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Abstract— Cell behavior and communication are regulated by a 

complex network of intracellular and extracellular signal transduction 
pathways. In this paper, a model of signaling process involving G 
proteins is analyzed. The model incorporates reaction-diffusion 
mechanisms involving reactants that interact with each other on the 
cellular membrane surface and its proximity. The ligand-receptor 
complexes and the inhibiting agents in the process may diffuse over 
the cell membrane, and the signal transduction is mediated by the 
membrane bound G protein leading to biochemical intra-cellular 
reaction and the production of the second messenger or other desired 
functional responses. Weakly nonlinear stability analysis is carried 
out in order to investigate the dynamic and steady-state properties of 
the model. Turing-type patterns are shown to robustly form under 
conditions on the system parameters which characterize the 
formation of stationary symmetry breaking structures; stripes and 
hexagonal arrays of spots or nets. Some recent experimental studies 
are then mentioned in support of our theoretical predictions. 
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I. INTRODUCTION 
ignal transduction at the cellular level refers to the 
movement of signals or flow of information from outside 

the cell to the inside. The movement of signals can be simple, 
such as that which involves the receptor molecules of the 
acetylcholine class. These receptors constitute channels 
which, upon ligand interaction, allow signals to pass, in the 
form of small ion movement, either into or out of the cell. The 
passage of ions leads to changes in the electrical potential of 
the cells that result in signals being propagated along the cell. 
More complex signal transduction involves the coupling of 
ligand-receptor interaction to various intracellular events. 
Thus, external stimuli are relayed to a series of internal 
reactants, which in turn trigger key cellular functions. A 
healthy functioning cell signaling mechanism is therefore 
essential for the well-being of the life form. Abnormalities of 
signal transduction pathways have been linked to the 
development of many serious disorders, such as Alzheimer’s 
disease and cancer. Since hormones and their receptors are so 
closely related to carcinogenesis and several other diseases, 
better understanding of signal transduction mechanisms has 
been a subject of intense research [1-6]. 

In an earlier work, Rattanakul et al. [5] studied a model of 
the signal transduction pathway which involves G protein 
coupled receptors (GPCR), based on earlier investigations and 
modeling efforts of Spiegel [7], Levchenko and Iglesias [8], 
Rapple et al. [9], and Iglesias [1]. The reference model 
considered in the work of Rattanakul et al. [5] consists of a 
system of two differential equations which govern the 
interaction between an inhibitor protein (I) and the ligand-
receptor complexes (R). Signal transduction across the cell 
membrane is mediated by membrane receptor bound proteins 
which connect the genetically controlled biochemical 
reactions in the cytosol to the production of the second 
messenger, eliciting desired intracellular responses. In their 
model [5], only the signaling hormone and, correspondingly, 
the ligand coupled receptors are allowed to diffuse over the 
extra-cellular membrane surface in two dimensions, while 
some transport of molecules across cell membrane 
(internalization) may take place to certain extent. 

However, according to several studies [10-14] lateral 
diffusion coefficient of the inhibiting units of G protein in the 
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cytosol has been observed to be significantly higher than that 
of the membrane receptor complexes. Schlessinger et al. [14] 
reported that the protease inhibitors diffuse within the muscle 
fibers at the rate of 1 , while the lateral diffusion 
coefficients of ligand-receptor complexes were reported [15] 
to be in the range of .  

2 /μm s

10 8× −2 2 21.5 10   /μ− −× m s
In the next section, we describe the essential stages of the 

cell signaling process: reception, transduction, and response, 
in which different reactants interact. From our detailed 
consideration of the process, we may derive the governing 
equations which will be analyzed in later sections. We utilize 
an optimization technique involving a genetic algorithm to 
estimate the values of the parameters in our model that yields 
simulation results which best fit the experimental data on the 
time series of the cAMP levels we have collected. The system 
is then modified to model the signal transduction pathway in 
which both reactants that take the major roles in the 
interactions, namely the inhibitor component and the ligand-
receptor (LR) complexes, are allowed to diffuse over the two 
dimensional cell membrane surface and the plasmalemma. 
The fact that the diffusion rate of the inhibitor is significantly 
greater than that of the stimulator in our system permits the 
weakly nonlinear stability analysis of the model to be carried 
out to classify the dynamics and steady-state properties of 
model solutions. We show that Turing-type patterns will be 
formed robustly under different conditions imposed on the 
system parameters. In the last section, we discuss how certain 
connections can be made between reported experimental 
measurements and our predictions of different LR distribution 
patterns on the cell membrane. The theoretical predictions are 
then discussed in the contexts of recent experimental 
observations which have reported evidence that membrane 
spatial organization is an important contributor to the proper 
function of cell transduction of and response to external 
stimuli. 

 

II. TRANSDUCTION PROCESS AND THE GOVERNING EQUATIONS 
The proper functioning of a life form depends on the ability 

of its cellular constituents to communicate with each other. 
This requires that cells have a mechanism to detect and 
respond specifically to external signals [12]. One of the more 
complex strategies for doing this involves a three-stage G 
protein coupled enzyme cascade [16], a schematic description 
of which is shown in Figure 1.  

