
 

 

  

Abstract—When simulating fluid flow and solute transport a 

more accurate modeling of the lithologic, geological and structural 

characters of an aquifer is of extreme importance in order to improve 

the reliability of the numerical simulations. On the other hand the 

information available for the setting up of a hydrogeological model is 

subjected to ambiguities due to not univocal interpretations or to 

uncertainties linked to the methodologies of measurement of the 

variables of interest. Therefore, hydrogeological characterization of 

heterogeneous aquifers, if carried out up to a high degree of detail, 

should not identify a univocal model but a set of “equifinal” 

solutions.  

In the present paper the application of Artificial Neural Network  

approach coupled with a Nested Sequential Indicator simulation has 

allowed to obtain the distribution of hydrogeologic parameters that 

are not only conditioned by the in situ measured values but also by 

the soft information coming from geolithology. The results show a  

fairly good relationship between parameters such as Transmissivity 

and Storage coefficient and the geolithologic architecture of the 

examined aquifer  

 

Keywords— geolithological characterization, lithotypes, 

Sequential Indicator Simulation, Artificial neural networks approach, 
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I. INTRODUCTION 

roundwater circulation as well as contaminant 

propagation is strongly affected by some aquifer 

properties. In the majority of studies, the sensitivity 

parameter of groundwater flow and transport models has 

proved to be hydraulic conductivity that can provide 

preferential pathways for groundwater movement and porosity, 

that influences flow velocity and takes part in the dispersive 

and diffusive phenomena occurring in the aquifer [1]. 

Usually in classical hydrogeological modeling of aquifers 

hydraulic properties are represented by equivalent parameters 

 
Manuscript received April 25, 2009: Revised version received May, 2009.  

Claudia Cherubini is with Dipartimento di Ingegneria Civile e Ambientale 

Politecnico di Bari Via Orabona 4, 70100 Bari, ITALY (phone: 

0039356881198, fax: 00390805481878, e-mail claudia.cherubini@poliba.it). 

Fausta Musci is with Dipartimento di Ingegneria Civile e Ambientale 

Politecnico di Bari Via Orabona 4, 70100 Bari, ITALY (e-mail: 

f.musci@poliba.it). 

Nicola Pastore is with Dipartimento di Ingegneria Civile e Ambientale 

Politecnico di Bari Via Orabona 4, 70100 Bari, ITALY (e-mail:  

nicola.pastore.ing@gmail.com). 

 

that are not representative of the geolithological reality but fit 

the observed data by means of calibration processes. 

This method can be acceptable for some parameters but has 

proved to be oversimplified for the previously examined 

parameters, being both of them strongly linked to the aquifer 

geolithologic architecture. This can lead to not accurate 

predictions in groundwater circulation and contaminant 

propagation. 

A more accurate modeling of the lithologic, geological and 

structural characters of an aquifer is of extreme importance 

when simulating fluid flow and solute transport in order to 

improve the reliability of the numerical simulations. 

The aim of the present paper is to set up a hydrogeological 

model of a heterogeneous aquifer by means of an integrated 

approach. This method combines the use of pixel method 

called Nested Sequential Simulation for aquifer stochastic 

geolithological characterization implemented in a previous 

study [2] and Artificial Neural Networks in order to find a 

relationship between the obtained reconstruction and the 

measured hydraulic parameters. In such context the 

investigations carried out in the study area have determined the 

Transmissivity and Storage coefficient of the aquifer, 

parameters linked respectively to hydraulic conductivity and 

porosity.  

In this way it is possible to obtain a hydrogeological model 

that is conditioned not only the in situ measured values but 

also by the soft information coming from geolithology.  

II. GEOLOGICAL SETTING 

The study area is located in the so called Apulian Foreland, 

created during the Apennines’ orogenesis, which is constituted 

by a thick succession of carbonatic rocks of platform. It 

appears as a high relief zone of tectonic origin, defined 

“horst”, extended in direction North- West- South-East, from 

which two opposite step faults branch off: one plunges towards 

the Adriatic while the other plunges towards the Apennine. 

