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      Abstract— Most work in Artificial Intelligence reviews the 

balance of classic game theory to predict agent behavior in different 

positions. In this paper we introduce steady competitive analysis. 

This approach bridges the gap between the standards of desired paths 

of artificial intelligence, where a strategy must be selected in order to 
ensure an end result and a balanced analysis. We show that a strategy 

without risk level is able to guarantee the value obtained in the Nash 

equilibrium, by more scientific methods of classical computers. Then 

we will discuss the concept of competitive strategy and illustrate how 
it is used in a decentralized load balanced position, typical for 

network problems. In particular, we will show that when there are 

many agents, it is possible to guarantee an expected final result, 
which is a 8/9 factor of the final result obtained in the Nash 

equilibrium. Finally, we will discuss about extending the above 

concept in Bayesian game and illustrate its use in a basic structure of 

an auction. 

 
       Keywords—Artificial intelligence, Nash equilibrium, Bayesian 

game.  

 

                        I. INTRODUCTION 
 

eriving concept  solutions for Multi-Agent 

represents a major challenge for researchers from 

various disciplines.  
    The most famous and popular concept solution in economic 

literature is the Nash equilibrium. Although the Nash 

equilibrium, expansions and modifications are powerful means 

of description, and even though they were used in artificial 

intelligence literature [5], [12], [18], the call from their 

perspective regulation of artificial intelligence is somewhat 

less satisfactory. 

    We want to team up an agent with an action (process) so 

that we ensure the desired effect or at least to wait for the 

utility, all that without relying on the rationality of other 

agents. The most important examples were introduced by 

Aumann in 1982.  He shows 2 people-2 variants (2*2) g game, 

where the strategy of the most secure level (probably the 

maximum level) of the game is not Nash's equilibrium, but it 

produces a final result of the Nash equilibrium of g.  

    This observation may have a significant positive offset from 

the perspective of a creative agent.  
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    If a strategic security level of an agent guarantees a final 

result which is also the final result expected in the Nash 

equilibrium, then it can serve as a desired protocol, for an 

agent. We are interested to see whether or not a strategy of the 

optimum level of safety leads to a final expected result, similar 

to the one obtained in a Nash equilibrium of simple games, 

represented by variations of the basic scientific problems of 

classical computers. This is the case of Game 2*2 capturing 

simple variations in a stew of classical balance and leadership 

issues in the election of problems. In theory we consider a 2 

people game set and we show that if a theoretical set of a g - 

game has defective mixed strategy equilibrium, then the safe 
level for a player in this game involves equal result obtained in 

this balance.  

    Definition: A strategy will be called a safe C competitive 

strategy if it ensures an end result which is 1/C of the final 

result, obtained in Nash equilibrium. We show this in an 
expected decentralized load balance which sets 9/8 of the 

existence of competitive strategy, when the number of players 

is too large.  

    The 4/3 report can be obtained when we allow an arbitrary 

speed between 2 lines connecting the source to the target. 

Furthermore, we use the notation: k regular network, where k 
is the ratio of average communication speed and the smallest 

communication speed, to show the existence of a reliable 

competitive k strategy for general k-regular networks.  

   Afterwards, we discuss the competitive C strategies of the 

Bayesian game and show the existence of e-safe strategy for a 

first competitive price of classic organized auction. Imagine an 

agent designed with the communication of a user with 

different targets (tasks). 

    Selecting a route for the messages of a multi-agent system 

is a task not an easy task. The efficiency of an agent depends 

on the actions of other users (and their agents), while also 
trying to communicate with similar targets (tasks).  

    In such cases, the analysis of game theory can identify the 

Nash equilibrium that may arise in these configurations [2]. 

However adopting the strategy prescribed by the Nash 

equilibrium can be quite dangerous for our agent. Other agents 

may fail in choosing the strategy prescribed by this balance, 

and as a result our staff may turn to be completely penniless. It 

would have been much better if the agent could have provided 

similar outcome as that achieved in Nash equilibrium, without 

having to rely on the behavior of other agents.  

     Our work can be considered a complementary way, which 

compares the value of the saved level of an end result  
of an agent in Nash equilibrium [3] and [4].  

