

Abstract—Capturing functionalities and modeling control

behavior are primary requirements in design and development of a
complex system. Automata theory plays a vital role in modeling
behavior while Z notation is an ideal specification language for
describing state space of a system. Consequently, integration of
automata and Z notation will be a useful tool facilitating and
increasing modeling power for complex systems. Further,
nondeterministic finite automata (NFA) may have different
implementations and therefore it is needed to verify the
transformation from diagrams to code. If we describe formal
specification of a given nondeterministic finite automata before
implementing then confidence over transformation can be increased.
In this paper, we have combined NFA and Z and a linkage is
established between these approaches. At this level of integration, we
have given a formal procedure to transform NFA to Z. A string
accepter is designed and then extended to the language accepter.
Finally, NFA accepting union of two regular languages is constructed
by describing formal specification of their relationships. The
specification is analyzed and validated using Z/EVES tool.

Keywords—Integration of approaches, mathematical modeling,
automata theory, Z notation.

I. INTRODUCTION

UTOMATA have various applications in computer
science and engineering. The traditional applications of

automata theory include pattern matching, compiler
constructions, software verification, defining a regular set of
finite words of a language and modeling control behavior of
complex systems. The human computer interaction,
optimization of logic based programs, specification and
verification of protocols [1] and cryptography are some
modern applications of automata theory.

The Z notation is a formal language which is based on set
theory and first order predicate logic used for describing and
modeling the systems at an abstract level of specification [2].

Manuscript received March 14, 2009. This work was supported in part by
the Center for Research in Computer Science, University of Central Punjab,
Lahore, Pakistan.

N. A. Zafar is with the Faculty of Information Technology, University of
Central Punjab, Lahore, on leave from Pakistan Institute of Engineering
Applied Sciences, Islamabad, Pakistan (phone: +92-51-9290273-4; fax: +92-
51-2208070; e-mails: nazafar@pieas.edu.pk; dr.zafar@ucp.edu.pk).
N. Sabir is a PhD student of Dr Zafar. He is an assistant professor in the
Faculty of Information Technology, University of Central Punjab, Lahore,
Pakistan (e-mail: nabeel.bloch@ucp.edu.pk).
A. Ali is a MS (Computer Science) student of Dr Zafar in the Faculty of
Information Technology, University of Central Punjab (e-mail:
amiralishahid@ucp.edu.pk).

Usually we use Z for specifying the abstract data types and
sequential programs by defining state space of a system and
then operations in terms of relations over the state space.

The design of complex systems requires functionality as
well as its control behavior. The functional aspects of a
software system can be decomposed in terms of its operations
and constraints over the data types, and hence Z is an ideal
application of it. The control behavior of a system can be
visualized in terms of flows between the system’s functions
where automata theory is very powerful in this aspect.
Consequently, an integration of automata and Z is required
increasing modeling power for complex systems which is one
of the major objectives of this research. In this paper, we
describe and develop a formal semantics of transformation for
a subset of automata to Z focusing on non-determinism.

The both types, deterministic finite automata (DFA) and
nondeterministic finite automata (NFA), are equivalent in
power, in a sense, that if a language is recognized by a DFA it
is also recognized by an NFA and vice versa. The NFAs are
sometimes useful because constructing an NFA is much easier
than constructing a DFA. This is due to the use of less
mathematical work in building NFA as compared to DFA.
Further, many important properties in automata can be
established easily by using NFA. To prove, for example, that
concatenation or union of two regular languages is regular
using NFA is easier than using deterministic finite automata.

Nondeterministic automata are abstract mathematical
models of systems which can also be represented using
diagrams. These mathematical models can be used to perform
computations on a given input by a sequence of configurations.
An NFA reads the entire input and for each subset of input it
moves to a new state until all input has been read. After
reading the entire input, if machine is able to reach any of the
accepting state then the given input is accepted. Due to the
different implementations of NFA [3], [4], its space and
execution time must be different. Further, we require
preserving semantics of transformation from diagrams in NFA
to implementation. Therefore, if we give a formalization of an
NFA then this transformation can be facilitated.

At this level of integration, first we have constructed NFA
using Z notation. Then a string accepter is formalized and
extended to the language accepter. Finally, union of two
regular languages is described by formalizing the specification
of their relationship which is further analyzed and validated
using Z/EVES tool-set [5]. The main objective of this paper is

Formal transformation from NFA to Z notation
by constructing union of regular languages

Nazir Ahmad Zafar, Nabeel Sabir and Amir Ali

A

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 115

proposing an integration of automata and Z by giving their
syntax and semantics relationships reducing implementation
issues of nondeterministic finite automata.