Transversal faults interrupt the continuity of the horst 

structure of the Apulian Foreland constituting the depression 

of the Apulian Tavoliere, between Gargano and Murge, and 

the Plane of Brindisi, between the Murge and the Serre 

Salentine. Specifically the area is located in the tectonic 

depression opened towards the Adriatic coast and the Plane of 

Brindisi. This stepped depression has been filled up by the 

deposits of the Cycle of the Bradanic Trough and by the 

terraced marine deposits [3]. 
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The most ancient formation is represented by the micritic 

limestones and dolomites that can be ascribed to the platform 

formation of the Altamura Limestone, referred to the upper 

Cretacic. This formation constitutes the basement of the 

Salento Peninsula and extends for thousands of meters in 

depth. The asset is generally tabular with weakly dipping 

layers in direction SSE and SE.  

Transgressively on this formation are present the soils 

corresponding to the lower terms of the sedimentary cycle of 

the Bradanic Trough constituted by the calcarenitic and 

bioclastic calciruditic deposits of coastal environment 

recognized as Gravina Calcarenites (upper Pliocene- Lower 

Pleistocene). 

In continuity of sedimentation are present banks of 

subapennine clays (Lower Pleistocene) constituted by silty 

clays, marly clays and sandy clays and of blue- gray color, 

subordinately yellowish, averagely fossiliferous with horizons 

or sandy lenses. The deposits are based in continuity of 

sedimentation on Gravina Calcarenites and locally, along 

transgressive surfaces, directly on the Mesozoic deposits of the 

Altamura Limestone. 

In the upper part there is the presence of more markedly 

silty- clayey and silty –sandy levels. This formation constitutes 

the impermeable substrate that sustains the shallow aquifer of 

the plain of Brindisi. The spatial continuity of these clayey 

deposits is of difficult reconstruction due to the frequent 

variations in thickness and local heterotopies with the 

calcarenitic deposits. 

Over this clayey formation the Terraced Marine Deposits 

(middle- upper Pleistocene) are detectable, constituted by 

alternation of yellowish quartzous sands and organogenic 

calcarenites locally at lithoid character, with local 

intercalations of conglomeratic layers. Locally are detectable 

intercalations of lenses of grayish silts with particular 

frequency in the lower portion in proximity to the contact with 

the underlying subapenninic clays. These deposits lie along 

surfaces of marine abrasion detectable in the clayey and 

calcarenitic deposits of the cycle of the Bradanic Trough as 

well as of the Mesozoic limestones. This unity represents the 

shallow aquifer sustained by the blue- gray clays.  

Where the marine terraced deposits do not crop out, above 

are detectable continental alluvial and eluvio- colluvial 

deposits (Olocene), constituted by sands, silts and clays 

variously distributed among themselves. They crop out 

principally along the erosion rills and in the most depressed 

areas near the coast, partially coating the pleistocenic terraced 

deposits. These deposits are interested by frequent oxidation 

phenomena and locally contain lapideous fragments and 

carbonatic material. Locally the continental deposits are of 

peaty type, indicating areas of deposit of marshy environment.  

The geologic- structural lithologic characters give rise to 

two well distinct hydrogeological environments: the first 

shallow one, characterized by a phreatic groundwater 

contained in the terraced marine pleistocenic deposits and 

sustained by the pliopleistocenic clays. This aquifer, with 

modest discharge, is characterized by a local character and a 

maximum thickness of 37 m; the second, deep aquifer is 

represented by a calcareous aquifer constituted by carbonatic 

cretaceous fissured and karstified rocks, as well as calcarenites 

located in continuity and above the cretaceous rocks. This 

groundwater is nourished both by the precipitations coming 

upstream of the examined area, where the carbonatic formation 

crops out, and by the subterranean downflow coming from the 

contiguous Murgia. This groundwater flows towards the coast 

with hydraulic gradients generally lower than 0.05%, with 

modest piezometric heads, even many kilometers far away 

from the coast. 

