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Abstract—Capturing functionalities and modeling control 

behavior are primary requirements in design and development of a 
complex system. Automata theory plays a vital role in modeling 
behavior while Z notation is an ideal specification language for 
describing state space of a system. Consequently, integration of 
automata and Z notation will be a useful tool facilitating and 
increasing modeling power for complex systems. Further, 
nondeterministic finite automata (NFA) may have different 
implementations and therefore it is needed to verify the 
transformation from diagrams to code. If we describe formal 
specification of a given nondeterministic finite automata before 
implementing then confidence over transformation can be increased. 
In this paper, we have combined NFA and Z and a linkage is 
established between these approaches. At this level of integration, we 
have given a formal procedure to transform NFA to Z. A string 
accepter is designed and then extended to the language accepter. 
Finally, NFA accepting union of two regular languages is constructed 
by describing formal specification of their relationships. The 
specification is analyzed and validated using Z/EVES tool.

Keywords—Integration of approaches, mathematical modeling, 
automata theory, Z notation.

I. INTRODUCTION

UTOMATA have various applications in computer 
science and engineering. The traditional applications of 

automata theory include pattern matching, compiler 
constructions, software verification, defining a regular set of 
finite words of a language and modeling control behavior of 
complex systems. The human computer interaction, 
optimization of logic based programs, specification and 
verification of protocols [1] and cryptography are some 
modern applications of automata theory.

The Z notation is a formal language which is based on set 
theory and first order predicate logic used for describing and 
modeling the systems at an abstract level of specification [2]. 
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Usually we use Z for specifying the abstract data types and 
sequential programs by defining state space of a system and 
then operations in terms of relations over the state space. 

The design of complex systems requires functionality as 
well as its control behavior. The functional aspects of a 
software system can be decomposed in terms of its operations 
and constraints over the data types, and hence Z is an ideal 
application of it. The control behavior of a system can be 
visualized in terms of flows between the system’s functions 
where automata theory is very powerful in this aspect. 
Consequently, an integration of automata and Z is required 
increasing modeling power for complex systems which is one 
of the major objectives of this research. In this paper, we 
describe and develop a formal semantics of transformation for 
a subset of automata to Z focusing on non-determinism.

The both types, deterministic finite automata (DFA) and 
nondeterministic finite automata (NFA), are equivalent in 
power, in a sense, that if a language is recognized by a DFA it 
is also recognized by an NFA and vice versa. The NFAs are 
sometimes useful because constructing an NFA is much easier 
than constructing a DFA. This is due to the use of less
mathematical work in building NFA as compared to DFA. 
Further, many important properties in automata can be 
established easily by using NFA. To prove, for example, that 
concatenation or union of two regular languages is regular 
using NFA is easier than using deterministic finite automata.

Nondeterministic automata are abstract mathematical 
models of systems which can also be represented using 
diagrams. These mathematical models can be used to perform 
computations on a given input by a sequence of configurations. 
An NFA reads the entire input and for each subset of input it 
moves to a new state until all input has been read. After 
reading the entire input, if machine is able to reach any of the 
accepting state then the given input is accepted. Due to the 
different implementations of NFA [3], [4], its space and 
execution time must be different. Further, we require 
preserving semantics of transformation from diagrams in NFA 
to implementation. Therefore, if we give a formalization of an 
NFA then this transformation can be facilitated.

At this level of integration, first we have constructed NFA 
using Z notation. Then a string accepter is formalized and 
extended to the language accepter. Finally, union of two 
regular languages is described by formalizing the specification 
of their relationship which is further analyzed and validated 
using Z/EVES tool-set [5]. The main objective of this paper is 
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proposing an integration of automata and Z by giving their 
syntax and semantics relationships reducing implementation 
issues of nondeterministic finite automata.

Although linking formal approaches is a well researched 
area [6], [7], [8], [9], [10], [11] but there does not exist much 
work on formalization of graphical based notations. The 
research work [12], [13] of Dong et al. is close to ours in 
which they have combined Object Z and Timed Automata. 
Another piece of interesting work is listed in [14], [15] in 
which R.  L. Constable has given a constructive formalization 
of some concepts of automata using Nuprl. Some work of 
interest is reported in [16]. In [17], combination of Z notation 
and statecharts is established. A relationship between Z and 
Petri Nets is also investigated in [18], [19]. An integration of 
UML and B is given in [20], [21]. 