In the first stage, the reception stage, a specialized 
membrane receptor protein is activated by its interaction with 
a particular ligand or absorbing a photon of light of a 
particular wavelength. 

In the second stage, the transduction stage, the activated 
receptor, the density of which will be denoted R, turns on a 
heterotrimeric G protein, by causing the G protein to exchange 
GDP (guanosine diphosphate) for the nucleotide guanosine 
triphosphate (GTP) which activates the G protein. The α-
subunit and the β-γ complex of the G protein then dissociate. 

The GTP-bound α-subunit then diffuses along the membrane 
and binds to an effector (the adenylate cyclase or AC), 
activating it. This is followed by an appearance of GTPase 
activity resulting in the conversion of active α-GTP to 
inactive α-GDP and thereby inhibiting the activation of AC by 
G proteins. 

 
 
The GTP activating ligand (A) and the intrinsic GTPase 

enzymatic activity are thus able to function as a switch to 
sequentially turn on and turn off the signal transduction action 
of G protein α-subunits. In this mechanism we may therefore 
consider the GTP and GDP ligands to play the roles of 
activating agent (A) and inhibiting agent (I), respectively. 
Letting G be the amount of α-subunits of G proteins in the 
resting state, and G* be that in the active state, G transforms 
to G* according to the following reaction. 

 
     
                  (1)                    
 
 

 
Fig. 1 Schematic diagram of the signal transduction process mediated 
by the G protein. 

 A

I 

G G*

 
where the activating and inhibiting agents, whose densities are 
denoted A and I, respectively, are stimulated by the binding of 
ligands to receptors according to the following equations 

,dA k A k Ra adt
= − +−                        (2) 

,dI k I k Ri idt
= − +−                            (3) 

where is the membrane surface density of the ligand 
bound receptors (LR). Using mass action dynamics, an 

( )R t
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equation for the transformation of G to G* in (1) is  
* *- -

dG k IG k AGr rdt
= + .                       (4) 

Assuming that the total number  of the 

regulators remains constant, 

*= +G G GT
(4) becomes  

[ ]
* * .dG k I k A G k AGr r r Tdt

= − + +−                                  (5) 

 
The active α-subunits of G proteins then associate with an 

effector protein, such as the membrane-bound adenylate 
cyclase (AC) enzyme (of amount E), to form a Gα-E complex 
of amount E* that follows the equation 

* * ,dE k E k Ge edt
= − +−

*                                                     (6) 

and is stimulated by G* to produce an intracellular response, 
such as the synthesis of cyclic AMP (adrenosine mono-
phosphate), or a cyclic nucleotide or Ca2+ increase. 
    Letting C be the concentration of the second messenger, 
such as cAMP, which represents the output signal of the 
transduction process, then its strength is further amplified by 
each activated enzyme E* [12]. Thus, we have 

* * ,dC k C k G E kc cdt
′= − + +− c                                                  (7) 

where the first term on the right corresponds to the removal 
rate while the last two terms are those of its synthesis, ′ck  
being the apparent zero order synthesis rate.  

The cAMP in turns acts as a second messenger and amplifies 
the initial signal [17]. Thus, if no diffusion is in action and the 
LR complexes are distributed uniformly over the cell 
membrane, then the rate equation for the ligand-receptor 
complex density R(t) on the cellular membrane surface at time t 
should read as follows 

1 ,3
2

b RdR a R k CRdt b R
= − − +

+

%
%

%
                                               (8) 

where the first term on the right is the removal rate, the second 
accounts for its transport through the cell membrane which 
saturates as the LR complex density R increases, and the third 
accounts for the signal amplification arising from the synthesis 
of cAMP. 

Following previous works [1, 8], we now assume that the 
activated regulators G*, E*, and A equilibrate relatively quickly 
to the values  

                                 ,
kaA R

k a
=

−
                                        (9) 

                              * ,
G ATG

A k IR
=

+
                                      (10) 

                              
*

* ,
k GeE
k e

=
−

                                           (11) 

where −=
k rkR kr

.  

Substituting (9) into (10), one obtains 

                               * ,
3

kRG
b R I

=
+

%

%
                                      (12) 

where =
−

%
G kaTk
k k aR

, and 3 =
−

% kab
k Ka R

.  