 

III. NESTED SIS ALGORITHM 

 
Sequential indicator simulation (SIS) is a pixel based 

simulation algorithm that builds a categorical image, pixel 

after pixel, by drawing local probability distributions from the 

categories [4].  

The principle of SIS algorithm is simple; it consists in the 

simulation of the series of K indicator values sequentially one 

location after another, each simulation being made conditional 

to all prior indicator data and all previously simulated 

variables [5]. 

The SIS algorithm consists in the following steps: 

1. Define a random path that visits each location of the domain 

once. In each location u, retain a specified number of 

neighboring conditioning data including both original indicator 

data and previously simulated location values. 

2. At each location u  along the path, estimate the membership 

probabilities of u  to each categorical variables: ( )nop k |;* u  

where n is the number of neighboring conditioning data. 

3. Obtain Monte-Carlo simulation of the Indicator value by 

drawing a uniform random number [ ]1,0∈p  and by verifying 

for each categorical variable K if ( )∑
=

≤
k

j

j nopp
1

* |;u . If the j
th
 

condition is true then the location u  is assigned to categorical 

variable oj, if not proceed with the j+1
th

 condition in an 

analogous manner. 

4. Add the simulated indicator value of the location u  to the 

data set. 

5. Repeat the previous steps 2, 3 and 4. 

6. When all location u have been simulated, the stochastic 

realization is obtained. 

The estimation of the membership probabilities of u  to 

each categorical variable is obtained by solving a simple 

kriging system with local varying prior mean: 

( ) ( ) ( ) ( ) ( ){ }αα
α

αλ upkuIpnop
n

l −⋅+= ∑
=

;|;
1

* uuu  

Where ( )uαλ  are the simple kriging weights, ( )kuI ;α
 are the 

indicator data at locations 
αu , ( )up  and ( )αup  are the 

respectively prior local probabilities at locations u  and 
αu . 

The SIS algorithm is not sufficient to fully characterize 

low-entropy complex structures. In order to overcome this 

difficulty a specific procedure, called nested simulation 

technique, is proposed with the purpose to achieve a full 

geological characterization of aquifer. 
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This procedure consists in consecutive simulations for each 

categorical variable set constrained on the result of the 

previous categorical variable set simulations. The constrains 

are obtained by introducing the attraction parameter a(u) [6] 

which increases or decreases the prior local probability if the 

location u  is near to the bound of the previously simulated 

categorical variables. The prior local probability is obtained 

from vertical marginal proportion curve whereas the attraction 

parameter from embedded transition probability matrix for 

vertically successive occurrence of the lithofacies 

characteristic of depositional systems. 

 

IV. ARTIFICIAL NEURAL NETWORK AND TRAINING 

 

The Artificial Neural Networks ANN are computational 

tools inspired by biological nervous system. Recently they 

have been used in a wide range of geological such as well test 

analysis [7], log interpretation [8], lithofacies modeling, 

permeability and porosity modeling [9], [10], [11], [12] and 

run-off modeling [13]. ANN are composed by a set of nodes, 

called neurons, interconnected in a network. 

The most commonly used architecture of network is called 

feed forward network as the datum devolves one way through 

the network from the input layer, to the one or more hidden 

layers and finally to the output layer. In each elementary 

neuron of the hidden layer the set of normalized input data are 

converted by a weighting factor: 

∑
=

=+⋅=
m

i

jiijj wxwy
1

0 n1,...,j   

where m are the input node, n are the hidden node and w0j are 

the possible bias for the hidden node j. This function 

represents the input for the a differentiable transfer function 

“f”, such as sigmoid function, that affords the final output of 

the neuron. In analogous manner the output of network are 

represented as: 

l1,...,k   n1,...,j  
1

0
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where l are the output nodes [14]. 