It is mentioned here that few results of this research were 
presented at [22], [23], [24]. Those preliminary results are 
refined in this research. In the refinement process, we observed 
that there were many inconsistencies and errors in those 
papers. And the more important is that it was not made a good 
use of Z notation. For example, the strings defined in the 
above papers were assumed to be a component of 
nondeterministic finite automata which is not true. In our 
refined results, strings are taken as input in the definition of 
string recognizer and language accepter. It was a conceptual 
error. Similarly, in our refined results, we have used schema 
renaming to create a new schema with same components 
because this is exactly what we did by giving very lengthy and 
poor specification in the previous results. Finally, few more 
errors and redundant information were identified in the old 
specification, which are fixed in these refined results.

In section 2, a survey on applications of formal methods is 
given along with a case study of programming interface to 
introduce some basic constructs of Z. In section 3, applications 
and limitations of NFA are analyzed. Integration of automata 
and Z is given in section 4. Analysis of the formal 
specification is given in section 5. Finally, the conclusion and 
future work are discussed in section 6.

II. FORMAL METHODS

A. An Introduction

Formal methods are mathematically based techniques and 
tools for the specification, design and verification of software 
and hardware systems [25]. Formal methods use mathematical 
notations for writing specification of a system to be developed. 
These notations are derived from the area of discrete 
mathematics such as logic, set theory or graph theory. The 
formal specification of a system is a set of mathematical 
expressions with well-defined syntax and semantic [26]. By 
techniques of mathematical refinements, formal methods can 
be used at every stage of systems development in software life 
cycle. Once formal specification of a system is written, it can 
further be refined into implemented system by a process of 
series of refinements. The validation and verification 
techniques in formal methods are applied at each phase of the 

software development process, which ensures consistency, 
correctness and completeness by increasing confidence over a 
system under construction. The traditional systems 
development approaches use natural languages or graphical 
notations to write a specification of a system which makes the 
specifications highly ambiguous. Unlike these traditional 
approaches, formal specification uses mathematical notations 
having same interpretation throughout the globe [27]. Further, 
the use of mathematics helps to have a deeper insight of 
system to be developed and provides an excellent medium for 
modeling of systems.

One of the major limitations of traditional software 
development approaches is that they lack the ability to prove 
the specifications ensuring the absence of errors. The errors 
are hidden under the graphical or textual notations [28], which 
penetrate to the later phases of development process and are 
usually identified at implementation and testing phases of a 
system. These errors are costly and difficult to fix at that stage 
[29]. On the other hand, formal specification enables us to 
carry out proofs and makes it possible analyzing properties of 
systems during early stages of the development and as a result 
errors and inconsistencies can be identified and removed 
thereat. Further, formal methods are being successfully applied 
for development of hardware and software systems. For 
instance, hardware engineers use VHSIC hardware description 
language to model integrated circuits [29].

       Fig. 1 Refinement process using formal methods

The process [30] of developing systems using formal
methods is shown in Fig. 1. Based on the model of software 
life cycle, the process described in the figure can be 
understood as follows. The ‘Requirements’ are the result of 
requirements analysis and is normally described in informal 
language. The ‘Specification 1’ corresponds to stage of 
functional specification, and from ‘Specification 2 to n’ 
corresponds to the stage of design. The refinement from 
‘Specification n’ to ‘Program’ corresponds to the stage of 
implementation or coding. Validation and verification are two 
basic principles that arise in systems development. Validation 
addresses whether the system that is produced actually fulfills 
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the requirements. On the other hand, verification attempts to 
establish whether the product of the particular phase of the 
software process meets the requirements established during the 
previous phases of the software development life cycle.

The Z notation is a model oriented approach based on set 
theory and first order predicate logic [31] used for specifying 
behavior of abstract data types and sequential programs. Z is 
usually used for systems development because it describes 
state space of a system and operations which can be performed 
over it. Although formal methods are being successfully 
applied in many research areas of computer science but at the 
current stage of development in formal methods, it requires an 
integration of formal and traditional approaches. In this paper, 
Z is selected to be integrated with automata theory because a 
natural relationship exists between these approaches.

B. Case Study: A Programming Interface

A brief overview of some important structures and operators 
of Z is given by taking a case from a book on “using Z: 
specification, refinement and proof” by Woodcock and Davies 
[32]. A programming interface is taken as case study for the 
file systems. A list of operations which is defined after 
defining file and an entire system can be described as: (i) read: 
used to read a piece of data from a file, (ii) write: used to write 
a piece of data to a file, (iii) access: may change the 
availability of a file for reading and writing over the file of the 
system and (iv) file and system are data types whereas the new 
system is defined for introducing the concept of renaming in Z. 

A file is represented as a schema using a relation between 
storage keys and data elements. For simple specification, basic 
set types are used. In the formal notation, name, type, keys and 
data elements of a file are represented as Name, Type, Key, 
and Data respectively in Z notation as given below. An 
axiomatic definition is used here to define a variable null
which is used to prove that the type of a file cannot be null 
even there are no contents on a file.

