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Abstract— Abnormal observation due to an isolated incident 
such as a recording error is known as additive outlier and it is 
often found in time series. Since extreme value of additive 
outliers may contribute to the inaccuracy of model 
specification, proper detection procedure is significant to 
avoid such error. Equations that explain the nature of an 
additive outlier and the test statistics pertaining to it are 
discussed in this article. This is followed by two separate 
simulation studies that are conducted to investigate the 
sampling behavior and detection performance of the test 
statistics in ARMA (1, 1) models. Results for the first 
simulation study show that the test statistics is an increasing 
function of sample size. Whilst in the other simulation study 
we see that the performance of the test statistics improves as 
large magnitudes of outlier effect are used. 
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I. INTRODUCTION 

Abnormal observations in time series often signify 
important events such as an intervention or an unexpected 
incident like the outbreak of war, economic recession etc. 
These observations are known as outliers because they are 
aberrant from the rest of the observations. To identify an 
outlier based on the reasons associated with it, outliers are 
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named based on their attributes like additive outlier (AO), 
innovational outlier (IO), temporary change (TC) and level 
shift (LS) each of which corresponds to a unique incident. The 
most common incident found in a time series is recording 
error and such event is noted by AO. Thus, this study aims to 
investigate the sampling behavior of the test statistics used to 
detect a single AO in ARMA (1, 1) models and its 
performance when selected criterion is applied. 
 An outlier-free time series  that follows an 
autoregressive moving average (ARMA) process is defined as 
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            Fox (1972) is among the earliest to conduct a study on 
outliers in time series. He considered non-seasonal AR (p) 
process and two outliers which are AO and IO. In his work, 
Fox proposed a method which detects and removes the outlier 
effect [1]. Following that, many studies on outliers in ARMA 
(p,q) models were carried out like [2]-[4]. Making use of (1) 
and (2), the generating mechanism of an AO in ARMA 
process is described as 
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From equation (2)  
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The observed outlier-free series of (1) and unobservable series 
are denoted as  and Zt respectively. Magnitude of AO is 

represented by 
tY

ω  and   is a time indicator variable used 

to indicate the occurrence of an AO.  Therefore, =1 when 

an AO is spotted and =0 otherwise. Following (4), AO is 
said to be deterministic in nature i.e. not affecting observations 
subsequent to it [1]. 
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II. TEST STATISTICS FOR AO DETECTION 
     Despite only affecting the observation at t = T, an AO is 
known to affect up to p subsequent residuals following t=T 
[6]. Therefore, residual estimates are used in the estimation of 
ω which later forms the basis of AO detection. In this section, 
discussions on the estimation of residuals and AO effects are 
shown in (6) and (7) respectively. 
 

A. Estimation of residuals 
To facilitate understanding of how residual estimates are 

used in the AO detection procedure, consider a simple case 
when T and all parameters in (1) are known [1].  Let 
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be the dynamic system where jπ  denote the weights for j 
beyond a moderately large value J that essentially equal to 0 
when the roots of ( )Bθ  lie outside of the unit circle. Estimated 
residuals can then be described as  
 
  ( ) tt YBe π=ˆ

                                            (7)  
 
     Using (5), (6) and (7), estimated residuals of an AO 
contaminated series in an ARMA process can be written as 
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Noting that  when  and  otherwise; 
residuals for 

1)( =T
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On the contrary, residual estimates for ( )jnjjTt −=+= ...2,1  
are not as straight forward as (9). To obtain the respected 
residual estimates, we expand equation (8).  
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     For n number of observations, equations (8)-(10) can be 
summarized as the following [5]: 
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     B.  Estimation of AO effect 
     Let ω̂  be the estimator of ω  in (3) , ω̂  is known as the 
least squares estimate of AO effect because { }ta   are obtained 

from the least squares theory [5]. From (8), let ( ) )(T
tIBπ  be 

represented by , we have that tx
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and variance of the estimator given as 
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     Having stated equations (6) to (14), the test statistics of 
interest denoted by tη  is the absolute maxima of (14) as 
described in (15) 
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III. ILLUSTRATIONS 
     For the illustration of the sampling behavior and detection 
performance of the test statistics tη , we consider a simple 
case when T and all parameters of ARMA (1, 1) are known. 
To allow a more comprehensive analysis to be conducted, the 
parameters are carefully chosen to form unique combinations 
of ARMA (1, 1) models as shown in Table 1. Assuming the 
residuals,  follow a normal distribution of N (0, 1), outlier 
free time series for each of the model in Table 1 are generated 
using the arima.sim procedure in R package. 

te

     In section 3.1, outlier free time series of size n are used to 
study the sampling behavior of tη . Then, in section 3.2, AO 
contaminated series are generated by creating an AO at T=n/2 
in the outlier free time series. These contaminated series are 
used to test the performance of tη  in the detection of the 
artificial simulated AO. 
 