Although linking formal approaches is a well researched
area [6], [7], [8], [9], [10], [11] but there does not exist much
work on formalization of graphical based notations. The
research work [12], [13] of Dong et al. is close to ours in
which they have combined Object Z and Timed Automata.
Another piece of interesting work is listed in [14], [15] in
which R. L. Constable has given a constructive formalization
of some concepts of automata using Nuprl. Some work of
interest is reported in [16]. In [17], combination of Z notation
and statecharts is established. A relationship between Z and
Petri Nets is also investigated in [18], [19]. An integration of
UML and B is given in [20], [21].

It is mentioned here that few results of this research were
presented at [22], [23], [24]. Those preliminary results are
refined in this research. In the refinement process, we observed
that there were many inconsistencies and errors in those
papers. And the more important is that it was not made a good
use of Z notation. For example, the strings defined in the
above papers were assumed to be a component of
nondeterministic finite automata which is not true. In our
refined results, strings are taken as input in the definition of
string recognizer and language accepter. It was a conceptual
error. Similarly, in our refined results, we have used schema
renaming to create a new schema with same components
because this is exactly what we did by giving very lengthy and
poor specification in the previous results. Finally, few more
errors and redundant information were identified in the old
specification, which are fixed in these refined results.

In section 2, a survey on applications of formal methods is
given along with a case study of programming interface to
introduce some basic constructs of Z. In section 3, applications
and limitations of NFA are analyzed. Integration of automata
and Z is given in section 4. Analysis of the formal
specification is given in section 5. Finally, the conclusion and
future work are discussed in section 6.

II. FORMAL METHODS

A. An Introduction

Formal methods are mathematically based techniques and
tools for the specification, design and verification of software
and hardware systems [25]. Formal methods use mathematical
notations for writing specification of a system to be developed.
These notations are derived from the area of discrete
mathematics such as logic, set theory or graph theory. The
formal specification of a system is a set of mathematical
expressions with well-defined syntax and semantic [26]. By
techniques of mathematical refinements, formal methods can
be used at every stage of systems development in software life
cycle. Once formal specification of a system is written, it can
further be refined into implemented system by a process of
series of refinements. The validation and verification
techniques in formal methods are applied at each phase of the

software development process, which ensures consistency,
correctness and completeness by increasing confidence over a
system under construction. The traditional systems
development approaches use natural languages or graphical
notations to write a specification of a system which makes the
specifications highly ambiguous. Unlike these traditional
approaches, formal specification uses mathematical notations
having same interpretation throughout the globe [27]. Further,
the use of mathematics helps to have a deeper insight of
system to be developed and provides an excellent medium for
modeling of systems.

One of the major limitations of traditional software
development approaches is that they lack the ability to prove
the specifications ensuring the absence of errors. The errors
are hidden under the graphical or textual notations [28], which
penetrate to the later phases of development process and are
usually identified at implementation and testing phases of a
system. These errors are costly and difficult to fix at that stage
[29]. On the other hand, formal specification enables us to
carry out proofs and makes it possible analyzing properties of
systems during early stages of the development and as a result
errors and inconsistencies can be identified and removed
thereat. Further, formal methods are being successfully applied
for development of hardware and software systems. For
instance, hardware engineers use VHSIC hardware description
language to model integrated circuits [29].

 Fig. 1 Refinement process using formal methods

The process [30] of developing systems using formal
methods is shown in Fig. 1. Based on the model of software
life cycle, the process described in the figure can be
understood as follows. The ‘Requirements’ are the result of
requirements analysis and is normally described in informal
language. The ‘Specification 1’ corresponds to stage of
functional specification, and from ‘Specification 2 to n’
corresponds to the stage of design. The refinement from
‘Specification n’ to ‘Program’ corresponds to the stage of
implementation or coding. Validation and verification are two
basic principles that arise in systems development. Validation
addresses whether the system that is produced actually fulfills

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 116

the requirements. On the other hand, verification attempts to
establish whether the product of the particular phase of the
software process meets the requirements established during the
previous phases of the software development life cycle.

The Z notation is a model oriented approach based on set
theory and first order predicate logic [31] used for specifying
behavior of abstract data types and sequential programs. Z is
usually used for systems development because it describes
state space of a system and operations which can be performed
over it. Although formal methods are being successfully
applied in many research areas of computer science but at the
current stage of development in formal methods, it requires an
integration of formal and traditional approaches. In this paper,
Z is selected to be integrated with automata theory because a
natural relationship exists between these approaches.