Further, it has also been discovered [7] that the cAMP also 
equilibrates very rapidly, in comparison to the ligand bound 

receptor complexes or the inhibitors. Thus, on putting 0=
dC
dt

, 

and using  (12), one arrives at  

                      

( )

2
4

2
3

= +
+

%

%

b R
C C

b R I
K                                     (13) 

at equilibrium, where 

                                 ,4
k k kc eb

k kc e
=

− −

%
%   

and 

                          .
kcKC k c

′
=

−
  

Substituting (13) into (8), one arrives at the following system:  

,
I

k I k Ri it
∂

= − +−∂
                                                      (14) 

( )

2
1 4 .3 2

2 3

b R k b RR Ra R k KR Ct b R b R I

∂
= − − + +

∂ +
+

% %
%

%
%

                    (15) 

Next, we introduce scaling factors by letting  

[ ]i T
G = total concentration per cell of αG i  ( ), -2μmol m⋅

[ ]s T
G = total concentration per cell of αG s  ( ), -2μmol m⋅

  = time scaling factor in seconds. *t
If we now let ˆ ˆ, ,  and I R τ  be dimensionless space and time 

variables as follows 

                   

[ ]

ˆ ,

ˆ ,

II
Gi T

RR
Gs T

=
⎡ ⎤⎣ ⎦

=

 

and ,
*

τ =
t

t
 then we arrive at the following system:  

ˆ ˆ ˆ,1 2
I a I a R
τ

∂
= − +

∂
                                                     (16) 

( )

2ˆ ˆˆ 1 4ˆ ,3 62ˆ ˆ ˆ2 5

b R a RR a R a
b R a R Iτ

∂
= − − + +

∂ + +
                             (17) 

and 
2ˆ

3 ,2ˆ ˆ( )5

b R
C Ca R I

= +
+

K                                       (18) 
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where [ ] [ ]* ,  * ,  a *1 2 3⎡ ⎤= = =−⎣ ⎦ %a t G k a t G k t G as sT Ti i iT ,3  

[ ] [ ]2*
, , *54 4 3 62= = =

⎡ ⎤⎡ ⎤ ⎣ ⎦⎣ ⎦

% %
t G Gs sT Ta b k a b a t kR CGG i Ti T

* ,1 1= %b t b
[ ]

,KR

[ ]22 ,and .2 3 42= =
⎡ ⎤⎣ ⎦

%
%

t Gb s Tbb b b
Gs T Gi T

 

III. PARAMETERS ESTIMATION BY GENETICS ALGORITHM 
To determine whether the above system provides a 

reasonable model for the transduction process, we made 
intracellular cAMP measurements using Fisher rat thyroid cells 
stably expressing type II vasopressin receptors, FRT-V2R, 
cultured in F-12 modified Coon's medium (Sigma) 
supplemented with 10% fetal bovine serum, 100 U/ml 
penicillin and 100 µg/ml streptomycin at 37°C in a humidified 
atmosphere of 5% CO2.  

FRT-V2R cells were selected every two weeks with medium 
containing 500 µg/ml Zeocin, 500 µg/ml Geneticin and 350 
µg/ml hygromycin. FRT-V2R cells were plated in 24-well 
plates overnight to obtain 80% confluence. Cells were washed 
three times with PBS and incubated with 100 nM dDAVP 
(Sigma-Aldrich), a selective V2R agonist. The incubation time 
was varied from 5 seconds to 16 minutes and the reaction was 
terminated by lysis buffer.  

Then cell lysate was transferred to 96-well plates for 
intracellular cAMP measurement using cAMP Biotrak EIA 
system (Amersham, GE Healthcare). The measurement 
protocol follows manufacturer's instructions, and samples were 
determined at optical density 450 nm. The amount of expressed 
cAMP expressed per unit amount of protein was determined by 
the Lowry method [18]. 
 Genetic algorithm was then employed to find an optimal set 
of parametric values for (1)-(3) to yield a solution that best fit 
our measured time series of expressed cAMP. Using the sum 
of squares error 

        
2

1
⎛ ⎞= −∑ ⎜ ⎟
⎝ ⎠=

N s dss C Ct ti ii
for the cost function, where 

i

s
tC stands for the value of C at 

time obtained from the model simulation, while C  is the 

measured value, N being the number of time points. The 
genetic algorithm provided us with sets of optimal parametric 
values corresponding to the least sum of squares. Fig. 2 shows 
the different simulated time series, corresponding to the four 
different sets of parametric values for four executions of 
genetic algorithms. 

it i

d
t

The simulated curve using the set of parametric values 
given in (a) in the figure caption appears to provide the best fit 
to the experimental data ( ). To give some idea of how 
these predictions could be interpolated, we consider in 
particular this set of parameters in case (a) in which CK  is 
found to be 1.7 fm , which corresponds to the 

y-intercept on the corresponding dose response curve seen in 
Fig. 2. If we then use the value of value of the cAMP 
degradation rate 

ol/ μgram protein⋅

−ck 1 quoted in [19] to be 1 −s , then we are led 
to the apparent zero order synthesis rate 
  −′ = ≅c C ck K k  1.7 fm . ol/ μgram protein⋅
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Fig. 2   Plots of the experimental data on expressed cAMP (◊◊◊) and 
simulated time series, with a1 = 0.9, a2 = 0.3, a3 = 0.9, a4 = 0.3, 
a5 = 0.5,  a6 = 0.006,  1 0.5,b = 2 0.1,b =
(a) • • • : , ; 3 85.001,=b t* 67.483 s= 1.70=CK