A.  Sampling Behavior 
     In this section, we investigate the sampling properties of 

tη  in relation to  
(i)  Sample size n 60, 100 and 200 

(ii) Coefficients chosen for ARMA (1, 1) in Table 1. 
 
 
 
 
 
 

TABLE I 
ARMA (1, 1) MODELS 

Model AR MA 
1 0.3 0.7 
2 -0.3 -0.7 
3 -0.3 0.7 
4 0.3 -0.7 

 
    To achieve this, outlier-free time series of size 60,100 and 
200 for each of the model in Table 1 are generated 500 times.  
For instance, given n = 100 and model =1, 500 test statistics 
for the additive outlier tη  pertaining to the respected criterion 

are attained. Next, the upper percentiles of tη  at 1%, 5% and 
10% level are obtained for comparison. 
 Repeating the same procedure for all possible 
combinations of (i) and (ii), the results are then plotted in 
Figure 1-3.The plots show similar patterns as estimates of  tη   
at given percentiles are increasing functions of sample size n. 
However magnitude for the increase varies for each model. 
Take model 3 as an example, at 5% upper percentiles, 
estimates of  tη  corresponding with sample size 60,100 and 
200 are 2.55, 2.70 and 2.76 respectively as compared to the 
estimates of Model 2 which are 3.47, 3.71 and 4.03.  
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 Fig.1 1% upper percentiles of tη  
 
 

 
 Fig.2 5% upper percentiles of tη  
 

 
 Fig.3 10% upper percentiles of tη  
 
B.  Detection Performance 

     Next, we examine the detection performance of 

tη associated with 
(i) Sample size n of 60, 100 and 200  
(ii) Coefficients chosen for ARMA (1, 1) in Table 1 
(iii) AO effect ω of magnitudes 5, 10 and 15 
     For each possible combination of (i),(ii) and (iii), 500 AO 
contaminated series are generated by allocating an AO of the 
respected ω at T = n/2 in each of the series as suggested in (3). 
For example, given n = 100 ,model =1 and ω =5, we acquire 
the proportions of the AOs correctly detected at 1% 
significance level from the 500 AO contaminated series in 
relation to the respected criterion.  
 Repeating the same procedure for all possible 
combinations of (i), (ii) and (iii), the results are then plotted in 
Figure 4-15. Overall the plots suggest that the detection 
performance of tη  improves when large ω are used, this is 
especially evident in model 3 as exhibited in Figure 10-12. 
 

 
 Fig. 4  Proportion of the AO correctly detected in  
  Model 1 when ω = 5 
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 Fig. 5  Proportion of the AO correctly detected in  
  Model 1 when ω = 10 

 
 Fig. 6  Proportion of the AO correctly detected in  
  Model 1 when ω = 15 
 
 

 
 Fig. 7 Proportion of the AO correctly detected in  
  Model 2 when ω = 5 
 
 

 
 Fig. 8  Proportion of the AO correctly detected in  
  Model 2 when ω = 10 
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 Fig. 9  Proportion of the AO correctly detected in  
   Model 2 when ω = 15 
 
 
 

 
 Fig. 10  Proportion of the AO correctly detected in  
   Model 3 when ω = 5 
 
 

 
 Fig. 11  Proportion of the AO correctly detected in  
   Model 3 when ω = 10 
 
 

 
 
 Fig. 12 Proportion of the AO correctly detected in  
  Model 3 when ω = 15 
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 Fig. 13  Proportion of the AO correctly detected in  
  Model 4 when ω = 5 
 
 
 

 
 Fig. 14  Proportion of the AO correctly detected in  
   Model 4 when ω = 10 
 
 

 
 Fig. 15  Proportion of the AO correctly detected in  
   Model 4 when ω = 15 

 

IV. CONCLUSION 
     An AO is often associated with isolated mistake such as a 
recording error. Therefore, it has a deterministic nature 
because the AO effect ω does not affect subsequent 
observations as described in equation (4). However, according 
to equations (8) - (10), residuals that come after an AO may 
substantially be affected by ω. In section 3.1, simulation study 
on the sampling behavior suggests that estimates of the test 
statistics tη  are increasing functions of n. On the other hand, 
the simulation study in section 3.2 show that the detection 
performance of tη  improves when large magnitudes of ω are 
used. In this study, neither the sampling behavior nor the 
detection performance of tη  indicates any obvious 
relationship with the coefficients chosen for ARMA (1, 1). 
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