[Name, Type, Key, Data]; null: Type

A file consists of two components, i.e., file contents and its 
type which are specified by contents and type respectively. 
The schema structure is usually used because of keeping 
specification both flexible and extensible. In the predicate part, 
an invariant is described proving that the file type is non null 
even there are no contents on it. As a file can associate a key 
with at most one piece of a data and hence the relation 
contents is supposed to be a partial function. 

File 
contents: Key  Data
type: Type

type  null


The read operation is defined to interrogate the file state of 
the system. A successful read operation requires an existing

key as input and provides the corresponding data as output. 
The symbol is used when there is no change in the state of a 
component. Now the structure File means that the bindings 
of File and File’ are equal. The decorated file, File’, 
represents the next state of the file. Here, it is in fact 
unchanged because the k? is given as input and the output is 
returned in output variable d!. The symbols ? and ! are used 
with input and output variables respectively in the schema 
given below. In the predicate part of the schema, first it is 
ensured that the input key k? must be in the domain of contents 
which is a partial function. Then the value of data against the 
given key is returned in the output variable d! of type data.

Read 
File
k?: Key
d!: Data

k?  dom contents
d! = contents k?


Another operation is defined to write contents over a given 
file of the system. The symbol  is used when there is a change
in the state of a component. In the schema defined below, the 
File gives a relationship between File and File’ representing 
that the binding of file are now changed. The meaning of File’
is same as defined above. In this case, the write operation 
defined below replaces the data stored under an existing key 
and provides no output to the operation. The old value of the 
contents is updated with the maplet k?  d?. It is to be noted 

that file type remained unchanged as defined in the predicate 
part of the schema. The symbol  an override operator is used 

to replace the previous value of a key with the new one in the 
contents of the given partial function contents.

Write
File
k?: Key
d?: Data

k?  dom contents
contents' = contents  k?  d?
type = type'


The structure file is reused in description of a file system. 
As a system may contain a number of files indexed using a set 
of names and some of which might be open. Hence, the system 
consists of two components namely collection of known files 
and set of files that are currently open. The variable file is used 
as a partial function to associate the file name and its contents. 
The variable open is of type of power set of Name. Finally, it 
is defined that the set of files which are open must be a subset 
of set of total files of the system as described in the predicate 
part of the schema System as given below.
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System 
file: Name  File

open:  Name


open  dom file



As the open and close operations neither change name nor 
add and remove files of the system and hence both of these are 
the only access operations. On the other hand, it may change 
the availability of a file for reading or writing. The schema 
described below is used for such operations. The variable n? is 
used to check if a file which is required to be accessed exist in 
the system. It is also described that the file is left unchanged.

FileAccess 
System
n?: Name

n?  dom file
file' = file


Renaming is another important concept in Z notation which 
we have used in this paper. For example, if we require creating 
another system with same pattern but with different 
components then renaming can be used rather than creating the 
new system from scratch. Renaming is sometimes useful 
because in this way we are able to introduce a different 
collection of variables with the same pattern. For example, we 
might wish to introduce variables newfile and newopen under 
the constraint of existing system System. In this case, the new 
system named as NewSystem can be created by renaming in 
horizontal form by defining: NewSystem  System[newfile/file, 

newopen/open] which is equivalent to the schema NewSystem
as given below in the vertical form.

NewSystem
newfile: Name  File
newopen:  Name

newopen  dom newfile


III. FINITE AUTOMATA

A. An Introduction

Automata theory has various applications and it plays an 
important role in many areas of computer science. The syntax 
analysis, natural language processing, speech recognition, 
modeling control behavior are some of the traditional 
applications of it. Automata have emerged with several 
modern applications in which, optimization of logic based 
programs, design, specification and verification of protocols 

[2] and human computer interaction are some other interesting 
examples of it. There are two major types of automata, i.e., 
deterministic and nondeterministic. Both have their own pros 
and cons. For example, deterministic automata makes 
implementation easy while nondeterministic automata are easy 
to construct and are used when the abstraction is required.

Both the deterministic and nondeterministic finite automata 
are equivalent in power, in a sense, that if a language is 
recognized by one it is also recognized by the other and vice 
versa. The NFAs are sometimes useful because its construction 
is much easier than constructing of a DFA. This is due to the 
use of less mathematical work in building NFA as compared to 
DFA. Further, many important properties in automata can be 
established easily by using NFA. To prove, for example, that 
concatenation or union of two regular languages is regular 
using NFA is easier than using deterministic finite automata.