B. Case Study: A Programming Interface

A brief overview of some important structures and operators
of Z is given by taking a case from a book on “using Z:
specification, refinement and proof” by Woodcock and Davies
[32]. A programming interface is taken as case study for the
file systems. A list of operations which is defined after
defining file and an entire system can be described as: (i) read:
used to read a piece of data from a file, (ii) write: used to write
a piece of data to a file, (iii) access: may change the
availability of a file for reading and writing over the file of the
system and (iv) file and system are data types whereas the new
system is defined for introducing the concept of renaming in Z.

A file is represented as a schema using a relation between
storage keys and data elements. For simple specification, basic
set types are used. In the formal notation, name, type, keys and
data elements of a file are represented as Name, Type, Key,
and Data respectively in Z notation as given below. An
axiomatic definition is used here to define a variable null
which is used to prove that the type of a file cannot be null
even there are no contents on a file.

[Name, Type, Key, Data]; null: Type

A file consists of two components, i.e., file contents and its
type which are specified by contents and type respectively.
The schema structure is usually used because of keeping
specification both flexible and extensible. In the predicate part,
an invariant is described proving that the file type is non null
even there are no contents on it. As a file can associate a key
with at most one piece of a data and hence the relation
contents is supposed to be a partial function.

File 
contents: Key  Data
type: Type

type  null


The read operation is defined to interrogate the file state of
the system. A successful read operation requires an existing

key as input and provides the corresponding data as output.
The symbol is used when there is no change in the state of a
component. Now the structure File means that the bindings
of File and File’ are equal. The decorated file, File’,
represents the next state of the file. Here, it is in fact
unchanged because the k? is given as input and the output is
returned in output variable d!. The symbols ? and ! are used
with input and output variables respectively in the schema
given below. In the predicate part of the schema, first it is
ensured that the input key k? must be in the domain of contents
which is a partial function. Then the value of data against the
given key is returned in the output variable d! of type data.

Read 
File
k?: Key
d!: Data

k?  dom contents
d! = contents k?


Another operation is defined to write contents over a given
file of the system. The symbol  is used when there is a change
in the state of a component. In the schema defined below, the
File gives a relationship between File and File’ representing
that the binding of file are now changed. The meaning of File’
is same as defined above. In this case, the write operation
defined below replaces the data stored under an existing key
and provides no output to the operation. The old value of the
contents is updated with the maplet k?  d?. It is to be noted

that file type remained unchanged as defined in the predicate
part of the schema. The symbol  an override operator is used

to replace the previous value of a key with the new one in the
contents of the given partial function contents.

Write
File
k?: Key
d?: Data

k?  dom contents
contents' = contents  k?  d?
type = type'


The structure file is reused in description of a file system.
As a system may contain a number of files indexed using a set
of names and some of which might be open. Hence, the system
consists of two components namely collection of known files
and set of files that are currently open. The variable file is used
as a partial function to associate the file name and its contents.
The variable open is of type of power set of Name. Finally, it
is defined that the set of files which are open must be a subset
of set of total files of the system as described in the predicate
part of the schema System as given below.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 117

System 
file: Name  File

open:  Name


open  dom file



As the open and close operations neither change name nor
add and remove files of the system and hence both of these are
the only access operations. On the other hand, it may change
the availability of a file for reading or writing. The schema
described below is used for such operations. The variable n? is
used to check if a file which is required to be accessed exist in
the system. It is also described that the file is left unchanged.

FileAccess 
System
n?: Name

n?  dom file
file' = file


Renaming is another important concept in Z notation which
we have used in this paper. For example, if we require creating
another system with same pattern but with different
components then renaming can be used rather than creating the
new system from scratch. Renaming is sometimes useful
because in this way we are able to introduce a different
collection of variables with the same pattern. For example, we
might wish to introduce variables newfile and newopen under
the constraint of existing system System. In this case, the new
system named as NewSystem can be created by renaming in
horizontal form by defining: NewSystem  System[newfile/file,

newopen/open] which is equivalent to the schema NewSystem
as given below in the vertical form.

NewSystem
newfile: Name  File
newopen:  Name

newopen  dom newfile


III. FINITE AUTOMATA

A. An Introduction

Automata theory has various applications and it plays an
important role in many areas of computer science. The syntax
analysis, natural language processing, speech recognition,
modeling control behavior are some of the traditional
applications of it. Automata have emerged with several
modern applications in which, optimization of logic based
programs, design, specification and verification of protocols

[2] and human computer interaction are some other interesting
examples of it. There are two major types of automata, i.e.,
deterministic and nondeterministic. Both have their own pros
and cons. For example, deterministic automata makes
implementation easy while nondeterministic automata are easy
to construct and are used when the abstraction is required.