(b) : b3 64.485,= * 100.00 st = ,  1.2897;=CK

(c)  : 3 69.1277,=b t* 100.00 s= ,  1.3826;=CK

(d)  : b3 71.699,= * 127.457 st = ,  1.434.=CK
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Fig. 3  Plots of the expressed cAMP measured in 4 experiments 
under the same controlled conditions. The mean values are plotted as  

 connected by solid lines. 
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We have in fact carried out several experiments to measure 
the cAMP levels under the same controlled conditions, as 
described above. However, we obtained time series which do 
not follow the same path, or remain reasonably close to each 
other as time progresses (as seen in Fig. 3). They seem to 
exhibit different dynamic behavior.  Apparently, other factors 
seem to be operating in the process that potentially leads to 
different functional responses. 

 

IV. A REACTION DIFFUSION SYSTEM MODEL 
Several studies [10-12] have reported that both the inhibiting 

components and the receptor complexes can diffuse over the 
cell membrane, and the clustering of these proteins is an 
essential feature of the transduction process, linked to the 
various cell functions in response to the signals. Thus, we now 
allow diffusion at the cellular level in both the inhibitor agents 
and that of the ligand-receptor complex, and arrive at the 
following reaction diffusion model equations. 

2
1 2 1

ˆ ˆ ˆ ,I a I a R Iμ
τ

∂
= − + + ∇

∂
ˆ                                                 (19) 

( )
2

21 4
3 2

2 5

ˆ ˆˆ ˆ ˆ,ˆ ˆ ˆ
b R a RR a R a R

b R a R I
μ

τ
∂

= − − + + + ∇
∂ + +

6 2

ˆ

                  (20) 

where ˆ and  I R now represent the inhibitor and LR complex 
densities, respectively, at the point ( , )X Y  on the cell membrane 
at any time t, while 1 and  2μ μ  are the diffusion coefficients. In 
(19)-(20), we have introduced a spatial scaling factor d ( mμ ) 

and let , y= =
X Yx
d d

 be the dimensionless spatial variables, so 

that
2 2

2 2x y
∂ ∂

∇ = +
∂ ∂

. 

According to several studies, lateral diffusion coefficient of 
the inhibiting enzymes in the cytosol has been observed to be 
significantly higher than that of the membrane receptor 
complexes. The lateral diffusion coefficients of ligand-receptor 
complexes have been reported, as early as 1951, by Pastan, and 
M. Willingham [15] to be in the range of                                             

 Later, in 1978, Schlessinger et al. 
[14] reported that the protease inhibitors diffuse within the 
muscle fibers at the rate of . This means that the 
inhibiting units in the transduction process diffuse at a much 
higher rate than the receptor complex, which allows the 
application of weakly nonlinear analysis, a technique discussed 
in detail in [20]. 

2 21.5 10 8 10   μm /s.− −× − × 2

21 μm /s

In the next section, we shall carry out a weakly nonlinear 
stability analysis on (19)-(20) in order to show the existence of 
hexagonal planform solutions to our model. The readers are 
referred to the works of Wollkind et al. [20] and Stephenson 
and Wollkind [21] for more discussion of the technique, and to 
the works of Pansuwan et al. [22] for applications of the 
technique to a different setting. 

V. NONLINEAR STABILITY ANALYSES 
In order to apply the technique of weakly nonlinear stability 

theory, we let 
                ( ) 1 2

ˆ ˆ ˆ ˆ, ,F I R a I a R= − +                                          (21) 

            ( )
( )

2
1 4

3 62
2 5

ˆ ˆ
ˆ ˆ ˆ, ,ˆ ˆ ˆ

b R a R
G I R a R a

b R a R I
= − − + +

+ +
             (22) 

which transform (19)-(20) into  
                     ( ) 2

1
ˆ ˆ ˆ, ˆ,I F I R Iτ μ= + ∇                                      (23) 

                    ( ) 2
2

ˆ ˆ ˆ,R G I R Rτ μ= + ∇ ˆ.                                      (24) 

 
Assuming that the system of our referenced model equations 

(23)-(24) has a unique positive steady state 0 0( , )I R , we expand 

( )ˆ ˆ,F I R  and ( )ˆ ˆ,G I R

0
ˆ

 into Taylor’s series about this steady 

state. Letting ≡ −i I I , 0
ˆ≡ −r R R , we obtain the following 

system on i and r: 

( )
22

1 2 1
22

3 4 51 2 2

0 0 0

τ

μ
μ

⎛⎛ ⎞ ∇⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + +⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ∇⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

f fi i ii
ir

g g gg gr r rr
⎞
⎟          (25)

where,  
1 1≡ −f a ,  

2 2≡f a ,  

( )32
1 4 0 5 0 02≡ − +g a R a R I , 

( ) ( )2 3
2 3 3 4 4 0 4 0 0 5 0 02≡ − − + + +g a b b b R a I R a R I  

( )42
3 4 0 5 0 03≡ +g a R a R I , 

( ) ( ) ( )3 4
4 3 4 4 0 4 0 5 0 0 5 0 02≡ + + − + +g b b b R a I a R I a R I ,  

( ) ( )42
5 4 5 0 0 0 5 0 02 2g a a R R I a R I≡ − − + + .  