B. Nondeterministic Finite Automata 

Nondeterministic finite automata (NFA) are abstract 
mathematical models of systems based on mathematical tools, 
techniques and notations which have graphical representation 
as well. These models can be used to perform computations on 
input in a predefined mechanism. An NFA reads a string of 
input symbols and moves to a new state after reading a part of 
input. The process continues and if we are able to reach any of 
the accepting state by using a series of movements then the 
given input is accepted. The driving function also called 
transition function decides the next state based on the input 
symbol and the current state given to it.

DFA and NFA differ only in terms of their transition 
functions. In case of a DFA, the transition function transforms 
the control of a machine from one state to a unique state for 
every symbol of the input. In case of NFA, for any input 
symbol, its next state is not uniquely determined by the 
transition function. There might be a single or a set of states, 
which can be empty, and this is why NFA is called 
nondeterministic automata. In formal theory of automata, it 
can be proved that both DFA and NFA are equivalent in 
power. It means that for any given DFA, one may construct an 
equivalent NFA and vice-versa. Conversion from NFA to DFA 
may cause exponential grow in size of DFA and, consequently, 
storage space may require proportional to the number of states 
in the given NFA. This is one of the major issues in 
representation of systems using NFA.

If in a given NFA, we are able to move from one state to 
another without consuming any input symbol then the resultant 
NFA is called NFA with null string () and is defined by NFA 
 {}. When we move from one state to another by reading 
the null string, it creates an ambiguity in the NFA. But, on the 
other hand, it reduces a mathematical work in description of 
the properties and operation over the given automata. If we are 
enough comfortable in mathematical details of an NFA, then 
the above ambiguity can be removed by introducing a new 
possible set of states in which the transition function enters. In 
this paper, we have supposed that our NFA is based on the set 
of alphabets in addition to the null string. The inclusion of  in 
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the alphabets increases more complexity in conversion from 
nondeterministic to deterministic finite automata.

IV. TRANSFORMATION FROM NFA TO Z

A semantics transformation from NFA to Z is given here. In 
the transformation, at first, we will give a formal specification 
of an NFA. Then a formalism of the string accepter will be 
described. A string and an NFA will be given as inputs to the 
string accepter and it will check whether the given string is 
accepted by it. Then our machine, string accepter, will be 
extended to the language recognizer. Here, a language and the 
NFA will be inputs, and the language recognizer will check if 
the given language is recognized by it. At the end, we will give 
formal construction of a more powerful tool which recognizes 
union of two regular languages. As a result, our transformation 
from NFA to Z will be based on: 
 transformation of NFA, 

 string accepter, 

 language recognizer and 

 formalization of union of regular languages. 

It is mentioned here that the definitions used, in this paper, 
are based on some well known books on automata and 
computation theory [33], [34].

A. Transformation of NFA

We start with the definition of NFA which is a 5-tuple (Q, 
∑, δ, q0, F), where Q is a finite non-empty set of states, ∑ is a 
finite set of alphabets including empty string, δ is a transition 
function which takes a state and an alphabet as inputs and 
produces a set of states as output, q0 is the initial state and F is 
a finite set of final states. The above 5-tuple (Q, ∑, δ, q0, F) is
an NFA because it takes a state, and an input symbol or an 
empty string and produces a set of states. Now we start a 
procedure for formal construction of NFA using Z. The sets of 
states and alphabets in the 5-tuple are represented as Q and 
Sigma respectively in the Z.

[Q, Sigma]

In modeling sets using Z, we do not impose any restriction 
upon the number of elements and a high level of abstraction is 
supposed. Further, we do not insist upon any effective 
procedure for deciding whether an arbitrary element is a 
member of the given collection. As a consequent, our Q and 
Sigma are sets over which we cannot define any operation. For 
example, cardinality to know the number of elements in a set, 
subset or complement operations cannot be defined. 

A variable states is introduced to describe a set of states for 
NFA. Since a given state q is of type Q, therefore states is of 
type of power set of Q. To describe a set of alphabets for the 
same NFA, a variable alphabet is used which is of type of 
power set of Sigma. The empty string is represented as apsi
and is of type of Sigma. As we know that for any input symbol, 
the next state of NFA can only be uniquely determined by the 
transition function if we suppose that its output is a set of 

states. As a result the δ relation can be defined as a function. 
This is because for each input (q, a) where q is a state and a is 
an alphabet, there must be a unique set s of states, which is 
image of (q, a), under the transition function δ. Therefore, we 
can declare δ as: δ: Q x Sigma ↔ PQ. The set of dead states, 
usually not shown in NFA, is represented as null and is of type 
of power set of Q. The initial state q0 is of type Q. Our last 
one construct F is represented by finals and is of type of power 
set of Q. After designing NFA, we will be required to check 
whether a given string is accepted by the NFA. For this 
purpose, we define a new variable strings which can be 
generated from the set of alphabets of NFA, and its type is:

Strings == seq Sigma

For a moment, we have used mathematical language of Z 
which is used to describe various objects. The same language 
can be used to define relationships between these objects. This 
relationship will be used in terms of constraints after 
composing these objects. The schema structure is used here for 
composition because it is very powerful at abstract level of 
specification and it helps in describing a good specification 
approach. All of these components of NFA are encapsulated 
and put in a schema named as NFA as given below.