Both the deterministic and nondeterministic finite automata
are equivalent in power, in a sense, that if a language is
recognized by one it is also recognized by the other and vice
versa. The NFAs are sometimes useful because its construction
is much easier than constructing of a DFA. This is due to the
use of less mathematical work in building NFA as compared to
DFA. Further, many important properties in automata can be
established easily by using NFA. To prove, for example, that
concatenation or union of two regular languages is regular
using NFA is easier than using deterministic finite automata.

B. Nondeterministic Finite Automata

Nondeterministic finite automata (NFA) are abstract
mathematical models of systems based on mathematical tools,
techniques and notations which have graphical representation
as well. These models can be used to perform computations on
input in a predefined mechanism. An NFA reads a string of
input symbols and moves to a new state after reading a part of
input. The process continues and if we are able to reach any of
the accepting state by using a series of movements then the
given input is accepted. The driving function also called
transition function decides the next state based on the input
symbol and the current state given to it.

DFA and NFA differ only in terms of their transition
functions. In case of a DFA, the transition function transforms
the control of a machine from one state to a unique state for
every symbol of the input. In case of NFA, for any input
symbol, its next state is not uniquely determined by the
transition function. There might be a single or a set of states,
which can be empty, and this is why NFA is called
nondeterministic automata. In formal theory of automata, it
can be proved that both DFA and NFA are equivalent in
power. It means that for any given DFA, one may construct an
equivalent NFA and vice-versa. Conversion from NFA to DFA
may cause exponential grow in size of DFA and, consequently,
storage space may require proportional to the number of states
in the given NFA. This is one of the major issues in
representation of systems using NFA.

If in a given NFA, we are able to move from one state to
another without consuming any input symbol then the resultant
NFA is called NFA with null string () and is defined by NFA
 {}. When we move from one state to another by reading
the null string, it creates an ambiguity in the NFA. But, on the
other hand, it reduces a mathematical work in description of
the properties and operation over the given automata. If we are
enough comfortable in mathematical details of an NFA, then
the above ambiguity can be removed by introducing a new
possible set of states in which the transition function enters. In
this paper, we have supposed that our NFA is based on the set
of alphabets in addition to the null string. The inclusion of  in

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 118

http://en.wikipedia.org/wiki/Theory_of_computation
http://en.wikipedia.org/wiki/Regular_language

the alphabets increases more complexity in conversion from
nondeterministic to deterministic finite automata.

IV. TRANSFORMATION FROM NFA TO Z

A semantics transformation from NFA to Z is given here. In
the transformation, at first, we will give a formal specification
of an NFA. Then a formalism of the string accepter will be
described. A string and an NFA will be given as inputs to the
string accepter and it will check whether the given string is
accepted by it. Then our machine, string accepter, will be
extended to the language recognizer. Here, a language and the
NFA will be inputs, and the language recognizer will check if
the given language is recognized by it. At the end, we will give
formal construction of a more powerful tool which recognizes
union of two regular languages. As a result, our transformation
from NFA to Z will be based on:
 transformation of NFA,

 string accepter,

 language recognizer and

 formalization of union of regular languages.

It is mentioned here that the definitions used, in this paper,
are based on some well known books on automata and
computation theory [33], [34].

A. Transformation of NFA

We start with the definition of NFA which is a 5-tuple (Q,
∑, δ, q0, F), where Q is a finite non-empty set of states, ∑ is a
finite set of alphabets including empty string, δ is a transition
function which takes a state and an alphabet as inputs and
produces a set of states as output, q0 is the initial state and F is
a finite set of final states. The above 5-tuple (Q, ∑, δ, q0, F) is
an NFA because it takes a state, and an input symbol or an
empty string and produces a set of states. Now we start a
procedure for formal construction of NFA using Z. The sets of
states and alphabets in the 5-tuple are represented as Q and
Sigma respectively in the Z.

[Q, Sigma]

In modeling sets using Z, we do not impose any restriction
upon the number of elements and a high level of abstraction is
supposed. Further, we do not insist upon any effective
procedure for deciding whether an arbitrary element is a
member of the given collection. As a consequent, our Q and
Sigma are sets over which we cannot define any operation. For
example, cardinality to know the number of elements in a set,
subset or complement operations cannot be defined.