A. A Hexagonal Planform Analysis  
In order to investigate the possibility of occurrence in our 

model of hexagonal-type patterns, we now consider a 
hexagonal planform solution of (25) of the form [20,21] 

 
1020

0111

2
2000 2040

1111

1131

0200 022

( , , ) ( )cos( )

1 3( )cos cos
2 2

( )[ cos(2 )]

1 3( ) ( )[ cos cos
2 2

3 3cos cos ]
2 2

( )

c

c c

c

c c

c c

v x y t A t q x v

B t q x q y v

A t v v q x

A t B t v q x q y

v q x q y

v v
B t

∼

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
+ +

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+
+

% %

%

% %

%

%

% %
( )

( )
20 0202

0222

cos( ) cos 3

cos( )cos 3

c c

c c

q x v q y

v q x q y

⎡ ⎤+
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

%

%
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3
3020 3060

2
2111

2131

2151

( )[ cos( ) cos(3 )]

1 3( ) ( )[ cos cos
2 2

3 3cos cos
2 2

5 3cos cos ]
2 2

c c

c c

c c

c c

A t v q x v q x

A t B t v q x q y

v q x q y

v q x q y

+ +

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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%

%

%

      

2
1200 1220

1240 1202

1222

1242

3
0311

0331

031

( ) ( )[ cos( )

cos(2 ) cos( 3 )

cos( ) cos( 3 )

cos(2 )cos( 3 )]

1 3( )[ cos cos
2 2

3 3cos cos
2 2

c

c c

c c

c c
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A t B t v v q x

v q x v q y

v q x q y

v q x q y

B t v q x q y

v q x q y

v

+ +

+ +

+

+

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+
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% %

%

%

%

%

%
3

0333

1 3 3cos cos
2 2

3 3 3cos cos ] ,
2 2

c c

c c

q x q y

v q x q y

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠%

           (26) 

where  

          ,  ( ) ( )
( )

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟

⎝ ⎠%

i x, y,t
v x, y,t

r x, y,t

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟

⎝ ⎠

l

l
l%

j mn
j mn

j mn

i
v

r
with the amplitude equations: 

2 2
0 1 2

( ) ( ) ( ) ( )[ ( ) ( )] ,dA t 2A t B t A t A t B t
dt

σ α α α− − +�            (27) 

(27)  
2

0 2

2
1 2

( ) ( ) 4 ( ) ( ) ( )[2 ( )

1 ( 2 ) ( )]. 
4

dB t B t A t B t B t A t
dt

B t

σ α α

α α

− −

+ +

�

                 (28) 

Here, we are employing the notation  for the 
coefficient of each term in (26) of the form 

j mnv l
%

                  
3

( ) ( ) cos cos .
2 2

j c cmq x n q y
A t B t

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

l .  

Substituting this solution in (26) into (25) and equating 
coefficients of like-terms, we obtain a sequence of vector 
systems, each of which corresponds to one of these terms. In 
particular, the first order system which corresponds 
to  is  1,  0= = = =j m l n

             
2

1 1 2
1020 10202

1 2 2

,c

c

f q f
v

g g q
μ

σ
μ

⎛ ⎞−
= ⎜ ⎟

−⎝ ⎠%
v
%

so that  

                  
( )

( )( )

2 2 2
1 1 2 2

2 2
1 1 2 2 2 1 0,

c c

c c

f q g q

f q g q f g

σ μ μ σ

μ μ

− − + −

⎡ ⎤+ − − −⎣ ⎦ =
 

and thus,  

( ) ( )
( )( )

22 2
1 1 2 22 2

1 1 2 2 2 2
1 1 2 2 2 14

.
2

c c

c c

c c

f q g q
f q g q

f q g q f g

μ μ
μ μ

μ μ
σ

− + −
− + − ±

⎡ ⎤− − − −⎣ ⎦=  

Letting 0σ σ= be the growth rate of the most dangerous mode,  

( ) ( )
( )( )

22 2
1 1 2 22 2

1 1 2 2 2 2
1 1 2 2 2 1

0

4
,

2

c c

c c

c c

f q g q
f q g q

f q g q f g

μ μ
μ μ

μ μ
σ

− + −
− + − +

⎡ ⎤− − − −⎣ ⎦=   

and then  

                    1020
1020

1020

⎛ ⎞
= ⎜ ⎟

⎝ ⎠%

i
v

r
is an eigenvector corresponding to the eigenvalue 0σ σ= ,   
where 
                       1020 2 ,i f=    
and   

           2
1020 1 1σ μ= − + cr f q .  