NFA
states:  Q
alphabets:  Sigma
apsi: Sigma
delta: Q  Sigma   Q
q0: Q
null:  Q
finals:  Q

apsi  alphabets
q0  states
finals  states
q1, q2: Q; a: Sigma q1  states  q2  states  a  alphabets
   s1, s2:  Q  s1  states  s2  states   q1 a s1  delta
           q2 a s2  delta q1 a = q2 a  s1 = s2


Invariants: (1) The empty string is a member of alphabets.
(2) The initial state q0 is an element of states. (3) The set of 
final states is a subset of total states. (4) For each (q, a), where 
q is a state and a is an alphabet, there is a unique set of states s 
such that: delta(q, a) = s.

B. String Accepter

In this section, a string accepter is designed which takes a 
string and an NFA as input and checks whether the given 
string is accepted by it. Let NFA = (Q, ∑, δ, q0, F) be an NFA 
and w = w1w2…wn be a string, for each wi  ∑ and i = 1, 2, . . 
., n. We say that NFA accepts the string w if there exists a 
sequence of states s0 , s1,…, sn in Q satisfying: 

 s0  = q0, 

 si+1  δ(si, wi+1),  i = 0, 1,… , n-1 and 
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 sn  F.

The first condition states that NFA starts from the initial 
state q0. The second condition means that si+1 is one of the 
allowable next states when NFA is in state si and reads wi+1. It 
is to be noted that δ(si, wi+1) is a set consisting of allowable 
next states and hence si+1 is a member of that set. Finally, it is 
stated that our machine accepts the input if it ends up in an 
accepting state. Now coming back to our formal definition of 
string accepter, we have two inputs NFA and a word w?. The 
symbol before NFA shows that the machine will not change 
but it will only be used. The symbol question mark ?, after the 
string w means that w is given as input. This is simply syntax 
of defining input in Z notation. The string accepter is 
represented as StringAcceptedByNFA as a schema given 
below. The inputs are given in the first part of the schema and 
constraints are defined in the second part of it.

StringAcceptedByNFA
NFA
w?: Strings

w?  strings
s: seq Q ran s  states  # s = # w? + 1  # s  1
  s 1 = q0   s # s  finals  
 i:  # w?  i + 1 i  1 .. # s - 1
  ss:  Q ss states 
 s i w? i + 1 ss  delta s i + 1  ss


Invariants: (1) The input string w?, is based on the set of 
alphabets of nondeterministic finite automata. (2) For a given 
string w? of length n, there must be a sequence of states of 
length, at most, n+1 which satisfies the conditions: (i) its first 
element is the initial state of the given NFA, (ii) the last 
element is a member of final states, (iii) finally, for state si and 
an alphabet wi+1, the transition function is defined from (si, 
wi+1) to si+1, si+1  ss such that:  δ(si, wi+1) = ss or si+1  δ(si, 
wi+1),  i = 0, 1,…, n-1.

C. Language Recognizer

In language recognizer, we have reused the definition of 
string accepter designed above and extended over the set of all 
the strings of a language. A language recognizer is designed 
which takes a language and an NFA as inputs and returns the 
value true if the language is recognized by it. Mathematically, 
we can define it as:

Language Recognizer = 
{<NFA, language> |  w  language, NFA accepts w}.

We have two inputs named as an NFA and a language. The 
recognizer is denoted by LanguageAcceptedByNFA in Z 
notation as a schema. Its formal specification along with 
invariants over it is given below. The invariants of string 
accepter are generalized over language accepter.

LanguageAcceptedByNFA
NFA
language?:  Strings

w: Strings w  language? w  strings
w: Strings w  language?
 s: seq Q ran s  states  # s = # w + 1  # s  1
    s 1 = q0   s # s  finals  i:  # w  i + 1
     i  1 .. # s - 1  ss:  Q ss  states 
 s i w i + 1 ss  delta  s i + 1  ss


Invariants: (1) Every input string of language is based on 
alphabets of NFA. (2) Every string of the language satisfies the 
conditions as in string accepter.

