑖𝑗   (29) 

Hence (25a) ⇔ 

 

         ⇔                (30)  

and (25b) ⇔ 

 

    ⇔   

 

                             (31) 

(Here we note that (31)⇒ (30), so no need for (30)). 

From (19a) : 

 

 

 

Thus (26) ⇔  

 

 

                          (32) 

Combining (30) with (32), we obtain : 

            (33) 

(33) is a significant relation between and  . 

However, we must take which satisfies (31) so 

that all second order conditions of optimality are 

fulfilled. From (20), we have 

 

 

Thus (27a) ⇔   

  which is always satisfied.  

Similarly, we can easily verify that (27b) is always 

satisfied. Finally, from (23) we have  
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Recalling (24), and replacing  j by j+1 in (29), we 

obtain 

𝜕2𝐿

𝜕𝑆𝑖𝑗 𝜕𝑡𝑖𝑗 +1
= −  𝑐𝑖𝑗 +1(𝑃𝑖𝑗 +1

− 𝐷𝑖𝑗 +1)𝜃𝑖𝑗 +1𝑒
𝜃𝑖𝑗 +1(𝑆𝑖𝑗 −1  − 𝑡𝑖𝑗 +1)

+ ℎ𝑖𝑗 +1(𝑃𝑖𝑗 +1

− 𝐷𝑖𝑗 +1)𝜃𝑖𝑗 +1𝑒
𝜃𝑖𝑗 +1(𝑆𝑖𝑗  − 𝑡𝑖𝑗 +1) = 0     

So (28) ⇔   

 

    which always hold since the 

holding cost is usually less than item production 

cost. Thus we have the following result: 

Theorem 2 . Any solution for which (31) holds is a 

minimizing solution for problem (P). 

Lemma 1 .  All turning points are functions of  

Proof : Given that  Then from (14),  

 is a function of , which in turn implies that 

(recall (19a))  is a function of  and that 

(recall(15)) is a function of . Now for j=2 and 

by the relation  (24),  is a function 

of  and therefore is a function of . From (14),  

 is a function of   and from (19a),   is a 

function of  and  hence a function of . 

Substituting in (15), we get that  is a function of 

. Repeating the same process, we obtain that all 

variables are functions of . This completes the 

proof of  the lemma. Now let                  

 

 
                            

 

Then we have the following important result : 

Lemma 2 :   ,  

for j=1,2,….n-1 and 

  ,for j=1,2,….n-2.             (34) 

Proof : Since  for j=1   ⇒  

 for j=1.  From (14) and with 

j=1, we have  

   

 . 

 Hence      ⇒  .  

Also from (19a) and (24) with j=1, we have 

ℎ𝑖1𝐷𝑖1(𝑇𝑖1 
′ − 𝑡𝑖1

′ )𝑒𝜃𝑖1(𝑇𝑖1  − 𝑡𝑖1)

+ 𝑐𝑖1𝐷𝑖1(𝑇𝑖1 
′ − 𝑡𝑖1

′    )𝑒𝜃𝑖1(𝑇𝑖1  − 𝑡𝑖1)

= −𝑏𝑖1𝐷𝑖1(𝑇𝑖1 
′ − 𝑠𝑖1

′ ) 

⇒    𝑇𝑖1 
′ − 𝑠𝑖1

′  < 0 ⇒   𝑇𝑖1 
′ − 𝑠𝑖1

′    . 

Finally, from(20) with j=1, we have: 

 

⇒    . Thus (34) holds 

for some k  and by induction we can then show 

that (34) holds for k+1. This completes  the proof of 

the lemma. 

Corollary 1 : All turning points are increasing 

functions of  and of each other. 

Proof : We have shown in lemma 1 that the turning 

points Sij-1 ,  tij , Tij ,  sij , and  Sij  are functions of 

each other and that all of them are functions of  ti1. 

Hence, by the chain rule of differentiation and the 

result of lemma 2, we can conclude that all these 

turning points are increasing functions of   and 

that  is an increasing functions of    is an 

increasing function of , and  is an increasing 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 101



 
 

function of  . This is so, since for example, we 

have : 

 

 

 

Hence, all turning points are increasing functions of 

 and of each other. This completes the proof of 

the corollary.  

Theorem 3 : Under condition (31), problem (P) has 

a unique and global optimal solution. 