A variable states is introduced to describe a set of states for
NFA. Since a given state q is of type Q, therefore states is of
type of power set of Q. To describe a set of alphabets for the
same NFA, a variable alphabet is used which is of type of
power set of Sigma. The empty string is represented as apsi
and is of type of Sigma. As we know that for any input symbol,
the next state of NFA can only be uniquely determined by the
transition function if we suppose that its output is a set of

states. As a result the δ relation can be defined as a function.
This is because for each input (q, a) where q is a state and a is
an alphabet, there must be a unique set s of states, which is
image of (q, a), under the transition function δ. Therefore, we
can declare δ as: δ: Q x Sigma ↔ PQ. The set of dead states,
usually not shown in NFA, is represented as null and is of type
of power set of Q. The initial state q0 is of type Q. Our last
one construct F is represented by finals and is of type of power
set of Q. After designing NFA, we will be required to check
whether a given string is accepted by the NFA. For this
purpose, we define a new variable strings which can be
generated from the set of alphabets of NFA, and its type is:

Strings == seq Sigma

For a moment, we have used mathematical language of Z
which is used to describe various objects. The same language
can be used to define relationships between these objects. This
relationship will be used in terms of constraints after
composing these objects. The schema structure is used here for
composition because it is very powerful at abstract level of
specification and it helps in describing a good specification
approach. All of these components of NFA are encapsulated
and put in a schema named as NFA as given below.

NFA
states:  Q
alphabets:  Sigma
apsi: Sigma
delta: Q  Sigma   Q
q0: Q
null:  Q
finals:  Q

apsi  alphabets
q0  states
finals  states
q1, q2: Q; a: Sigma q1  states  q2  states  a  alphabets
 s1, s2:  Q s1  states  s2  states  q1 a s1  delta
  q2 a s2  delta q1 a = q2 a  s1 = s2


Invariants: (1) The empty string is a member of alphabets.
(2) The initial state q0 is an element of states. (3) The set of
final states is a subset of total states. (4) For each (q, a), where
q is a state and a is an alphabet, there is a unique set of states s
such that: delta(q, a) = s.

B. String Accepter

In this section, a string accepter is designed which takes a
string and an NFA as input and checks whether the given
string is accepted by it. Let NFA = (Q, ∑, δ, q0, F) be an NFA
and w = w1w2…wn be a string, for each wi  ∑ and i = 1, 2, . .
., n. We say that NFA accepts the string w if there exists a
sequence of states s0 , s1,…, sn in Q satisfying:

 s0 = q0,

 si+1  δ(si, wi+1),  i = 0, 1,… , n-1 and

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 119

 sn  F.

The first condition states that NFA starts from the initial
state q0. The second condition means that si+1 is one of the
allowable next states when NFA is in state si and reads wi+1. It
is to be noted that δ(si, wi+1) is a set consisting of allowable
next states and hence si+1 is a member of that set. Finally, it is
stated that our machine accepts the input if it ends up in an
accepting state. Now coming back to our formal definition of
string accepter, we have two inputs NFA and a word w?. The
symbol before NFA shows that the machine will not change
but it will only be used. The symbol question mark ?, after the
string w means that w is given as input. This is simply syntax
of defining input in Z notation. The string accepter is
represented as StringAcceptedByNFA as a schema given
below. The inputs are given in the first part of the schema and
constraints are defined in the second part of it.

StringAcceptedByNFA
NFA
w?: Strings

w?  strings
s: seq Q ran s  states  # s = # w? + 1 # s  1
  s 1 = q0  s # s  finals 
 i:  # w?  i + 1 i  1 .. # s - 1
  ss:  Q ss states 
 s i w? i + 1 ss  delta s i + 1  ss


Invariants: (1) The input string w?, is based on the set of
alphabets of nondeterministic finite automata. (2) For a given
string w? of length n, there must be a sequence of states of
length, at most, n+1 which satisfies the conditions: (i) its first
element is the initial state of the given NFA, (ii) the last
element is a member of final states, (iii) finally, for state si and
an alphabet wi+1, the transition function is defined from (si,
wi+1) to si+1, si+1  ss such that: δ(si, wi+1) = ss or si+1  δ(si,
wi+1),  i = 0, 1,…, n-1.

C. Language Recognizer

In language recognizer, we have reused the definition of
string accepter designed above and extended over the set of all
the strings of a language. A language recognizer is designed
which takes a language and an NFA as inputs and returns the
value true if the language is recognized by it. Mathematically,
we can define it as:

Language Recognizer =
{<NFA, language> |  w  language, NFA accepts w}.

We have two inputs named as an NFA and a language. The
recognizer is denoted by LanguageAcceptedByNFA in Z
notation as a schema. Its formal specification along with
invariants over it is given below. The invariants of string
accepter are generalized over language accepter.

LanguageAcceptedByNFA
NFA
language?:  Strings

w: Strings w  language? w  strings
w: Strings w  language?
 s: seq Q ran s  states  # s = # w + 1 # s  1
  s 1 = q0  s # s  finals  i:  # w  i + 1
 i  1 .. # s - 1  ss:  Q ss  states 
 s i w i + 1 ss  delta s i + 1  ss


Invariants: (1) Every input string of language is based on
alphabets of NFA. (2) Every string of the language satisfies the
conditions as in string accepter.