D. Formalism of Union of NFAs

Now we start with two given NFAs, NFA1 = (Q1, ∑, δ1, 
q01, F1) and NFA2 = (Q2, ∑, δ2, q02, F2). These NFAs are 
inputs in design of union of NFA accepting all the strings that 
are either accepted by NFA1or NFA2. All the components of 
resultant NFA are listed in the schema given below, and a 
relationship between NFA1, NFA2 and their resultant is 
established in terms of predicates in the second part of the 
schema. Before describing union of two nondeterministic 
automata, we describe NFA1 and NFA2 by renaming the 
components of NFA as given below. An introduction to 
renaming operator is given in section 2. 
NFA1NFA[states1/states, alphabets1/alphabets, apsi1/apsi, 
delta1/delta, q01/q0, null1/null, finals1/finals]

NFA2 NFA[states21/states, alphabets2/alphabets, apsi2/apsi, 
delta2/delta, q02/q0, null2/null, finals2/finals]

NFA1uNFA2
NFA1; NFA2
states:  Q
alphabets:  Sigma
apsi: Sigma
delta: Q  Sigma   Q
q0: Q
null:  Q
finals:  Q

apsi  alphabets
q0  states
finals  states
q1, q2: Q; a: Sigma q1  states  q2  states  a  alphabets
   s1, s2:  Q s1  states  s2  states  q1 a s1  delta
           q2 a s2  delta q1 a = q2 a  s1 = s2
states = states1  states2  q0
finals1 = finals1  finals2
q:Q; a:Sigma; ss1: Q q  statesa  alphabets 
 qa ss1 delta
   q  states1  ss2:  Q q a ss2  delta1 ss1 = ss2
      q  states2  ss3:  Q q a ss3  delta2 ss1 = ss3
      q = q0  a = apsi  ss1 = q01 q02
      q = q0   a = apsi  ss1 = null

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Invariants: (1) The empty string is a member of set of 
alphabets of NFA. (2) The initial state q0 must be an element 
of set of total states of the resultant NFA. (3) The set of final 
states is a subset of set of total states of the given NFA. (4) For 
each (q, a), where q is a member of set of states and, a is a 
member of set of alphabets, there is a unique set of states s 
such that:  delta (q, a) = s. (5) The set of states of the resultant 
NFA is equal to the union of sets of states of NFA1, NFA2 and 
a set consisting of a single element q0 which is newly created. 
In fact, q0 is a new state introduced at the time of union and is 
initial state in the NFA. (6) The set of final states of the NFA 
is equal to the union of the sets of final states of NFA1 and 
NFA2. (7) For any state and an element of the alphabets of 
NFA, the transition function is modified as given above in the 
schema NFA1uNFA2.

V. ANALYSIS AND PROOF TECHNIQUES

The Z/EVES is a powerful tool which can be used for 
analyzing a specification written in Z. There is a much tool 
support for analyzing the Z specification. Parsing, type and 
domain checking, schema expansion, precondition calculation, 
refinement proofs, and theorem proving are major facilities of 
it. Formal models of nondeterministic finite automata in Z are
checked and strengthened using this Z/EVES tool-set. Formal 
models described in the form of schemas are analyzed with 
four major techniques offered by Z/EVES tool-set namely 
syntax and type checking, domain checking, reduction and 
prove by reduce. 

       Fig. 2 Snapshot of specification analysis

A snapshot of the results of checking and analyzing the 
formal specification is given above in Figure 2. It is to be 
mentioned here that at first an abstract model was proposed 

and then refined to remove inconsistencies and ambiguities. 
While proving the formal models using Z/EVES, two types of 
results were obtained. Firstly, some schemas were well written 
and proved automatically without any prove assistance of the 
tool. And then, some schemas were proved using the prove 
assistance of the tool by reduction.

VI. CONCLUSION

In this paper, we have described formal specification of an 
algorithm which can be used to construct NFA accepting union 
of regular languages. A new approach by NFA and Z notation 
is proposed. Although, a part of the integration is treated but 
we have observed that this approach can be extended to give 
formal specification of more powerful tools. We have 
identified a relationship between some structures of these 
approaches and proved it in a constructive way. After 
integrating automata and Z notation, we have observed that a 
natural relationship exists there which proves the importance 
and originality of this research. It is observed that after 
extending the NFA by adding some functionalities of Z, the 
modeling power for complex systems can be increased.

An exhaustive survey of existing work was done before 
starting this research. There exists a lot of research work on 
integration of approaches as discussed in the introduction part 
of this paper. The most relevant work reported in [15], [16], 
[19], [20], [25] was found but our research is different of it 
because of conceptual level integration of Z notation and 
automata. Further, formalizing graphical based notations is not 
easy [35] which increase importance of this research.