Once weights and biases have been initialized, the network 

is ready for learning. Back-Propagation neural network BPNN 

is a supervised learning technique as input dataset and the 

corresponding target output dataset are used to train a network 

in order to approximate the relationships themselves. The 

BPNN learns through an iterative procedure: the weights and 

the biases are continuously adjusted as long as the 

performance function, described by the mean of sum square of 

the errors network, is minimal [15]. The numerical 

optimization techniques, such as Levenberg-Marquardt 

algorithm, can be used for faster training. In each iteration step 

of damped version of Levenberg-Marquardt algorithm the 

current weight vector wk is updated by a new estimate: 

[ ] k

T

kkk

T

kkk eJIJJww
1

1

−

+ +−= λ  

Where Jk is the Jacobian matrix of the network errors 

respect to the weights and biases ek is the network vector error 

and λk is the damping factor adjusted for each iteration [16]. 

One of the biggest problems in training neural networks is 

the overfitting of the training data. This problem can be 

overcome by using Bayesian regularization approach that 

control model complexity [17].  

Usually in the regularization the mentioned error function 

is modified with additional terms: 
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These terms permit to find weight factors with low aptitude 

to overfit the training data. The optimal inference of parameter 

α and β can be obtained assuming that the targets and the 

weights and biases are defined through Gaussian distribution 

where the parameters are related with variances of these 

distributions: 
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where H represent the architecture of the network. Applying 

Bayes’ theorem [18]: 

( ) ( ) ( )
( )HDP

HPHDP
HDP

|

|,,,|
,|,

βαβα
βα =  

The factor ( )HDP ,,| βα  is called the “evidence” of the 

parameters themselves. Theirs optimal values can be attempted 

by searching the maximum of log of the evidence: 
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where A is equivalent to the Hessian matrix of the M(w). 

                                                       RESULTS 

V. IDENTIFIED AND MODELING LITHOFACIES UNIT SEQUENCES 

 

Starting from the stratigraphies of about 220 boreholes 

carried out in the study area (that extends for 6.5 km
2
), the 

soils belonging to this domain, on the basis of their 

lithostratigraphic characteristics have been grouped into the 

following five principal lithologic unities reported from the top 

to the bottom, after a shallow layer of anthropic material: 

1. Filling material. Has a medium thickness variable 

generally from 0 and 2.5 m with maximum thicknesses equal 

to 6 m from the ground level. It is constituted by elements of 

various grain sizes and locally fragments of concrete and 

bricks are detectable.  

2. Alluvial and colluvial deposits (Olocene). Have an 

average thickness variable generally from 0.5 to 5 m from the 

ground level. They are constituted by layers of sand, silt, silty 

sands and sandy silts, clayey silts and silty clays; especially on 

the basal part they are rich in carbonatic concretions. 

3. Terraced marine deposits (Middle – Upper 

Pleistocene). Characterized by intercalations of fractured and 
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weathered calcarenitic levels and fine sand and at times silty 

sand or sandy silt; locally are present intercalations of lenses 

of clayey silts. These deposits host the shallow aquifer and 

have an average thickness of the order of 12-18 m from the 

ground level.  

4. Silty sands of the Middle Pleistocene. Constituted by 

sands, sandy silts and silty sands of gray color. The silty 

fraction increases with depth together with the decrease of the 

sandy fraction. This deposit constitutes the top of the 

aquiclude. 

5. Submarine blue – gray clays (Lower Pleistocene). 

Characterized essentially by gray clays that are detectable at 

depths higher than 26 m and constitute the aquiclude that 

sustains the shallow aquifer. This lithologic unity has not been 

characterized due to scarcity of information regarding it. 

The horizon algorithm of GMS program is used to build three-

dimensional models of lithofacies unit sequences. These 

algorithms honor borehole data and the manually cross-

sections that define the interpreted structure of the litho 

sequences between boreholes (fig 1 a). This geological model 

represents the basis for the next stochastic simulations. 

