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Abstract - Despite the high cost of memory and CPU time required 
to resolve the boundary layer, a viscous unstructured grid solver has 
many advantages over a structured grid solver such as the 
convenience in automated grid generation and shock or vortex 
capturing by solution adaption. In present study, an unstructured 
Cartesian grid solver is applied and results evaluated in rotorcraft 
flowfields. Recently, an existing solver, NASCART-GT was 
modified to use an immersed boundary approach (instead of a cut-cell 
approach).  This approach is applied with ghost cell boundary 
condition, which increases the accuracy and minimizes unphysical 
fluctuations of the flow properties. The standard k-epsilon model by 
Launder and Spalding is employed for the turbulence modeling, and a 
new wall function was incorporated for the unstructured Cartesian 
grid solver.  This model was previously only validated for 2-D flows, 
but in the present paper is applied to 3-D rotorcraft flowfields.  For 
rotor modeling, an actuator disk model is chosen, since it is efficient 
and is widely verified in the study of the rotor-fuselage interaction. 
The full three dimensional calculations of Euler and RANS equations 
are performed for the GT rotor model and ROBIN configuration to 
test implemented actuator disk model along with the developed 
turbulence modeling. 
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NOMENCLATURE 

A = blade area 
A0 = blade collective pitch angle 
A1 = lateral cyclic pitch angle 
αe = effective angle of attack 
αi = induced angle of attack 
αt = twist angle at the blade tip 
B1 = longitudinal cyclic pitch angle 
Cd = sectional drag coefficient 
Cl = sectional lift coefficient 
c = chord length of rotor blade 
D = drag 
∆ = elemental value of blade 
L = lift 
N = number of blade 
R = rotor radius 
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T = thrust 
Θ = pitch angle of blade 
V = local velocity vector 
ΩΩΩΩ = angular velocity vector 

 

I. INTRODUCTION 

HE interaction between the rotor and the helicopter 
fuselage generates complex flow field affecting vibration, 

acoustics and overall vehicle performance. If the performance 
of an isolated rotor and fuselage is analyzed separately, the 
interactional aerodynamics around the rotor-fuselage 
combination cannot be obtained by a simple linear 
superposition of each individual result because of the inherent 
nonlinear behavior of the flow. Therefore, the accurate 
prediction of rotor-fuselage interaction is essential for 
optimum design and analysis of rotorcraft.  

To study the mutual effect of rotor and fuselage, the flow 
around a rotor must be modeled properly. Over the years, 
many rotor models have been developed to analyze rotor-
fuselage interaction based on Euler or Navier-Stokes solver. 
Whitfield and Jameson [1] studied the propeller-wing 
interaction by introducing a source term in the Euler equation. 
Rajagopalan and Mathur [2] modeled the rotor as an actuator 
disk to solve incompressible Navier-Stoke equations around 
the rotor. The actuator disk is an infinitely thin disk, which 
carries discontinuities of flow properties using the source 
terms in the momentum and energy equations or enforcing the 
pressure jump on the disk boundary. The previous authors 
applied the source type actuator disk model, and Zori and 
Rajagopalan [3] employed this method to simulate the rotor-
fuselage interaction. The boundary condition type actuator 
disk method has also been successfully used for many 
structured and unstructured solvers [4] – [7] for the rotor-
fuselage interaction. Lately, O’Brien and Smith have 
published a series of papers [8]-[11] in which they discuss 
various computational techniques on the rotor-fuselage 
interaction including the actuator disk methods of boundary 
type and source type in an unstructured grid RANS solver. 
Hariharan and Sankar [12] and many other researchers utilize 
an overset grid method to solve the rotor-fuselage interaction 
phenomenon. They used the stationary frame around the 
fuselage and rotating frame near the rotor to capture the 
unsteady flow motion. Though the overset grid method gives 
detailed unsteady analysis, it is computationally expensive.  

The CPU time and computer memory resources required 
for full three-dimensional, unsteady, viscous calculation of the 
rotating blade with the fuselage using unstructured grid solver 
are extreme. Use of such an approach for multiple 
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configurations considered in design or for a vehicle in 
maneuver is not practical. Meanwhile, the analysis using the 
actuator disk model, which has been widely verified in the 
analysis of the rotor-fuselage interaction is computationally 
less intensive than the full unsteady calculation, and may be 
suitable for some fuselage design and maneuver analysis. Two 
types of actuator disk formulations are common: boundary 
type and source type. Both approaches have been used very 
successfully for actuator disk modeling. In the present study, 
the boundary type actuator disk method is chosen, although 
both approaches are applicable to an unstructured Cartesian 
grid solver. Applying the boundary type actuator disk method 
in a Cartesian grid solver requires additional work in the grid 
generation. This is because the disk boundary should be 
aligned with the Cartesian cell faces, while the rotor location 
is independent of the grid in the source type method. 
However, the source type method is somewhat less robust and 
may give non-physical solution when the source spacing is 
coarser than the local grid spacing [9]. 