Similarly, the first order system which corresponds 
to 0,  1= = = =lj m n  is    

          0111 0111.v Mvσ =
% %Therefore, without loss of generality, we take  

 

            0111 1020=
% %There are eight second-order systems, two of which contain 

the Landau constant 

v v . 

0α . We can express one of them as  

( )0220 0 1020 0220 2 2
3 0111 4 0111 5 0111 0111

0
2 .1

4
v v Mv

g i g r g i r
σ α

⎛ ⎞
⎜ ⎟= + +⎜ ⎟+ +⎜ ⎟
⎝ ⎠

% % %
     (29)

Considering the adjoint linear eigenvalue problem of (29):  
                     * * * ,TM v vσ=

% %
  

where *σ σ=  is an eigenvalue of M  and TM , we obtain  

               1*
2

1 1σ μ
⎛ ⎞

= ⎜ ⎟− +⎝ ⎠% c

g
v

f q
.  

By taking an inner product of (29) with , we find, upon 
making use of the adjoint property 

*

%
v

                           * * σ *⋅ = ⋅ = ⋅
% % % % % %

TMv v v M v v v  
that 

( )

* * *
0220 0 1020 0220

*
2 2

3 0111 4 0111 5 0111 0111

2
0

1
4

σ α σ⋅ = ⋅ + ⋅

⎛ ⎞
⎜ ⎟+ ⋅⎜ ⎟+ +⎜ ⎟
⎝ ⎠

% % % % % %

%

v v v v v v

v
g i g s g i r

 

Then, taking the limit as 0σ → , we obtain 

( )( )
( )

2 2 2
3 0111 4 0111 5 0111 0111 1 1

0 2
1 1020 1 1 1020

0

1 .
4

c

c

g i g s g i s f q

g i f q s
σ

μ
α

μ
→

⎡ ⎤+ + − +
⎢ ⎥= −

+ − +⎢ ⎥⎣ ⎦
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 The other six second-order systems can be solved in a 
straight forward manner, the solutions being   
 

( )( )
3 1020 4 1020 5 1020 10202

2000
1 2 2

,
2 2 2

g i g r g i rf
i

f g f gσ σ
⎡ ⎤+ +

= ⎢ ⎥
− − −⎢ ⎥⎣ ⎦1

( )2000 1 2000
2

1 2 ,r f i
f

σ= −  

( )( )
3 1020 4 1020 5 1020 10202

2040 2 2
1 1 2 2 2 1

,
2 2 4 2 4c c
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i

f q g q f gσ μ σ μ

⎡ ⎤+ +
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− + − + −⎢ ⎥⎣ ⎦

( )2
2040 1 1 2040

2

1 2 4 ,cr f q i
f

σ μ= − +   

( )( )
2 2

3 0111 4 0111 5 0111 01112
0200

1 2 2

,
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i

1f g f gσ σ
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( )0200 1 0200
2
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f

σ= − i  
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2 22
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1131 1 1 1131

2

1 3
2
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⎝ ⎠

cr f q
f
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Although there are 15 third-order systems, it is necessary 

for us to consider explicitly only the following two specific 
ones, which contain the other two Landau constants 1 2,α α  as: 

3020 1 1020 3020

3 2000 3 2040 5 2000 5 2040 1020
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and  
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Considering the adjoint linear eigenvalue problem of (30)-(31): 
  

                   * * * ,TM v vσ=
% %

  
where *σ σ=  is an eigenvalue of M  and TM , then 
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1 1σ μ
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g
v
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By taking inner products of (30) and (31) with , we find, 
upon making use of the adjoint property 
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Then, taking the limit as 0σ → , we obtain 
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Having developed these formulae for the Landau constants, 
we now turn our attention to the hexagonal planform amplitude 
equations (17)-(18) which possess the following equivalence 
classes of critical points (  when : 0 0A , B 2

cq 1=

    I : ;                                                               (32)    0 0 0= =A B
   II : 2

0 1 0,  0σ α=A B = ;                                                     (33) 

III± :  

( ) ( )

0 0 0

1
2 2

0 0 1 2 1 2

=A

= 2 4 4 4 ;

A B

α α α α σ α α

±=

⎧
⎡ ⎤− ± + + +⎨ ⎣ ⎦

⎩

⎫
⎬
⎭

        (34)                               

IV : ( ) ( ) ( )0 0 2 1 0 1 1 24 2 ,  2A Bα α α σ σ α α= − − = − + ,        (35)                                       

where we are assuming that 1 0α > , and 
             1 24 0α α+ >   

with  
( )
( )

2
1 0 1 2

22
1 1 0 2 1

4 4

16 2 ,

σ α α α

σ α α α α
− ≡ − +

≡ −

,

)

 

and 
( ) ( 22

2 1 2 0 2 132 2 .σ α α α α α≡ + −  
 

The orbital stability conditions for these critical points can 
be posed in terms of σ . This sort of stability of pattern 
formation is meant in the sense of a family of solution in the 
plane which may interchange with each other but do not grow 
or decay to a solution type from a different family. Such an 
interpretation depends upon the translational and rotational 
symmetries inherent to the amplitude-phase equations. This 
invariance also limits each equivalence class of critical points 
to a single member that must be explicitly considered. 
 