 

VI. GEOSTATISTICAL SIMULATION 

 

To the model of the lithologic unit sequences is associated 

a three-dimensional grid constituted by (215×215×60) = 

2.773.500 cells. In order to incorporate stratigraphic dips in 

the simulations the real vertical depth of the sample indicator 

data is transformed into a standardized depth through the 

following equation: 

[ ] [ ] [ ]1,0 
1 ∈−⋅−= −

bottop

j

bot

j

true

j

st zzzzz  

Where
topz  and 

botz  are the depths of top and bottom of the 

grid, j

stz  is the standardized horizon, j

truez is the true vertical 

depth, j

botz  is the depth of the bottom of the j-th lithofacies unit 

sequence. Then geostatistical simulations are performed for 

each lithofacies unit in a regular standardized grid honoring 

the standardized indicator data, the vertical marginal 

probability, the embedded transition matrix, and the spatial 

correlation structure inferred from experimental variograms 

[2]. 

In the nested technique it is important to establish the order of 

the consecutive simulations of the lithotype set. Generally the 

principle is to order the lithotype from the highest entropy one 

to the lowest. 

The simulation results obtained on the regular grid are 

smoothed using the GSLIB program “trans” (fig 2b) and are 

joined in the previous three-dimensional grid through the 

back-transformation of the standardized vertical depth into the 

true vertical depth. The final result is shown in fig. 2 c. 

 

 
 

Fig. 1 a) Vertical facies proportions curves b) embedded transition matrixes c) spatial correlation structure. b = Alluvial and 

colluvial deposits, 1 = Silt, 2 = Sandy silt and silty sand, 3 = Sand, 4 = Clayey silt and silty clay, c = Terraced marine deposits 

(Middle – Upper Pleistocene), 5 = Calcarenitic levels, 6 = Sand, 7 = Sandy silt and silty sand, 8 = Sand with inclusions of 

calcarenite, 9 = Silt, clayey silt, silty clay and clay, d = Silty sands of the Middle Pleistocene, 10 = Sand, 11 = Silty sand and 

sandy silt, 12 Silt. 
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Fig. 2: a) three-dimensional models of lithofacies unit sequences b) geostatistical simulation results on the regular grid c) final result.  

Legend: a = Filling material, b = Alluvial and colluvial deposits, 1 = Silt, 2 = Sandy silt and silty sand, 3 = Sand, 4 = Clayey silt and silty clay, 

c = Terraced marine deposits (Middle – Upper Pleistocene), 5 = Calcarenitic levels, 6 = Sand, 7 = Sandy silt and silty sand, 8 = Sand with 

inclusions of calcarenite, 9 = Silt, clayey silt, silty clay and clay, d = Silty sands of the Middle Pleistocene, 10 = Sand, 11 = Silty sand and 

sandy silt, 12 Silt, e = Submarine blue – gray clays (Lower Pleistocene). 
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VII. WELL TEST ANALYSIS  

 

The carried out investigations consist in recovery tests 

executed in piezometers located in the study area, 

characterized by constant withdrawals, (variable from 

piezometer to piezometer) and test duration variable from 1 to 

2 hours, depending on the point of withdrawal. The data 

obtained from the tests are the values of residual drawdown, s’, 

as a function of time, measured at the end of the pumping.  

In the study area the aquifer behavior has been detected as 

confined in some zones and phreatic in others.  

Therefore, in order to determine the hydrogeologic 

characteristics of the aquifer (Transmissivity, Storage 

coefficient) the two different aquifer behaviors have been 

assumed and for both of them the T and S values have been 

determined in correspondence of which the curves have best 

fitted the experimental data. 

For this aim an algorithm of optimization has been 

implemented based on simulated annealing with two different 

objective functions, the former that makes the assumption of 

artesian aquifer and the latter that considers the aquifer as 

phreatic. 

The first objective function is represented by the difference 

between experimental data and the theoretic curve, obtained 

from the following equation:  

( ) ( )trZQtrZQs ,,' ⋅−+⋅= τ  

In the second case, the objective function has been 

obtained by means of the equation: 

( ) ( )trZQtrZQHH ,, ''22

0 ⋅−+⋅=− τ  

With a corrective contribution on the storage coefficient, in 

order to take into account the reduction in aquifer saturated 

thickness; the corrected value S* is obtained by means of the 

following formulas [19]: 

S
sH

H
s

0

0* ⋅
−

=  

Where S is effective porosity and s mean drawdown in the 

considered point. 