    The rest of the paper will be organized as follows:  

- section 2: definitions and basic notations;  

- paragraph 3-4: simple variations of a balanced task and of 

the chosen leader;  

- section 5: 2*2 games; 
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- section 6: other extended distributions of games;  

- section 7: increasing the complexity level (more agents with 

more possible variants),  

- section 8: the use of competitive analysis, saved in games 

with incomplete information; 

- section 9: the bayesian interpretation of  probabilities and 

statystics; 

- section 10: certain competitive analysis in bayesian game; 

- section 11: using bayesian networks in evaluatin risks. 

 

II. DEFINITIONS AND IMPORTANT NOTATIONS 
     Definition 1: A game is a triple 
 

{ } { } { }{ }n
ii

n
ii U,S,n,...,NG 111 ==== , 

 

where: N - a set of n players and Si - a limited set, defined by 

pure strategies available to i players;  

    Definition 2: A game with n players is a sequence of 

decisions and random events, that can either be simultaneous 

or not, and that complies with a specific structure of earnings, 
given by procedure rules (rule of the game).  

    The iS  random event implies a probability distribution over 

a field of events )S( i∆ .  

    Definition 3: The strategy of a player is a feasible (possible) 

action that a player can choose during the game. All game 

strategies are nS...SSS ∗∗∗= 21 , where n is the number of 

players. In some situations, nature (hazard) is the (n +1) 

player.  

    Definition 4: The gain function of the game is 

)U,...,UU(U n, 21=  and is made out of the functions of each 

player. 

     If we note each gain function of a player with iU  and the 

gain functions of other players with iU , then the gain function 

of the game is 

 

SUi
→R, )U,U(U ii= . 

 

    Definition 5: An optimum strategy is that which maximizes 

the gain of a player i, regardless of the strategies chosen by 

other players.  

    Notations:  

• Given iS , we see a set of probabilities distributed on the 

elements iS  and )S( i∆ ;  

• )s(t i∆∈  - a interblended strategy of player i;  

     Pure strategy  =  if iS  item is given the 1 probability.  

     Strictly mixed strategy = if we declare a positive 

probability for each iS  element.  

• A triple - { } )S(t,...,tt i
n
in ∆π∈= =11 is a profile strategy;  

• We note with )t(Ui  - the gain of players i which have a 

strategy profile t;  

• The profile strategy { }nt,...,tt 1=  is S Nash equilibrium if  

for any Ni∈ , )t,...,t,t,t,...,t,t(U ni
,
ii,i 1121 +−  for each. ii St ∈,

. 

• Nash equilibrium { }nt...,,tt 1=  is defined as a pure strategy 

Nash equilibrium if, for all Ni∈  we have –ti strictly mixed 

strategy; 

• Given a g game and a mixed strategy of i players, )S(t i∆∈ , 

the most reliable value of the obtained i level when we choose 

t in the g  game, indicated by round (t, i, g), is the minimum 

result expected from the i player, when using t arbitrary 

strategy profile of other players.  

    A t strategy for an i player, for which round (t, i, g) is 

maximum, is called a security strategy (or a maximum of 

probability) of the player. Hence, a security strategy for an 

agent i, )S(S isafe ∆∈ , gratifies the condition [1], [6]:  

 

)S,...,S,S,S,...,S,S(U

minmaxargS

niii

s)s,...,s,s,...,s,s()S(Ssafe jijniii

1121

1121

+−

π∈∆∈ ≠+−
∈

 (1) 

 

    A iSe∈ strategy dominates a ,Sf i∈  strategy, if for any  

)S,...,S,S,...,S,S( nii 1121 +− ),S( jij ∆π∈ ≠  

where  
              )S,...,S,f,S,...,S(U)S,...,S,e,S,...,S(U njjinjji 111111 +−+− ≥  

with a strict inequality for at leat one triple.  

A game is called irreducible, if there is no e, iSf ∈ , for every  

eNi ⇒∈ dominating on f.  

     A game is called generic (general) if for any ,Ni∈  the pair 

of e strategy, iSf ∈  and 
 

                      )S()S,...,S,S,...,S,S( jijnii ∆π∈ ≠+− 1121 , 
 

we have the following relationship [8]:  

 

)S,...,S,f,S,...,S(U)S,...,S,e,S,...,S(U njjinjji 111111 +−+− ≥     (2) 

 

if and only if e and f coincide.  

    In a general game the strategies of i players are different; a 
strategy profile is set for the remaining players, that can lead 

to other final results.  