Table 1: Orbital stability behavior of critical points  ±II and III

0α  2 12α α−  Stable Structures 

− , 0 III−
1 for + σ σ −>  

+ + 
III−

1 2 for σ σ σ− < <

II 1

, 
    for σ σ>  

0 −  III± 0 for σ >  
0 + II 0 for >  σ

III+
1 2 for σ σ σ− < <

II 1

, 
    for 

−  + 
σ>  σ

− , 0 III+
1 for −  σ σ −>  

 
Thus, critical point I is stable in this sense that 0σ <  while 

the stability behavior II and , which depends upon the 
signs of 

±III
0α  and 22 1α α−  as well, has been summarized in 

Table 1 under the further assumption that 1 2 0α α+ > .  
The critical point VI is always unstable, as may be seen 

from considering (35). 

B. Morphological Interpretation 
We next offer a morphological interpretation of the 

potentially stable critical points described above relative to the 
Turing patterns under investigation. To the lowest order, the 
solution of the model associated with these critical points is 
given by   

         ( )0 1020 0 0111
1 3~ cos 2 cos cos .      (36)
2 2

r A x r B x y r
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Then, the critical point I represents the uniform or 
homogeneous state, while the stripes or bands corresponds to 
critical point II.  
 These contour plots of (36) are presented in figures 4, 5, and 
6 for critical points II,  and , respectively, in which 
elevations appear dark and depressions light. Clearly, such 

+III III−
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alternating light and dark parallel bands produced by the 
critical point II should be identified with a striped Turing 
pattern as seen in Fig. 4.  

 
Focusing our attention on the contour plot in Fig. 5, we 

observe that each individual r cell has an elevated nearly 
circular central region whose height is maximum at its centre. 

It is surrounded by a level curve of zero height. The region 
surrounding each cell exterior to the central portion is 
depressed with the hexagonal cellular boundary. The depth of 
this boundary is seen to vary from being the greatest at its 
vertices to being the least at its edges. Since  for 0 0+ >A

0 0α ≤  and 0 0− <A  for 0 0α ≥

I−

, we can conclude that the 
contour plots of (36) would have circular elevations at the 
centers of the hexagonals for critical point  when stable, 
and circular depression for II .  

+III

 
 

 
 
Recalling that the Turing patterns under consideration are 

classified by their elevations, we identify hexagonal arrays of 
nets or honeycombs with critical point III+  and of spots or 
dots with critical point III−  shown in Fig. 6.  

  

VI. DISCUSSION AND CONCLUSION 
 We have utilized a weakly nonlinear stability analysis in 
order to predict pattern selection of membrane receptors. The 
procedure basically pivots a perturbation about the critical 
point of linear stability theory. The nonlinear terms are 
responsible for selecting which of the possible spatial patterns 
are actually observed. As commented by Wollkind et al. in 
their review of this method [20], this approach has an 
advantage over strictly numerical procedures since it allows us 
to derive quantitative relationships between the system 
parameters and the stable patterns so that insightful deductions 
can more readily be made concerning the connections between 
different types of spatial selections and the cellular functional 
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The stable morphology in this case is the striped pattern. 
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Fig. 5 Contour plot of (36) for the critical point  with 
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1 20.9, 0.1,μ μ= = 2 1.=cq The stable morphology in this case is the 
hexagonal arrays of dots (quantum dots). 
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Fig. 6 Contour plot of (36) for the critical point III− with 

1 2 3 4 5 6 10.5, 0.5, 0.5, 0.3, 0.1, 0.1 .1,, b 0= = = = = = =a a a a a a
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b 0.1, 0.9, 0.005,μ μ= = = 2 1.=cq The stable morphology in 
this case is the hexagonal arrays of holes (or honey combs). 
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response, especially when experiments need to be designed to 
validate theoretical predictions, a task difficult to accomplish 
using numerical simulation alone.  
 To make a connection between reported experimental 
measurements and our predictions of different LR complex 
distribution patterns on the cell membrane, we refer to the 
work of Schlessinger et al. [14] which stated that the protease 
inhibitors diffuse within the muscle fibers at the rate 
    , 8 2

1 10 cm / sμ −=
while Patricio Catricio Carvajal-Rondanelli [23] reported that 
insulin diffuses at 
    . 10 2

2 10 cm / sμ −=
This means that 
   . 2

1 2/ 10μ μ =
Considering this ratio from our predictions, it is 
   1 2/ 0.9 / 0.1 10μ μ ≅ ≅  
for quantum dots to occur, while we require 
   2