Proof:  Since all turning points are functions of , 

we conclude that if  has been chosen adequately, 

then all other turning points  are also chosen 

adequately and we then must have  . Now, 

let us consider arbitrary starting point . If  is 

near the correct value, then  will be near H. 

However, for any choice of  and for any item i, 

we always must have 

  

(Recall (11)). Recalling that all turning points are 

functions of  , and that if =0 implies 

(from(14)) that  which in turn implies 

(from(19a)) that  and from (15)  . By 

induction, we can easily show that if =0, then  

  . Now, let  

  

Then F(0) = -H  and  

  

Recalling  relation (34), we have . That 

is  is an increasing function of   and that it 

takes a negative value for =0. This implies that 

equation (35) has a unique solution which is a 

minimizing solution by Theorem 2 . Thus problem 

(P)  has a unique and global optimal solution. This 

completes the proof of the theorem. 

Next, we show that problem (P) has a unique and 

global optimal solution for any value of n . For 

more details,  see Emet [13] . First, recall that the 

whole system depends on  which is to be 

determined correctly for any value of n. The 

following result gives us an insight about such a 

determination. Before that, let us consider two 

different schedules with the same starting and 

finishing points , say : 

Schedule 1 : (

 with 

and  

Schedule 2 : (  

with and . 

Lemma 3:  The turning  points of schedule 2 lie 

between the turning points of schedule 1. That is  

𝑆𝑖𝑗 −1 ≤ 𝑡𝑖𝑗   ≤ 𝑡𝑖𝑗 ≤ 𝑇𝑖𝑗   ≤ 𝑇𝑖𝑗 ≤  𝑠𝑖𝑗     ≤ 𝑠𝑖𝑗 ≤  𝑆𝑖𝑗
    ≤  𝑆𝑖𝑗  

  with   

Proof : By corollary 1, if we reduce    to , then 

all other turning points are to be reduced. Now, 

suppose our conclusion fails for some value k of j 

and for one inequality, while all other inequalities 

of (37) hold for j=k. That is suppose we, for 

instance, have  . Then, if we pass to the end 

points, we obtain 

  , which is a contradiction. If the 

conclusion fails for two inequalities, say  

and , then  which is also a 

contradiction with (37). Repeating the same 

arguments, we reach the desired result. This 

completes the proof of the Lemma. 

As an important corollary of the previous lemma is 

the following : 

Corollary 2 :  If condition (31) holds then the 

quantity 
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is a decreasing function of n. 

Proof : Let j=1 in (9).  The we have  

 

 

 
 (Recall (14)). Hence E  is an increasing function of 

.Now, consider the two schedules 1 and 2 as 

defined above. If we increase n by 1, then by 

Lemma 3, we have   which implies that  

E(n+1, )  E(n, ). Since E  is an increasing 

function of   the last inequality means that E is a 

decreasing function of n. This completes the proof 

of the corollary.  

Our last result in this paper is the following : 

Theorem 4 : Under conditions (31),  the underlying 

inventory system(Q) has a unique and global 

optimal solution. 

Proof : As a direct consequence of all above 

results, we start with a suitable value of   for n=1. 

If we increase n by 1, Then E would decrease. Such 

decrease of E shall stop after choosing new value of 

 less than the previous ones. Continuing the 

procedure in this manner, we shall eventually reach 

to a value of n, say n
*
, at which the function E starts 

to increase. Then the optimal value of n is n
*  

-1  . 

This optimal value of n with the corresponding  

optimal values of Sij-1 ,  tij , Tij ,  sij , and  Sij say 

 and  are our unique and 

global optimal solution for problem (Q). This 

completes the proof of the theorem. 

VI. CONCLUSION 

In this paper , we have considered  a  general multi-

item production lot size inventory problem for  a  

given finite time horizon of H units long . The time 

horizon is divided into n different cycles in each of 

which  a number of m items are produced. We have 

built an inventory model with the objective of 

minimizing the overall total  related inventory cost. 

Then we have introduced a solution procedure by 

which we could determine the optimal stopping and 

restarting production times for each item in each 

cycle in the given time horizon when shortages are 

allowed but are completely backordered. Then, 

quite simple and feasible sufficient conditions that 

guarantee the uniqueness and global optimality of 

the obtained solution are established .Such  optimal  

solutions  can lead  to optimal inventory policies for  

the different products.  Further research may 

include the possibility of having some parameters 

of such systems including the cost parameters as 

known functions of time or as known probability 

distributions. 
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