    The conclusion of this simple property is that different 

strategies of i players and can lead to different end results (e.g. 

the result of costs, consequences).  

    A game is a game called a 2*2 game if n=2 and 

.SS 221 ==      

 

  III.  THE DECENTRALIZATION BALANCED LOADED 
POSITION  

 

    In this section we consider the decentralization of the 

balanced, loaded position, where 2 rational players must 

submit to messages through a simple communication network, 

a network between 2 parallel lines of communication 1e  and 

2e , connecting nodes s and t.  

    Each player has a message that has to be sent from s to t and 

he must decide which path to choose.  

The 1e communication line is faster, therefore the values of 

transmission for a single message over 1e  are α X> 0.  

The values of transmission of a single message for e2 are  

0.5 <X <1.4. 
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    Each player must decide what line of communication to use 

for transmitting messages from s to t.  

    If both players choose the same line of communication, then 

the value for each of them falls within a factor of 2 (a player 

will receive X/2 if both players have chosen 1e , and αX/2 if 

2e is elected).  

     By using a matrix, the game will have the following form 

[14]: 

 

                             M



















αα
α

α
=

22

22

X
,

X
X,X

X,X
X

,
X

.                    (3) 

 

    Sentence 1: The safest value of the optimal level for a 

player is the decentralized load balance in a game that expects 
the same final result in a balance of strictly mixed strategy 

game.  

    The sentence states that an agent can guarantee himself a 

final result that is equal to the final outcome in Nash 

equilibrium of the balance decentralization loaded game.  
 
    IV. CHOOSING LEADERSHIP -DECENTRALIZATION 

VOTES  
 

    In setting the leading choice, the players vote on which 

player identities are bosses for a particular task. A failure in 

the agreement governing the production is bad and we can 

shape it if the end result is 0.  

    Assuming that the player’s strategy is either "vote for 1" or 

"vote for 2", indicated by  a1 and a2, and Ui (aj, ak) >0, where i, 

j, k∈{1,2}, j=k. Using a matrix where a, b, c, d> 0 we can 

represent this problem as follows: 

 

M 







=

dc

ba

,0,0

0,0,
.      (4) 

 

    Sentence 2 (theorem): The optimal solution of the certain 

level for a player in a winning game, the final result is 
expected to draw mixed strategy equilibrium of the game.  

    An agent can guarantee that the expected end result is equal. 

Thus we can achieve a different strategy from the strategies of 

Nash equilibrium [7], [13]. 
 

 V. THE SAFE LEVEL IN A 2*2 PLAY 
 

    There are 2 people with 2 answers to a problem that are 

produce in a computational context. By giving 2 encouraging 

results in these important settings, we can consider 2 types of 

extensions.  

    1. Generalization of the results in a large family of simple 

games;  

    2. Generalize of results to more general settings of the 

relationship CS, playing in particular with more players.  

    The following part refers to the first point. Later, and 

particularly in stage 7, we will be referring to the second point. 

We have an interest in scaling the results obtained in stages 3 

and 4, so we are able to expand to other 2*2 games forms.  

     Load balance and the settings of the choosing lead may be 

represented as a generic 2*2 game.  

     Aumann's representation: 
 

M 







=

4,00,6

2,46,2
.                              (5) 

 

     General irreducible games have an attractive concept. 

Dominant strategies in the game do not mean understanding 
the interaction because sure strategies can be ignored [15].  

    Theorem 1: We have a G irreducible 2*2 game. Assuming 

that the minimum optimal value of a player is best achieved 

with a strictly mixed strategy, and then this value coincides 

with the end result produced a player in the Nash equilibrium 
of G.  

     The best strategy level. In general, in the context of 

artificial intelligence, the discussion (comment) is a mixed 

strategy, where the probability of operation is not considered.  

     Of course, the strategy of maximum probability is much 

stronger, and in many cases a safe level is only achieved 
through a mixed strategy and not by simple strategy. There is 

a generic irreducible 2*2 game, where the optimal strategy 

level for a player is pure, and the final result for this player is 

lower than the final outcome in all Nash equilibrium for g.  