1 2/ 0.9 / 0.005 1.8 10μ μ ≅ ≅ ×
for honeycombs. Thus, our model predicts a formation of 
hexagonal arrays of holes or honeycombs in such a case, 
provided that other physical parameters could be controlled to 
be in the respective ranges that allow the formation of this 
Turing pattern. 
 On the other hand, Schlessinger et al. [14] reported that the 
protease inhibitors diffuse in cells in aqueous solution at the 
rate 
      . 6 2

1 10 cm / sμ −=
Thus, in this case we have 
   . 4

1 2/ 10μ μ =
For a formation of stripes as seen in Fig. 2, 1 0.9μ =  
and 1 0.0001μ = , so that stripes formation corresponds to a ratio 
   . 3 4

1 2/ 0.9 / 0.0001 9 10 10μ μ ≅ ≅ × ≅
Hence, stripes are the predicted morphology on such cell 
surface in aqueous solutions, provided that other physical 
parameters could be controlled to be in the respective ranges 
that allow the formation of this Turing pattern. 
 To date, only limited numbers of studies have been 
published in terms of pictured spatial distribution of membrane 
receptor complexes. However, with recent advances in imaging 
techniques and computer technology, many investigators have 
reported their findings concerning immobilization or 
membrane distribution of receptors of crucial importance.  
 Rhodopsin was the first member of the family of 7-helix 
receptors to have its structure determined by X-ray 
crystallography. Perhaps for this reason, more images may be 
found in the literature of rhodopsin distribution and alignment 
on the plasma membrane, although no attempt has yet been 
made, to our knowledge, to relate different spatiotemporal 
patterns of these receptors to the various functional cellular 
responses.  
 For example, in 2002 Orem and Dolph [24] reported on their 
investigation of the localization of photoreceptor cell-specific 
proteins during endocytosis-mediated retinal degeneration. In 
their study, flies were treated with 24 h of room light and 
retinas were dissected. The retinas were then heated with 15 

min of either blue light to convert rhodopsin to the M form, or 
orange light to convert the rhodopsin to the inactive form. 
After the light treatment of 24 h, the rhodopsin monoclonal 
antibody only recognizes the rhodopsin that has been 
inactivated by orange light [24]. Their paper presented images 
of rhodopsin distribution which resembles striped as well as 
hexagonal patterns of clustering.  
 It has been often documented that altered receptor 
localization or ligand-induced receptor clustering may regulate 
receptor functions and signal responses [13, 25-29]. 
Specifically, Yang et al. [29] used a combination of 
microscopy approaches and mathematical modeling to explore 
the early steps in receptor signaling. They mapped distributions 
of a family of growth factor receptors on membranes of breast 
cancer cells by immuno-electron microscopy. Their results 
indicate that membrane spatial organization is a contributor to 
the carcinogenesis process, particularly at moderate expression 
levels. 
 In 2003, H. Pick et al. [30] reported on their study in which 
the ionotropic 5HT3 receptor was expressed in transiently 
transfected mammalian cells. They continuously observed 
receptor traffic in the plasma membrane of live cells over 24 h 
by fluorescence scanning confocal microscopy. According to 
this investigation, the receptors started to aggregate in patches 
with a 4-fold increased surface concentration. An image, by 
fluorescence scanning confocal microscopy, of such cell 
surface expression and clustering of 5HT3 receptors was 
clearly observed in the images presented in their report [30]. 
Their work provides an important evidence of receptors 
trafficking and clustering in response to ligand binding, 
although higher resolution is needed to clearly differentiate 
between various distribution patterns on the cell surface and 
possibly identify the different types of Turing patterns 
predicted in this work.  Later, in their attempt to link receptor 
complexes interactions with functional response, Jankevics et 
al. [31] obtained dose-response curves of different ligands for 
each receptor interaction, using the novel method based on 
fluorescence correlation spectroscopy which was demonstrated 
to be suitable for the investigation of multiple protein 
interactions in vivo at native expression levels in relation to 
cell response and functions. Such experiments are hoped to 
open new routes to elucidate transcription regulation and 
detecting or distinguishing different compounds in terms of 
their pharmacological or toxicological activities. 
 A challenge of current biology is to understand how 
intracellular and intercellular regulatory networks are 
governed. Activation of signal transduction networks by 
extracellular stimuli is connected to complex temporal and 
spatial patterns of activation and localization of numerous 
proteins that characterize crucial cellular discussion ranging 
from cell growth and proliferation, growth arrest, 
differentiation, apoptosis, or cell survival. Our current 
understanding of spatio-temporal organization in signaling 
pathways and the control of cellular topology, diffusion and 
intracellular responses, however, is far from complete [13]. 
 Our model analysis is meant to provide a valuable 
theoretical ground work on which the relevance of Turing-type 
pattern formation to signaling processes may be further 
explored in the hope of shedding more light on the precise 
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manner in which spatio-temporal organization of multiple 
component signal transduction cascades may contribute to 
signals generation with high fidelity and efficiency. 
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