Behavior of a system can be best captured by automata 
whereas its state space can be described ideally using Z
notation. This is why Z is integrated with automata in this 
research. It is believed that this linkage will be useful in the 
development of automated integrated tools and techniques for 
software engineering processes. Formalization of some other 
important concepts in automata is under progress and will 
appear soon in our future work. Further, we have taken some 
assumptions in this integration. For example, in union 
operation, it was assumed that the set of alphabets in both of 
the automata are same. These assumptions were taken for 
simplicity of construction. In our future work, such
assumptions will be relaxed and a more generic integration 
will be proposed between Z and automata.

ACKNOWLEDGMENT

This research is supported by Centre for Research in 
Computer Science, University of Central Punjab, Lahore, 
Pakistan. Specially, the authors are thankful to Associate Dean 
Professor Ajmal Hussain, Faculty of Information Technology
and pro-rector Dr. Fehmida Sultana for providing research 
funds and facilities in the centre. 

REFERENCES

[1] M. Y. Vardi, T. Wilke, “Automata from Logic to Algorithms,” Logic 
and Automata, 2007.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 121



[2] J. M. Spivey, “The Z notation, A Reference Manual,” Englewood Cliffs, 
NJ, Prentice-Hall, 1989.

[3] I. J. Holub, “Finding Common Motifs with Gaps using Finite 
Automata,” In Implementation and Application of Automata, Springer-
Verlag, pp: 69-77, ISBN 3-540-37213-X, 2006.

[4] K. Brouwer, W. Gellerich, E. Ploedereder, “Myths and Facts about the 
Efficient Implementation of Finite Automata and Lexical Analysis,”
Springer-Berlin, 2006.

[5] I. Meisels, M. Saaltink, “The Z/EVES Reference Manual, TR-97-5493-
03,” ORA Canada, CANADA, 1997.

[6] E. A. Boiten, J. Derrick, G. Smith, “Integrated Formal Methods (IFM 
2004),” Canterbury, UK, Springer, 2004.

[7] J. Davies, J. Gibbons, “Integrated Formal Methods (IFM 2007),”
Oxford, UK, Springer-Verlag, 2007.

[8] J. Romijn, G. Smith, J. v. d. Pol, “Integrated Formal Methods (IFM 
2005),” The Netherlands, Springer, 2005.

[9] K. Araki, A. Galloway, K. Taguchi, “Integrated Formal Methods (IFM 
99),” York, UK, Springer-Verlag, 1999.

[10] M. Butler, L. Petre, K. Sere, “Integrated Formal Methods (IFM 2002),”
Turku, Finland, Springer-Verlag, 2002.

[11] W. Grieskamp, T. Santen, B. Stoddart, “Integrated Formal Methods 
(IFM 2000),” Germany, Springer-Verlag, 2000.

[12] J. S. Dong, R. Duke, P. Hao, “Integrating Object-Z with Timed 
Automata,” 12th IEEE International Conference on Engineering 
Complex Computer Systems (ICECCS 2005), pp: 488-497, 2005.

[13] J. S. Dong, et al., “Timed Patterns, TCOZ to Timed Automata,” 6th 
International Conference on Formal Engineering Methods (ICFEM’04), 
LNCS, pp: 483-498, 2004.

[14] R. L. Constable, et al., “Formalizing Automata II: Decidable Properties,”
Cornell University, 1997.

[15] R. L. Constable, et al., “Constructively Formalizing Automata Theory,”
Foundations Of Computing Series, MIT Press, ISBN:0-262-16188-5, 
2000.

[16] R. Bussow, W. Grieskamp, “A Modular Framework for the Integration 
of Heterogeneous Notations and Tools,” Integrated Formal Methods 
(IFM 99), York, UK, Springer-Verlag, pp: 211–230, 1999.

[17] R. Büssow, R. Geisler, M. Klar, “Specifying Safety-Critical Embedded 
Systems with Statecharts and Z: A Case Study,” Fundamental 
Approaches to Software Engineering, Springer Berlin, ISBN, 978-3-
540-64303-6, 2004.

[18] M. Heiner, M. Heisel, “Modeling Safety Critical Systems with Z and 
Petri nets,” International Conference on Computer Safety, Reliability 
and Security, LNCS, pp: 361–374, 1999.

[19] X. He, “Pz nets a Formal method Integrating Petri nets with Z,”
Information & Software Technology, 43(1), pp: 1–18, 2001.

[20] H. Leading, J. Souquieres, “Integration of UML and B Specification 
Techniques: Systematic Transformation from OCL Expressions into B,”
Asia-Pacific Software Engineering Conference (APSEC02), Australia, 
2002.

[21] H. Leading, J. Souquieres, “Integration of UML Views using B 
Notation,” Workshop on Integration and Transformation of UML 
models (WITUML02), 2002.