     Considering a g  game, where: 

 

              

;50)2,2(

;60)1,2(

;40)2,1(

;100)1,1(

1

1

1

1

=

=

=

=

U

U

U

U

    

;90)2,2(

;200)1,2(

;210)2,1(

;100)1,1(

2

2

2

2

=

=

=

=

U

U

U

U

               (6)       

 

With a matrix, the game looks like this: 

 

M ;
90,50200,60

210,40100,100








=                     (7) 

 

It is very easy to see that g is generic and irreducible.  

     In particular, there is no dominant strategy and the final 

result obtained by each player for the profile of various 

different strategies is different from the result of other players.  

    The game has no pure Nash equilibrium. In a mixed 

equilibrium strategy, the probability that in a g game, player 2 

will choose a2, should satisfy the following condition: 

 

;2,050104060

)1(5060)1(40100

=⇒+=+⇒

⇒−+=−+

qqq

qqqq
       (8) 

 

     In this equilibrium, the probability that player 1 chooses a1 

is p=0,5 and the final result of player 1 is: 
 

                            .52)1(40100 =−+ qq   

    The safe strategy for player 1 is to perfect a2, ensuring that 

the final result is equal to 50, knowing that (a1, a2) is a 

difficult point in a zero sum game, where the final result of 
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player 2 is the complement of 0 to the final result of the player 

1, thus the sure level strategy for player 1 is 50 <52.    
 

   VI. GAMES OVER 2*2 
 

    The theoretical game set: In a theoretical set of games, the 

set of strategies available to players is the same and the final 

outcome for each player is determined by a unique set of 

strategies by each player.  

     For example, in a theoretical precise 2 player game, we 

have: 

 

           ),s,t(U)t,s(U 11 =  for each 21 sst,s =∈ ; 

           )s,t(U)t,s(U 22 = .                            (9) 

 
     It is important to note that in a theoretical precise game, the 

context is very important [16]. 

 

 
Fig.1: Nash equilibrium. 

 
    Sentence 3: Given a theoretical precise game g, with 2 

people and a mixed Nash equilibrium strategy, then the 

optimal value for a good strategy of a player is the expected 

and equal result (Fig.1, Fig.2, Fig.3 and Fig.4). 

 

 
Fig.2:  If (S1*, S2*) is a Nash equilibrium, then player 1 will not offer 

player 2 the possibility to make the S2 move. 

 

    If (S1*, S2*) is a Nash equilibrium, then player 2 will not 

offer player 1 the possibility to make S1 move.  
    Is there always equilibrium?  

    Can there be more than one? 
 

 
Fig.3: An example of Nash equilibrium from pure strategy. 

 

 
Fig.4: An example without Nash equilibrium from pure strategy. 

 

VII. THE COMPETITION OF SAFE 

        STRATEGIES 
 

     Let S be - a set of strategies. Considering a family of 

games ...),q,...,q,q( j21 , where i is a player for each of these 

families, the set of strategies for each game is S, there are j 

players, in addition to i, in qj.  
    An example is the family of balanced loaded position states. 

We have (n-1) games, resulting in n players and one of them 

being i. Players present their messages through e1 and e2.  

     The final result of player i, where there are n people, is 

 

  
K

X
( and

K

Xα
)     (10)   

 

if you chose 1e  (respectively 2e )  and additional K-1 

participants have chosen the same line of communication.  

    A joint strategy ( )St ∆∈  will be called C- safe strategy 

competitions if there is a constant C> 0 such that:  

 

  C
)g,i,t(round

)g,i(nash
lim

j

i

j
≤

∞→
,               (11) 

 

where: 

- )g,i(nash i , is the lowest result of the player i which can be 

obtained by any balance of the g game;  

- )g,i,t(round j , is the expected result, guaranteed by i, that 

chooses t in the game gj.  

    Theorem 2: There is 89 /  safe competitive strategy for the 

settings of the secure, balanced, loaded position. [17].  

    Extension: arbitrary success and m- links. The case where 

we have m parallel communication lines run by the source 

target.  

    The value obtained by the agent when the i line messages 
are presented, where officials decide whether the messages on 

this line are given by:  

 

,
n

iX

i

2−
                  (12) 

 

where 01 21 ≥α≥≥α≥α= m... .     

    Theorem 3: There is   
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j
m
i

m

i

m

i
jiji

m απ

∑ ∑ απα

=

= =
≠

1
2

1 1 ,  

 

a competitive strategy for a secure broad decentralization 

when we allocate m parallel lines of communication, and 

arbitrary S
,
iα [19]. 