D. Formalism of Union of NFAs

Now we start with two given NFAs, NFA1 = (Q1, ∑, δ1,
q01, F1) and NFA2 = (Q2, ∑, δ2, q02, F2). These NFAs are
inputs in design of union of NFA accepting all the strings that
are either accepted by NFA1or NFA2. All the components of
resultant NFA are listed in the schema given below, and a
relationship between NFA1, NFA2 and their resultant is
established in terms of predicates in the second part of the
schema. Before describing union of two nondeterministic
automata, we describe NFA1 and NFA2 by renaming the
components of NFA as given below. An introduction to
renaming operator is given in section 2.
NFA1NFA[states1/states, alphabets1/alphabets, apsi1/apsi,
delta1/delta, q01/q0, null1/null, finals1/finals]

NFA2 NFA[states21/states, alphabets2/alphabets, apsi2/apsi,
delta2/delta, q02/q0, null2/null, finals2/finals]

NFA1uNFA2
NFA1; NFA2
states:  Q
alphabets:  Sigma
apsi: Sigma
delta: Q  Sigma   Q
q0: Q
null:  Q
finals:  Q

apsi  alphabets
q0  states
finals  states
q1, q2: Q; a: Sigma q1  states  q2  states  a  alphabets
 s1, s2:  Q s1  states  s2  states  q1 a s1  delta
  q2 a s2  delta q1 a = q2 a  s1 = s2
states = states1  states2  q0
finals1 = finals1  finals2
q:Q; a:Sigma; ss1: Q q  statesa  alphabets 
 qa ss1 delta
 q  states1  ss2:  Q q a ss2  delta1 ss1 = ss2
  q  states2  ss3:  Q q a ss3  delta2 ss1 = ss3
  q = q0  a = apsi  ss1 = q01 q02
  q = q0   a = apsi  ss1 = null


INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 120

Invariants: (1) The empty string is a member of set of
alphabets of NFA. (2) The initial state q0 must be an element
of set of total states of the resultant NFA. (3) The set of final
states is a subset of set of total states of the given NFA. (4) For
each (q, a), where q is a member of set of states and, a is a
member of set of alphabets, there is a unique set of states s
such that: delta (q, a) = s. (5) The set of states of the resultant
NFA is equal to the union of sets of states of NFA1, NFA2 and
a set consisting of a single element q0 which is newly created.
In fact, q0 is a new state introduced at the time of union and is
initial state in the NFA. (6) The set of final states of the NFA
is equal to the union of the sets of final states of NFA1 and
NFA2. (7) For any state and an element of the alphabets of
NFA, the transition function is modified as given above in the
schema NFA1uNFA2.

V. ANALYSIS AND PROOF TECHNIQUES

The Z/EVES is a powerful tool which can be used for
analyzing a specification written in Z. There is a much tool
support for analyzing the Z specification. Parsing, type and
domain checking, schema expansion, precondition calculation,
refinement proofs, and theorem proving are major facilities of
it. Formal models of nondeterministic finite automata in Z are
checked and strengthened using this Z/EVES tool-set. Formal
models described in the form of schemas are analyzed with
four major techniques offered by Z/EVES tool-set namely
syntax and type checking, domain checking, reduction and
prove by reduce.

 Fig. 2 Snapshot of specification analysis

A snapshot of the results of checking and analyzing the
formal specification is given above in Figure 2. It is to be
mentioned here that at first an abstract model was proposed

and then refined to remove inconsistencies and ambiguities.
While proving the formal models using Z/EVES, two types of
results were obtained. Firstly, some schemas were well written
and proved automatically without any prove assistance of the
tool. And then, some schemas were proved using the prove
assistance of the tool by reduction.

VI. CONCLUSION

In this paper, we have described formal specification of an
algorithm which can be used to construct NFA accepting union
of regular languages. A new approach by NFA and Z notation
is proposed. Although, a part of the integration is treated but
we have observed that this approach can be extended to give
formal specification of more powerful tools. We have
identified a relationship between some structures of these
approaches and proved it in a constructive way. After
integrating automata and Z notation, we have observed that a
natural relationship exists there which proves the importance
and originality of this research. It is observed that after
extending the NFA by adding some functionalities of Z, the
modeling power for complex systems can be increased.

An exhaustive survey of existing work was done before
starting this research. There exists a lot of research work on
integration of approaches as discussed in the introduction part
of this paper. The most relevant work reported in [15], [16],
[19], [20], [25] was found but our research is different of it
because of conceptual level integration of Z notation and
automata. Further, formalizing graphical based notations is not
easy [35] which increase importance of this research.