The first step in a CFD process is to choose an 
appropriate grid topology, which can be categorized into either 
structured or unstructured types depending on the data 
structure representing the grid points. In general, the fuselage 
configuration of a helicopter is complex and has many 
attachments. The flow field is also very complicated including 
vortex induced by the rotor and separation caused by bluff 
fuselage shape. An automated grid generation for complex 
fuselage and solution adaption for vortex capturing can be 
easily applied in an unstructured grid solver. In spite of the 
high cost of memory and CPU time inside the boundary layer, 
unstructured grid solvers have been very popular as high 
performance computers are recently available. 

Relative to unstructured grid solvers using pyramid or 
prism type grid topology (see [13] and [14]), the numerical 
solution of the equations of fluid dynamics is simplified and 
the truncation error is reduced in a Cartesian-grid based 
methodology. When a cubic cell is generated in a Cartesian 
coordinate system, the computational domain should include 
arbitrary cut cell near the solid body [15].  A common 
problem with cut cell is the creation of very small cells, which 
lead to problems with stiffness of the equations, non-physical 
fluctuations of flow variables near the body, and very small 
time step [16]. Researchers have dealt with this in a number of 
ways, including hybrid grid topology [17], merged cut-cell 
method [18]-[20], embedded boundary method [21]-[22] and 
immersed boundary approach [26]-[31].  

Since the hybrid grid topology employs structured grid 
near wall, laborious grid generation is required, while other 
approaches above are not. In the merged cut-cell and the 
embedded boundary methods, the centroids of boundary cells 
are not aligned with other flow cell centers as shown in Fig. 1. 
This limits the order of accuracy in spatial discretization. The 
immersed boundary approach has an advantage over other 
methods in the calculation of moving grid or geometry 
modification, since there is no need to modify boundary cell 
shape and its centroids. The details of these approaches are 
described by J. Lee [32]. 

The objective of present study is to demonstrate and 
evaluate use of a Cartesian grid methodology in turbulent 

Navier-Stokes analysis or rotor-fuselage interaction problems.  
A wall function approach is employed to simulate turbulent 
flow around a rotorcraft effectively. Applying the wall 
function approach in an immersed Cartesian grid solver is very 
challenging, and has only been validated in 2-D studies [32]. 
In the present study, this approach is applied to 3-D rotorcraft 
applications. In order to model the rotor, the boundary 
condition type actuator disk approach is employed in the 
developed Cartesian grid solver. Unlike multiple overlapping 
structured grid topologies, the flow field around complex 
rotor-fuselage configurations can be modeled as a simple 
single block grid with unstructured meshes. The three-
dimensional Euler calculation is performed over the GT rotor 
and the ROBIN configuration for the validation of the actuator 
disk model. The RANS calculation is performed over the GT 
rotor and the ROBIN rotorcraft model and compared with the 
Euler solution and experiments to test the capability of 
capturing viscous phenomena caused by the rotor-fuselage 
interaction. 

II. NUMERICAL SOLVER 

To provide for efficient, time-accurate solution of the 
Reynolds Averaged Navier-Stokes (RANS) equations, a dual 
time-stepping, multistage scheme has been employed. 
Hancock’s two-stage scheme [33] has been used for time 
integration as used in compressible flow solver. It is known 
that the k-ε equations are instability prone during the 
transitory phase of the computations even with an implicit 
solver, when the leading part of the error surges out of the 
computational domain, generating large residuals. For 
stability, G.A. Gerolymos [34] used a limiter to bound k and ε  
in his implicit solver. Y. Zhao [35] introduced semi-implicit 
treatment of the source terms of k and ε equations. R.F. Kunz 
and B. Lakshminarayana [36] studied stability of explicit 
turbulent solvers. In NASCART-GT, the explicit time step is 
modified and the limiters of k and ε are used according to the 
stability analysis, in order to stabilize the computation and 
ensure the positivity of k and ε. Solution adaptation is 
performed based on divergence, vorticity and gradients of k 
and ε. 