 

VIII. THE DYNAMICS OF INTELLIGENT 

SYSTEMS   

     The Bayesian probability of an “X” event represents a 

person’s degree of trust that the event will take place, whereas 
in classical probability it represents physics propriety [17]. We 

will refer to the classical probability of an event as the 

physical possibility of the events occurrence and the Bayesian 

probability will be referred to as the degree of trust that the 

event will occur [19].    
     One important difference between the classical probability 

and the Bayesian one is that for the second one experiments 

must not be repeated. For example, let us imagine the 

consecutive throws of a sugar cube on a wet surface. Each 

time we throw the cube, its dimensions change. Therefore, 

although in classical statistics it is very hard to measure the 
probability of a cube falling face up, in Bayesian probability 

our attention is directed only to the next throw, which is 

attributed a certain probability. One critic that is often brought 

to Bayesian probability is that it seems arbitrary [11]. 

     A series of studies have suggested different sets of 

proprieties which should be satisfied by the degree of trust 

[18]. These sets of proprieties all lead to the same rules: the 

rules of probability. Each probability set, no matter how 

different from one another, actually lead to the probability 

rules, thus giving us a strong argument towards using 

probability to measure trust.  

     The measurement scale can be established considering the 

fact that people often find it easy to say that two events are 

almost the same. Usually, the process of measuring the degree 

of trust is known as the probability of evaluation [8]. 

     One of the problems linked to evaluation probability is that 

of precision. In most of the cases, we cannot say for sure that 

the probability of an x event is 0,802 rather than 0,799. 

Anyhow, in most cases, probabilities are used to make 

decisions, which are not influenced by minor probability 

variations  

     Another problem linked to evaluation probability is 

accuracy. For example, the way a certain question is 
enunciated can lead to an evaluation that does not reflect the 

true degrees of trust of a person. There are many methods of 

improving accuracy that are enunciated in the analysis- 

decision literature.  [23] and [24]. 

     A Bayesian network with a set of variables X={X1 ,...Xn} is 

made out of [24]: 

- a network structure (S) that is encoded by a set of 

independent conditional propositions regarding the variables 

of X; 

- a set of probabilities (P) linked to each variable. 

      Together these components represent the distribution of 

probabilities for X. The network structure (S) is an acyclic 

undirected graph. The nodes in S correspond one on one with 

the variables of X. We will use Xi to specify the (X) variable 

and the corresponded node(i), and pay to specify the parents of 

the nodes and the variables attached to them. In particular, the 

distribution of probabilities for X, in an S structure is given by 

pair(S,P), that is the all distributions of p(x).  

      The probabilities used in Bayesian networks can be either 

Bayesian probabilities or physics probabilities. When 

networks are being built using previous knowledge, the 

probabilities will be Bayesian ones. When the Bayesian 

networks are being “learned” from data, they will be physics 

ones (values can be uncertain).  

    The first stage of building a Bayesian network must 

consider the following: the correct identification of the 

purpose of the model (explanation, exploration), identifying 

possible observations that could be relevant in resolving the 

problem, determining the set of observations useful to the 

model and organizing observations in variables with exclusive 

and exhaustive states.   

   The difficulties that might arise are not specific to Bayesian 

networks. They are commune problems of all models, but 
there is a method of building Bayesian networks that does not 

require ordering variables.  

    This approach is based on two observations: 

- People can easily identify causal relations between variables. 

- Causal relationships usually correspond to conditional 

dependencies of the nodes.  

     Therefore, in order to build a Bayesian network for a 

multitude of variables, you must only mark the edges between 

cause and effect variables. Using this method will result, in 

any case, in a structure that will satisfy the equation.  

     Once a Bayesian network has been built, we must 
determine the necessary probabilities of a functional model 

and also know the probability of events leading to other 

events.  This probability is not stocked directly in our graph. It 

must be calculated. This phenomenon is called probability 

interference.  

      Because a Bayesian network for X will determine a 

reunion of probabilities distributed for X, it can be used to 

calculate any probability.  

      A remarkable characteristic of Bayesian networks is that 

they can be used to talk about causality, through mathematics.  

       For better understanding, we will present an example.  

       A work security and health specialist wants to know if it 
is necessary to increase or decrease the means of signaling for 

danger in order to raise the level of security amongst workers 

by making them aware of the dangers they can face. 