[22] N. A. Zafar, N. Sabir, and A. Ali, “Semantics Transformation of NFA to 
Z Notation by Constructing Union of Regular Languages”, the 8th 
WSEAS Int’l Conference on Applied Computer Science (ACS’08), pp. 
70-75, Italy, 2008.

[23] N. A. Zafar, N. Sabir, and A. Ali, “Construction of Intersection of 
Nondeterministic Finite Automata using Z Notation”, International 
Journal of Computer Science, vol. 3(2). pp. 96-101 2008.

[24] S. Riaz, and N. A. Zafar, “Constructive Formal Conversion of Moore 
Machine to Deterministic Finite Automata”, The 10th WSEAS 
International Conference on Mathematical Methods, Computational 
Techniques and Intelligent Systems (MAMECTIS’08), Greece, 2008.

[25] C. Heitmeyer, “On the Need for Practical Formal Methods,” LNCS, 
Vol.1486, pp: 18-26, 1998.

[26] E. Ciapessoni, et al., “From Formal Models to Formally-Based Methods: 
An Industrial Experience,” TOSEM, vol.8 (1), pp: 79-113, 1999.

[27] J. P. Bowen, “Ten Commandments of Formal Methods,” IEEE 
Computer, Vol.28, No.4, pp: 56-63, 1995.

[28] J. P. Bowen, M. G. Hinchey, “The Use of Industrial-Strength of Formal 
Methods,” Proceedings of 21st International Computer Software & 
Application Conference (COMPSAC'97), pp: 332-337, 1997.

[29] M. Barjaktarovic, “The State-of-the-Art in Formal Methods,” AFOSR 
Summer Research Technical Report for Rome Research Site, Formal 
Methods Framework-Monthly Status Report, F30602-99-C-0166, 
WetStone Technologies, 1998.

[30] S. Liu, and R. Adams, Limitations of Formal Methods and an 
Approach to Improvement, Technical Report, Hiroshima City 
University, 1995.

[31] R. W. Butler, “What is Formal Methods?,” NASA LaRC Formal 
Methods Program, 2001.

[32] J. Woodcock, and J. Davies, “Using Z: Specification, Refinement and 
Proof,” Prentice Hall International, 1996.

[33] J. E. Hopcroft, R. Motwani, J. D. Ullman, “Introduction to Automata 
Theory, Language and Computation,” Addison-Wesley, Reading, 2001.

[34] M. Sipser, “Introduction to the Theory of Computation,” Course 
Technology, ISBN-13: 9780534950972, 2005.

[35] C. T. Chou, “A Formal Theory of Undirected Graphs in Higher Order 
Logic,” 7th Int’l Workshop on Higher Order Logic Theorem Proving 
and Application, pp: 144-157, 1994.

Nazir A. Zafar was born in 1969 in Pakistan. He received his M.Sc. (Math. 
in 1991), M. Phil (Math. in 1993), and M.Sc. (Nucl. Engg. in 1994) degrees 
from Quaid-i-Azam University, Islamabad, Pakistan. He was awarded PhD 
degree in Computer Science from Kyushu University, Japan, in 2004. He is 
the regular employee of Pakistan Institute of Engineering and Applied 
Sciences (PIEAS). Dr. Zafar has served at various universities and scientific 
organizations in Pakistan. Currently, he is on leave from PIEAS and working 
with University of Central Punjab (UCP) in the Faculty of information 
Technology, Lahore, Pakistan. He is the founder of Formal Methods Research 
Group at UCP. His current research interests are modeling of complex 
systems using formal approaches, integration of approaches etc. He is an 
active member of Pakistan Mathematical Society. He is member of various 
societies and organizations. He is also member of editorial boards of many 
international journals. Dr. Zafar has lectured at national level promoting use 
and applications of formal methods in Pakistan.

Nabeel Sabir was born in 1979 in Pakistan. He received his Master in 
Computer Science in 2003 from U.C.P., MS (Computer Science) in 2007 
from the same university. Currently, he is a faculty member and PhD student 
of Dr. Zafar at UCP, Lahore.

Amir Ali was born in 1979 in Pakistan. He received his M. Sc. (Math. in 
2003) from B.Z.U., Multan, Post Graduate Diploma (Computer Science) in 
2005 from Q.A.U., Islamabad, Master in Computer Science in 2007 from 
NUML, Islamabad. And, currently, he is a student (MS leading to PhD) of Dr. 
Zafar at UCP, Lahore.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 122

http://www.springerlink.com/content/nlmfl9cfyqm0/?p=e76f3af092404832848597a9cab9fe80&pi=0
http://www.springerlink.com/content/nlmfl9cfyqm0/?p=e76f3af092404832848597a9cab9fe80&pi=0
http://www.apsec2002.acs.org.au/
http://ctp.di.fct.unl.pt/~ja/wituml02.htm