For proper calculation of high Reynolds number flow, the 
standard k-ε model by Launder and Spalding [37] is applied to 

the solver. To save the computer memory and CPU time in the 
calculation of turbulent boundary layer, a wall function 
approach is employed. In an immersed Cartesian grid system, 

Embedded cells Immersed cells

cell centroid

 
Fig. 1. Comparison of embedded and immersed cells. 
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it is very difficult to apply the wall function approach. The 
traditional wall function approaches use either slip-wall or no-
slip wall conditions, which requires smooth variation of grid 
cell distance from the wall to the flow cell center. The 
existence of cell centers located inside of the wall boundary 
has previously not been considered in such wall functions. 
However, the boundary cell centers in an immersed Cartesian 
grid are non-body-fitted so that certain cell centers are located 
inside of wall boundary and first. The traditional wall function 
methods are not applicable due to the problems of stability, 
accuracy and grid efficiency. The new wall function approach 
is based on the idea that the modified tangential velocity 
satisfying discrete wall shear stress approximation would 
eliminate the use of the complicated coordinate 
transformation. This makes the computational cells near wall 
to remain in numerically linear region, thereby, the 
computation would be stable. The new methodology is 
explained in detail by J. Lee [32]. 

III.  ACTUATOR DISK MODEL 

The rotor is modeled as a boundary type actuator disk with 
zero thickness, which represents an imaginary disk carrying 
pressure jump between the upper and lower surface allowing 
the flow to pass through. This approach reduces the 
computational resource requirement and eliminates the 
computational complexity of modeling each blade and 
performing time-accurate calculations. The simplest method to 
decide the pressure jump is applying predetermined pressure 
jump at the position of given radius. It restricts the variation of 
azimuthal variation of thrust. In current study, the pressure 
jump is specified using the blade element theory. It calculates 
the thrust from the intermediate flow variables during each 
iteration. 

A. Fundamentals of Actuator Disk Model 
The disk plane is represented by a finite number of 

rectangles, which exactly match one of the surfaces of 
hexahedral cells. The state vector at the cell center of a flow 
cell is calculated by integrating the fluxes on the six surfaces. 
Unlike the standard surface flux calculation, the state vector 
on the disk surface is specified by special treatment suggested 
by Fejtek and Roberts [4]. 

The points L  and 1+L  in Fig. 2 denote the upper and 
lower surfaces of a blade respectively and the main flow 
direction is aligned with negative z-axis. Consideration of the 
characteristics of the flow field indicates that for a subsonic 
inflow boundary, six flow properties must be specified and 
one can be extrapolated from the interior solution domain. The 
rotor grid point of disk surface L  is considered to be an 
inflow boundary, such that four flow properties (i.e. ρ , u , 

v , p , k  and ε ) are specified from the outflow boundary 

condition and one property (i.e. w ) is extrapolated from the 
inflow domain.  The conditions at the interface are : 

1+= LL ρρ       1+= LL uu       1+= LL vv       ( ) ( ) 1−= LL ww ρρ  

 ppp LL ∆+= +1       1+= LL kk       =Lε

 
 
 
 
 
 
 
 
 
 

 
The rotor grid point 1+L  is regarded as an outflow 

boundary, where six flow properties are extrapolated and one 
(i.e. wρ ) is fixed. The density ρ , the mass fluxes uρ  and 

vρ , the total energy tE , and mass fluxes of turbulent 

properties kρ  and ρε  are updated using zero-order 

extrapolation from the solution domain at 2+L . Mass 
continuity through the rotor disk is ensured by setting the z-
directional mass flux to be conserved across the rotor disk. 

21 ++ = LL ρρ       ( ) ( ) 21 ++ = LL uu ρρ       ( ) ( ) 21 ++ = LL vv ρρ       
( ) ( )LL ww ρρ =+1  

( ) ( ) 21 ++ = LtLt EE       ( ) ( ) 21 ++ = LL kk ρρ       ( ) ( ) 21 ++ = LL ρερε
 (2) 

In the current formulation, the tangential velocities normal 
to the rotor shaft are continuous across the rotor disk. 
Applying the torque boundary condition for the modeling of 
the rotor swirl described in [4] and [5] gives the tangential 
velocity jump. In the present work, the torque boundary 
condition is not considered, since effect is known to be small 
for the cases studied and it may lead to nonphysical solution 
[38]. The small effect of the torque boundary condition was 
shown by O’Brien and Smith [10], who computed GT rotor 
model using the actuator disk method. In the equations above, 

p∆  represents the pressure jump across the rotor disk which 

generates the thrust of the rotor. The pressure jump is 
calculated using the blade element theory, which is described 
in the following. 