The transmissivity (T) and storage coefficient (S) values 

have been calculated by means of the algorithm with the 

objective function 1 and 2. 

For each piezometer a graph has been realized, in which 

the experimental data and the theoretic curve are represented. 

By means of the diagrams it has been possible to evaluate if 

the theoretic curve approximates the mentioned data, once 

fixed an error range equal to the standard deviation of the 

theoretic curve (error bars). From the comparison of the values 

of the aquifer hydrogeologic parameters, calculated with the 

Theis recover function and with the algorithm that uses the 

objective function 1 and 2, it has been possible to ascertain 

that the obtained results have the same magnitude order. 

In the subsequent analyses the data obtained by means of 

the algorithm have been used, rather than the ones determined 

by means of the Theis recovery function, because this formula 

allows to estimate just transmissivity. 

From the analysis carried out on graphs, obtained from the 

minimization algorithm it has been possible to select the T and 

S values in correspondence of which the curves have best 

fitted the experimental data. 

The algorithm that make use of the objective function 1 

have proved to be the most representative of the effective 

aquifer behavior, except in some piezometers for which the 

theoretic curve of the objective function 2 best approximates 

the experimental data. 

The T and S values in correspondence of four piezometers 

have been discarded because the theoretic curve, for both 

objective functions, does not approximate the experimental 

data. This exclusion can be attributable to the theoretic curve 

that is not adapt to fit the data or to the data themselves that 

can be affected by errors. In figure 3 and 4 are reported the 

histograms of the obtained T and S values.   

 
 

Fig. 3 Histogram of Transmissivity [m2·s-1] 

 
Fig. 4 Histogram of Storage coefficient 
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VIII. ANN TRAINING/VALIDATION AND SIMULATION RESULTS 

 

The three-dimensional geo-lithologic model of aquifer is 

transformed in a 13 input signals for ANN. Each input i
th

 

signal represent the density of the correspondent i
th

 lithotype 

(total volume of lithotype per unit volume of the aquifer). The 

output of the ANN are 2 signals as: horizontal trasmissivity T 

and specific storage S previously determinated. In order to 

have a more efficient training session the input and the output 

signals are pre-emptively standardized with respect to the 

range of the all values. In this manner they are scaled in the 

range [-1, 1]. After training session or simulation the 

standardized outputs are back-scaled in the original range. 

In order to choose various networks models, such as 

different network architectures, the cross-validation approach 

called “leave-v-out” are used. The target data set are divided in 

k subsets. In this specific case k are set equal to a range of 5 to 

the total number of targets. The networks are trained k times, 

leaving for each time a subset. When the k subsets are 

terminated, they are used to compute the error of the model 

through the mean square error approach. 

The training/validation session adopts the following 

algorithm: 

1. For each network architecture, for each k value the ANN are 

trained using Bayesian regularization approaches. 

2. Before training a network weight and biases are set to a 

random value uniformly distributed in the range [-0.15, 0.15]; 

3. For each iteration step of the training session: Compute the 

Hessian matrix A of the function M(w); Set α and β using the 

following implicit equation [20]: 

( )[ ]
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21-AT
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
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⋅⋅+−= ∑

N

i

ienN αβ ;  

Update weight and biases using Levenberg-Marquardt 

algorithm. When the training sessions are terminated, compute 

the validation errors for each k subset. 

4. Repeat 2, 3 and 4 steps as long as the validation subsets are 

terminated. 

5. In this way it is possible to choose one or more network 

architectures that presents the smallest validation error. 

This algorithm is performed in scilab environment [21]. 

The optimal architecture network results constituted by two 

hidden layers which respectively present 12 and 13 nodes. Fig 

5 shows the variation of the validation errors for different 

architecture models. The correlation coefficient is equal to 

0.967 for transmissivity values and 0.996 for storage values. 