Behavior of a system can be best captured by automata
whereas its state space can be described ideally using Z
notation. This is why Z is integrated with automata in this
research. It is believed that this linkage will be useful in the
development of automated integrated tools and techniques for
software engineering processes. Formalization of some other
important concepts in automata is under progress and will
appear soon in our future work. Further, we have taken some
assumptions in this integration. For example, in union
operation, it was assumed that the set of alphabets in both of
the automata are same. These assumptions were taken for
simplicity of construction. In our future work, such
assumptions will be relaxed and a more generic integration
will be proposed between Z and automata.

ACKNOWLEDGMENT

This research is supported by Centre for Research in
Computer Science, University of Central Punjab, Lahore,
Pakistan. Specially, the authors are thankful to Associate Dean
Professor Ajmal Hussain, Faculty of Information Technology
and pro-rector Dr. Fehmida Sultana for providing research
funds and facilities in the centre.

REFERENCES

[1] M. Y. Vardi, T. Wilke, “Automata from Logic to Algorithms,” Logic
and Automata, 2007.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 121

[2] J. M. Spivey, “The Z notation, A Reference Manual,” Englewood Cliffs,
NJ, Prentice-Hall, 1989.

[3] I. J. Holub, “Finding Common Motifs with Gaps using Finite
Automata,” In Implementation and Application of Automata, Springer-
Verlag, pp: 69-77, ISBN 3-540-37213-X, 2006.

[4] K. Brouwer, W. Gellerich, E. Ploedereder, “Myths and Facts about the
Efficient Implementation of Finite Automata and Lexical Analysis,”
Springer-Berlin, 2006.

[5] I. Meisels, M. Saaltink, “The Z/EVES Reference Manual, TR-97-5493-
03,” ORA Canada, CANADA, 1997.

[6] E. A. Boiten, J. Derrick, G. Smith, “Integrated Formal Methods (IFM
2004),” Canterbury, UK, Springer, 2004.

[7] J. Davies, J. Gibbons, “Integrated Formal Methods (IFM 2007),”
Oxford, UK, Springer-Verlag, 2007.

[8] J. Romijn, G. Smith, J. v. d. Pol, “Integrated Formal Methods (IFM
2005),” The Netherlands, Springer, 2005.

[9] K. Araki, A. Galloway, K. Taguchi, “Integrated Formal Methods (IFM
99),” York, UK, Springer-Verlag, 1999.

[10] M. Butler, L. Petre, K. Sere, “Integrated Formal Methods (IFM 2002),”
Turku, Finland, Springer-Verlag, 2002.

[11] W. Grieskamp, T. Santen, B. Stoddart, “Integrated Formal Methods
(IFM 2000),” Germany, Springer-Verlag, 2000.

[12] J. S. Dong, R. Duke, P. Hao, “Integrating Object-Z with Timed
Automata,” 12th IEEE International Conference on Engineering
Complex Computer Systems (ICECCS 2005), pp: 488-497, 2005.

[13] J. S. Dong, et al., “Timed Patterns, TCOZ to Timed Automata,” 6th
International Conference on Formal Engineering Methods (ICFEM’04),
LNCS, pp: 483-498, 2004.

[14] R. L. Constable, et al., “Formalizing Automata II: Decidable Properties,”
Cornell University, 1997.

[15] R. L. Constable, et al., “Constructively Formalizing Automata Theory,”
Foundations Of Computing Series, MIT Press, ISBN:0-262-16188-5,
2000.

[16] R. Bussow, W. Grieskamp, “A Modular Framework for the Integration
of Heterogeneous Notations and Tools,” Integrated Formal Methods
(IFM 99), York, UK, Springer-Verlag, pp: 211–230, 1999.

[17] R. Büssow, R. Geisler, M. Klar, “Specifying Safety-Critical Embedded
Systems with Statecharts and Z: A Case Study,” Fundamental
Approaches to Software Engineering, Springer Berlin, ISBN, 978-3-
540-64303-6, 2004.

[18] M. Heiner, M. Heisel, “Modeling Safety Critical Systems with Z and
Petri nets,” International Conference on Computer Safety, Reliability
and Security, LNCS, pp: 361–374, 1999.

[19] X. He, “Pz nets a Formal method Integrating Petri nets with Z,”
Information & Software Technology, 43(1), pp: 1–18, 2001.

[20] H. Leading, J. Souquieres, “Integration of UML and B Specification
Techniques: Systematic Transformation from OCL Expressions into B,”
Asia-Pacific Software Engineering Conference (APSEC02), Australia,
2002.

[21] H. Leading, J. Souquieres, “Integration of UML Views using B
Notation,” Workshop on Integration and Transformation of UML
models (WITUML02), 2002.