     The chosen variables are Signaling(S) and Awareness (A), 

which indicated if a person has seen or not the signals before 

they were aware of danger.  
    A first step would be studying the physics probability that 

A= True, knowing that S= True and the physical probability 

that A= True, knowing that S= False.   

    One way of studying these probabilities is by using an 

experiment: we choose two similar, random populations we 
force P to be true in one case and false in another, while we 

observe S.  
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    This method is quite simple, but it can be very expensive 

from an implementation point of view.   

 

IX. THE BAYESIAN INTERPRETATION OF   

      PROBABILITIES AND STATYSTICS 
 

     One alternative method arises from causal knowledge. In 

the situation we have chosen, we study the relationship S→C.  

     If we force S to be true, or we simply observe that S is true 

for our current population, then we can say that signaling for 

danger was efficient towards people’s acknowledging of that 

danger. In this case, we will write: )sc(p)sc(p =  (2.2)- the 

physical propriety of C= true; knowing that S is not forced to 

be true in the current population.  

     We will use the same analogy for: )sc(p)ŝc(p ==  

     On the other hand, if we have S→C and we force S towards 

one state, C will not be influenced.  

     To determine if S is the cause of C, we will use causal 

dependency and probability, known as the Markov causal 

condition, which states that an acyclic undirected graph C, is a 

causal graph for X variables, if the nodes in C are in one on 

one correspondence with X and there is an arc between X and 

Y, if and only if X is the direct cause of Y. According to the 

causal condition of Markov, if C is a causal graph for X, then 

C is a Bayesian network.  

     Being given the Markov causal condition, we can extract 

causal relationships out of conditional- independent and 

conditional- dependent relationships. Assuming that we have 

learned that physical relationships are not equal, using the 

Markov causal relationship we will define four simple causal 

relationships (Fig.5): 
     a) S →C,  

     b) C →S,  

     c) there is a “hidden” cause for P and C; 

     d) S and C are causes for the selection of data;  

 

 
Fig.5: Causal graphs that show four relationships between S and C. 

“asc” corresponds to a commune hidden cause for P and C. The 

common node O indicates that this case has been introduced in the 

database. 

     Until now, the Markov causal condition has not answered 

our question whether S causes C or not. We assume that 

another two important variables will be observed: Person 

studies (I) and Person senses (M), which represent the studies 

and acuteness of the workers. By introducing these two 

variables in our graph, we will obtain the graph in the Fig.6.  

     Because we are aware of the Markov causal condition, the 

only explanation we can find for the independent- conditional 

and dependent conditional relationships of the Bayesian 

network is that S causes C. 

     

 
Fig.6: A Bayesian network where A causes B is the only 

causal explanation for the Markov causal condition. 

 

X. CERTAIN COMPETITIVE ANALYSIS IN  

      BAYESIAN GAMES 
 

    The results presented in the previous section refer to games 

with complete information. The games that we have studied in 

this context refer to basic settings in artificial intelligence and 
game intersection theory. Throughout this section we will be 

showing that our ideas can be applied for games that lack in 

information. In a game with incomplete information the final 

result of a player gives other players private information about 

him/her. On the other hand to illustrate certain competitive 

analysis in games with incomplete information, we chose to 

use a basic mechanism, namely, the first - with the most points 

takes action. Actions are the fundaments of economic 

mechanism theory, one that has no dominant strategy assumes 

independent private action, and the first move is likely to be 

the most common [9].  

     We will consider a setting where a good, g is for sale and 

there are n potential buyers. Each player knows the maximum 

he/she can offer for the good, g, and that information is 

estimated in uniformly distributed real numbers of [0,1]. This 

evaluation represents private information that is available only 

to the agent.  The exact evaluation is only known by the agent, 

whereas the evaluation of agents is public. Evaluations are 

independent data. In the first action, every potential buyer is 

asked to auction for the product. Then we have to make sure 

that the auction for the g product and the v evaluation are 

situated in the interval that offers the highest price (in case 

there is more than one winner, a lottery is held). Auction rules 
can be defined using the Bayesian game. In this game, the 

players are perspective buyers and the end result of a player 

with the v evaluation is v-p if he/she wins and pays p and 0 if 
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he/she does not want the product. The equilibrium concept can 

also be extended in the context of Bayesian games.  