A qualitative analysis of the maps of Transmissivity (Fig. 6c) 

and Storage (Fig 6d) obtained reveals interesting results 

compared with the density maps of silt, clayey silt, silty clay 

and clay clays (lithotype 9) (Fig 6a) and calcarenitic levels 

(lithotype 5) (Fig 6b) present in terraced marine deposits.  

The comparison shows that in correspondence of zones where 

the density of lithotype 9 is higher the transmissivity values are 

lower; as far as lithotype 5, no direct relationship has been 

detected, as this lithotype can have different degrees of 

compactness due to different degrees of fracturing or 

degradation, that provide different transmissivity values. On 

the other hand, lithotype 5 shows a relationships with the 

storage coefficient, in fact where the density of lithotype 5 is 

higher storage values are lower, moreover high density of 

 
 

Fig. 5 Validation errors. X1: numbers of nodes of the first hidden layer; X2: numbers of nodes of the second hidden layer 
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lithotype 9 corresponds to high storage values. 

These results have proved to be coherent on the 

hydrogeological and geomechanical point of view. In fact, 

according with literature [22], values of hydraulic conductivity 

of silt, clayey silt, silty clay and clay are known to be orders of 

magnitude lower than K values belonging to calcarenitic 

levels. As far as storage coefficient, it depends on soil 

compressibility and porosity; both these parameters are lower 

for calcarenitic levels compared with silt, clayey silt, silty clay 

and clay.  

A Sequential Gaussian Simulation has been performed on 

Transmissivity values and the results (Fig 7) have been 

compared to the ones obtained by means of the integrated 

approach. 

From the comparison it can be emphasized that the 

simulations obtained by means of the sequential Gaussian 

method show a more homogeneous behavior than the ones 

 

Fig. 6 ANN results. a) density map of silt, clayey silt, silty clay and clay (lithotype 9), b)density map of calcarenitic levels (lithotype 5), c) 

Transmissivity map [m2·s-1], d) Storage map [m-1]. 

 
Fig. 7  Sequential Gaussian Simulation of Transmissivity  
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obtained by considering also the information of the 

geolithological model. The reason is attributable to the fact 

that the former is just based on one source of data 

(Transmissivity values), whereas the latter considers also the 

conditioning of the geolithology. 

 

IX. CONCLUSION 

 

This study is aimed at setting up a hydrogeological model of 

an heterogeneous aquifer by means of an integrated approach.  

The geological reconstruction obtained by means of the nested 

indicator simulation technique has allowed to build an  

hydrogeological model of the aquifer, by means of 

conditioning properties such as transmissivity and storage 

coefficient to the soft information coming from geolithology. 

The nested sequential indicator simulation even if remaining a 

methodology based on two point– statistics has provided a 

satisfactory detailed geological characterization that coupled 

with Artificial Neural Networks has allowed to find a 

relationship between the obtained reconstruction and the in 

situ measured hydraulic parameters.  

The application of the Bayesian regularization and “leave-v-

out” cross-validation approach has allowed to choose the 

optimal regularization parameters and the optimal network 

architecture. The results obtained have proved to be 

satisfactory in that the correlation coefficient between target 

values and simulated values is relatively high. This result is 

comforted by the qualitative comparison, based on 

hydrogeological and geomechanical knowledge, between the 

input density map of lithotypes 9 and 5 and the output maps of 

the mentioned hydraulic parameters. As far as transmissivity, 

its values are lower in correspondence of zones where the 

density of lithotype 9 is higher; whereas, as far as storage 

coefficient, its values prove to be lower where the density of 

lithotype 5 is higher, and increase with increasing density of 

lithotype 9. 

The geological and hydrogeological reconstruction obtained 

by means NSIS and ANN permits to improve the 

comprehension and to provide an accurate prediction of flow 

and transport phenomena within the study domain by means of 

the successive implementation of a numerical modeling. 

Therefore this knowledge represents an important boundary 

condition in the economic evaluation connected to resource 

management, risk assessment and clean up strategies. 
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