[22] N. A. Zafar, N. Sabir, and A. Ali, “Semantics Transformation of NFA to
Z Notation by Constructing Union of Regular Languages”, the 8th
WSEAS Int’l Conference on Applied Computer Science (ACS’08), pp.
70-75, Italy, 2008.

[23] N. A. Zafar, N. Sabir, and A. Ali, “Construction of Intersection of
Nondeterministic Finite Automata using Z Notation”, International
Journal of Computer Science, vol. 3(2). pp. 96-101 2008.

[24] S. Riaz, and N. A. Zafar, “Constructive Formal Conversion of Moore
Machine to Deterministic Finite Automata”, The 10th WSEAS
International Conference on Mathematical Methods, Computational
Techniques and Intelligent Systems (MAMECTIS’08), Greece, 2008.

[25] C. Heitmeyer, “On the Need for Practical Formal Methods,” LNCS,
Vol.1486, pp: 18-26, 1998.

[26] E. Ciapessoni, et al., “From Formal Models to Formally-Based Methods:
An Industrial Experience,” TOSEM, vol.8 (1), pp: 79-113, 1999.

[27] J. P. Bowen, “Ten Commandments of Formal Methods,” IEEE
Computer, Vol.28, No.4, pp: 56-63, 1995.

[28] J. P. Bowen, M. G. Hinchey, “The Use of Industrial-Strength of Formal
Methods,” Proceedings of 21st International Computer Software &
Application Conference (COMPSAC'97), pp: 332-337, 1997.

[29] M. Barjaktarovic, “The State-of-the-Art in Formal Methods,” AFOSR
Summer Research Technical Report for Rome Research Site, Formal
Methods Framework-Monthly Status Report, F30602-99-C-0166,
WetStone Technologies, 1998.

[30] S. Liu, and R. Adams, Limitations of Formal Methods and an
Approach to Improvement, Technical Report, Hiroshima City
University, 1995.

[31] R. W. Butler, “What is Formal Methods?,” NASA LaRC Formal
Methods Program, 2001.

[32] J. Woodcock, and J. Davies, “Using Z: Specification, Refinement and
Proof,” Prentice Hall International, 1996.

[33] J. E. Hopcroft, R. Motwani, J. D. Ullman, “Introduction to Automata
Theory, Language and Computation,” Addison-Wesley, Reading, 2001.

[34] M. Sipser, “Introduction to the Theory of Computation,” Course
Technology, ISBN-13: 9780534950972, 2005.

[35] C. T. Chou, “A Formal Theory of Undirected Graphs in Higher Order
Logic,” 7th Int’l Workshop on Higher Order Logic Theorem Proving
and Application, pp: 144-157, 1994.

Nazir A. Zafar was born in 1969 in Pakistan. He received his M.Sc. (Math.
in 1991), M. Phil (Math. in 1993), and M.Sc. (Nucl. Engg. in 1994) degrees
from Quaid-i-Azam University, Islamabad, Pakistan. He was awarded PhD
degree in Computer Science from Kyushu University, Japan, in 2004. He is
the regular employee of Pakistan Institute of Engineering and Applied
Sciences (PIEAS). Dr. Zafar has served at various universities and scientific
organizations in Pakistan. Currently, he is on leave from PIEAS and working
with University of Central Punjab (UCP) in the Faculty of information
Technology, Lahore, Pakistan. He is the founder of Formal Methods Research
Group at UCP. His current research interests are modeling of complex
systems using formal approaches, integration of approaches etc. He is an
active member of Pakistan Mathematical Society. He is member of various
societies and organizations. He is also member of editorial boards of many
international journals. Dr. Zafar has lectured at national level promoting use
and applications of formal methods in Pakistan.

Nabeel Sabir was born in 1979 in Pakistan. He received his Master in
Computer Science in 2003 from U.C.P., MS (Computer Science) in 2007
from the same university. Currently, he is a faculty member and PhD student
of Dr. Zafar at UCP, Lahore.

Amir Ali was born in 1979 in Pakistan. He received his M. Sc. (Math. in
2003) from B.Z.U., Multan, Post Graduate Diploma (Computer Science) in
2005 from Q.A.U., Islamabad, Master in Computer Science in 2007 from
NUML, Islamabad. And, currently, he is a student (MS leading to PhD) of Dr.
Zafar at UCP, Lahore.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 122

http://www.springerlink.com/content/nlmfl9cfyqm0/?p=e76f3af092404832848597a9cab9fe80&pi=0
http://www.springerlink.com/content/nlmfl9cfyqm0/?p=e76f3af092404832848597a9cab9fe80&pi=0
http://www.apsec2002.acs.org.au/
http://ctp.di.fct.unl.pt/~ja/wituml02.htm