      In his/her self evaluation, the strategy of each player is 

linked to the maximum price that can be auctioned. A strategy 

profile will be balanced if the strategy of an agent is the best 

compared with the strategies of the other agents. More exact, 

for the balance of the game, the auctioning of players with v 

evaluation is  

v)
n

(
1

1− .  

     The final result of an agent with the v evaluation will be: 

 
n

vn
.  

     The questions are now: can we guarantee the final price, 

which is proportional with the final price expected for a 

balance? 

    We have to make sure that the competitive action of a 
player is independent from the number of players. On the 

other hand, the number of players is taken into consideration 

when it comes to the balance of the game. The main revelation 

tells us that one can replace the first price offered by the 

following: each bidder will be asked to report its evaluation 

and the best will be sold to the bidder who will narrate the best 

evaluation, if the staff gives the assessment, he/she will be 

considered a player and will be asked if he/she can 

pair ,v)
n

(
1

1− . In this mechanism, a player is going to make a 

bid between .v
n

n

1−
 He then sends that the true evaluation 

report in a balance of that auction, producing the same 

allowance, payment and utility expected from the participants, 
as in the original auction. It is convenient to consider that the 

revelation of the mechanism (from the moment we choose the 

number of participants) is based on the same strategy as the 

equilibrium auction.  

    The price of the first set is identified with the 

games ,...),( 21 gg where gj is a Bayesian game associated with 

the first price j+1 offered by potential buyers.  

    C competitive strategy definition can now be applied over 

the context.   
    Theorem 4: There is an e-competitive strategy for choosing 

the first price. An interesting observation in this theorem is 

that the sure level of the strategy is identical to the level of the 

balanced strategy. This connection is not 0.  

     It is also interesting to see that when we consider the 

revelation of the mechanism, the sure level of the strategy is 
not related to the number of players. Our result can also be 

obtained if we consider the first price to be the standard one. 

However, this action gives players the chance to choose that 

action, knowing the potential number of bidders and when 

they will exchange with one another in the equilibrium 
analysis.   

 

XI. USING BAYESIAN NETWORKS IN  

       EVALUATIN RISKS 
 

    There are several methods we can use, such as the Analysis 

of the deterioration of the Tree, which can give very good 

results if used together with an efficient probability system. 

The graphic probability models are graphs where the nodes are 

random variables and the arcs are conditional independence 

assumptions. As a result, they offer a good representation of 

probability distributions.  

    The graphic undirected models, known as Markov Random 

Fields or Markov networks, have a simple independence 

definition: two nodes A and B are conditionally independent if, 

being given another node C, all paths between A and B are 

separated by a node in C. Unlike these models, the oriented 

ones, known as Bayesian networks, have a more complex 

definition of independence, which takes in consideration the 

orientation of the arcs.  

     Therefore, this type of graphs has more advantages. One 

advantage is that an arc between A and B can be interpreted as 

A causes B. This can be used as a graph building guide. 

Moreover, the oriented models can encode relationships and 

they are easier to learn and implement. The causal structure 

and conditional relationships which are found in the model, 

allow the insertion of data through entrance nodes, spreading 

data throughout the model and modifying the values of exit 

nodes [11]. This model can be used for both interpretation and 

diagnosis, thus ensuring a decision making support.  

Considering what we have mentioned earlier, we have chosen 
a conceptual model of analysis for the safety functioning of a 

monitoring system, based on Bayesian networks (Fig.7).  

      In this analysis we have the safety of the monitoring 

system and the appearance of testing errors. Causal factors are 

divided into two categories: the ones related to human quality, 

which use, design, create and test and those related to the 

complexity and accuracy of testing.  We can see that the major 

role in establishing causes is played by the causal factors 

determined by the human resources involved in the creation of 

the system.  

   

  
Fig.7: Model of analysis for the safe functioning of a monitoring 

system, based on Bayesian networks. 

 

    To create the logics of a monitoring system for a safety 

degree, we propose a Bayesian model, presented in fig. 8.   
Through the implementation of this model we can create an 

evaluation of a state of danger using several observations. The 

state in which the system is found at a certain point as well as 

other causes can lead to a dangerous state of the model.  

  This state can appear because it has not been eliminated 

when the model was designed. As a consequence it can be 

considered the cause of appearance of a residual risk. The 
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manifestation of the residual risk is determined by de 

dangerous state in which the monitoring system in found, but 

it can be tempered or eliminated by existing security barriers.     
 

 
Fig.8: Monitoring risk model based on Bayesian networks. 

 
Fig.9: Evaluating the risk degree. 

     This action affects the human factor – harming him, as well 

as loss of materials, loss in production or any other damages. 

Depending on how the risk is seen, an action can be initiated, 

which can affect costs either in a positive way or a negative 

one. Unlike the Analysis of the deterioration of the Tree, 

Bayesian networks use a wide range of information, all found 

in the same model, thus enhancing the range of application of 

the model. Moreover, the relationships between variables of 

Bayesian networks fall into the probability category instead of 

the determination one.  

   Determination relationships are basic characteristics of the 

Analysis of the deterioration of the Tree model, as well as of 

other management risk tools. Probability relationships 

between data allow the encoding of uncertainty. This is very 

important because it helps represent an uncertain world, very 

similar to the way people see the world. The method we 

proposed for evaluating the risk in a Bayesian network is 

based on creating a Bayesian model that takes into 

consideration risk related observations about working 

equipment, work environment, work tasks. Based on these 

observations we calculate the probability of appearance of an 

accident. Taking into consideration the fact that risk is 

represented by the probability of appearance of a dangerous 
event as well as the gravity of its consequences, we propose a 

way of evaluation the risk using 4 probability degrees and 4 

gravity degrees (Fig.9). Using this method we will cover 

several stages (Fig.10). In the first stage we identify the causal 

factors generated by the work equipment, work environment, 

 
Fig.10: Generalised model of evaluation: a) causal factors identification; b) influence diagram development; c) distribution table 

asignement; d) risk level calculus. 
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work tasks or execution of the tasks. 

      In the next stage, we create an influence diagram, which 

establishes the relationships between causal factors. In the 

third stage, we build the Bayesian network, we determine who 

are the intermediary factors, what are the relationships 

between them and we make the distribution tables.  

     The last stage is evaluating the risk level through use of the 

interface.  

 

XI. CONCLUSION 
 

    Some of the earlier work in artificial intelligence has tried 

to show the potential power of theoretical path which does not 

talk about the theoretical game of classic analysis.  

     In particular, work in competitive analysis of computer 

science theory has been extended, emphasizing on reasoning 

restrictions, in such a way that it can be applied for multi- 

agent systems.  

     We introduce reliable competition analysis, covering the 

differences between artificial intelligence/ secure regulatory 
competition and advanced classical equilibrium analysis.  

    The above notes have shown, thanks to Aumann, that the 

strategy of the sure level can relinquish the values of the Nash 

equilibrium which do not have an amount equal to 0, 

generating a normative power for computers and interesting 

discoveries in artificial intelligence. It was shown that sure 
competitive analysis can be used in different contexts.  

     We show the results of a 2*2 game, as a safe game of 

numerous participants, by introducing the use of sure 

competitive analysis in the balanced, loaded position of 

choosing the winner and the bids. It is very important to 

realize that this paper implies the regulatory discussion in 

decision- making for multi- agent systems.        

     Although the Nash equilibrium has many shortcomings, it 

is still the most powerful concept in the prediction of actions 

in multi-agent systems. The settings of balanced loaded 

positions are very important in theoretical games.   
    This paper suggests the use of protocols and analysis, by 

underlining the difference between classical decision theory 

and artificial analysis of equilibrium in game theory. 

     By analyzing and representing a system with the help of 

models based on Bayesian networks, we can make a probable 

evaluation in real time of potential dangerous situations. 

Depending on security policy, we can also make efficient 

decisions.  

     We propose that these models be implemented with the 

help of computerized technology in order to constantly 

monitor by observing different parameters. This way we can 

determine the risk of accidents, which is crucial in security 
and health management.  

      The boundaries of this research can be broken, considering 

the fact that recent studies have shown that this type of 

mathematics is used by the human brain. The “optimal Bayes” 

represents the means of reaching correct conclusions, by using 

probabilities.  

     Human neurons receive different signals, such as light or 

sound signals, or any other signals from the surrounding 

world. When the brain processes these variables, it requires 

accurate information, which is not necessary contained in 

those transmitted by our senses.  

     In this case, the neuron that has to make the decision take 

into consideration only the set of variables that can be 

converted and used in a Bayesian calculation.  
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