B. Blade Element Theory (BET) 
The blade element theory considers the variation of thrust 

in azimuth angle and cut-off radius. This approach is based on 
the 2-D airfoil theory, such that it neglects the 3-D wing tip 
effect of a blade. Even though the calculated pressure jump is 
nothing to do with the thrust coefficient at an intermediate 
stage, the final results should be converged to the given value. 
Configuration of a rotor blade is presented in Fig. 3. 

 
Fig. 2. Configuration of disk surface 
boundary condition. 
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The following description is from J. Lee and O.J. Kwon 
[39], and summarized for reader’s convenience. V  is 
continuous through the rotor disk plane, and its magnitude and 
direction are known as a part of the computation. Then, 

iα  at 

the center of each rectangular surface on the rotor disk, can be 
calculated as 










⋅
⋅= −

tV
nV1Taniα  (3) 

As shown in Fig. 3, the vector n  denotes the unit vector 
normal to the rotor disk plane, and t  unit vector tangential to 
the rotor disk plane. The tangential component of velocity 
vector includes contributions from the local flow velocity and 
the rotor rotational speed 

( ) pΩrpVtV ⋅×+⋅=⋅  (4) 

where p  the unit vector parallel to the blade path. eα  is then 

ie αα −Θ=  (5) 

In general, Θ  is expressed as 

t
R

r
BAA αψψ 







 −+−−=Θ 75.0sincos 110
 (6) 

where ψ  denote the blade twist angle at the tip. Since the 

velocity relative to the blade is known, elemental lift and drag 
acting at each section of the rotor blade can be calculated as 

ACVL lrel ∆=∆ 2

2

1 ρ ACVD drel ∆=∆ 2

2

1 ρ

 (7) 

The velocity shown above is the relative velocity expressed as 

( ) pΩrVVrel ⋅×+=  (8) 

The lift and drag coefficients are determined by using the 2-D 
airfoil theory. For N  blades of the rotor, T∆  for each 
rectangle is scaled by a time factor, ( )πψ 2/dN , to obtain 

time-averaged contribution while the rotor sweeps the azimuth 
angle of ψd .  

( )ii DL
d

NT αα
π
ψ

sincos
2

∆−∆=∆  (9) 

The time-averaged contribution above assumes that time for a 
blade sweeping a surface center is small relative to time for a 
round of a blade, i.e. 

Ω
<<

Ω R

R

r

c π2  (10) 

This assumption limits the ratio of chord length, c , to the 
radius of rotor disk surface, r . 

π2<<
r

c  (11) 

Now, the azimuthal sweeping angle ψd  can be replaced by 

the chord length and the radius of the rotor disk. 

cdr ≈ψ  (12) 

Substituting Eq. (12) into (9) gives the thrust expression for 
the present unstructured quadrangular surface mesh. 

( )idilrel CCVc
r

AN
T ααρ

π
sincos

4
2 −∆=∆  (13) 

The Prandtl-Glauert rule [40] is applied to include 
compressibility effect on the sectional lift and drag coefficient. 
Note that the thrust expression in Eq. (14) has a singular point 
at the rotor center. As the radius approaches to the center (i.e. 

0→r ), the assumption in Eq. (11) does not hold anymore. 
The ratio of chord length to radius is, therefore, limited to 1/2. 








= 5.0,min
r

c

r

c  (14) 

The difference in pressure between the upper and lower 
surface meshes of the rotor disk plane can be represented as 

A

T
p

∆
∆=∆  (15) 

C. Rotor Trim 
Rotor trim is added in the blade element method, and 

corrects collective and cyclic pitch angles in order to obtain 
the desired thrust and eliminate moments about the hub. Use 

of the actual pitch angles (e.g. from an experimental model) 
generally results in errors in computed thrust and moment of 
the rotor.  This is mainly due to the limitations of the actuator 
disk model. Since the time-averaged formulation and 
simplified lift and drag distributions of the blade element 

 
Fig. 3. Coordinate system of rotor blade from J. Lee and O.J. 
Kwon [39]. 
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method cannot properly simulate the unsteady flow over 
individual blade, the predicted thrust and moments are 
different from the measured values. The error is larger in the 
compressible flow solver than incompressible solver. In 
most compressible flow solver, the freestream Mach number 
is increased to avoid incompressible limit. The flow 
conditions around the actuator disk would be different due 
to the compressibility effects, although other 
nondimensional parameters are identical to the experiments. 
Therefore, the rotor trim routine is strongly required to 
properly compute the rotor-fuselage interaction. 

The first step is to calculate the thrust coefficient and 
lateral and longitudinal moment coefficients about the hub 
are obtained by integrating the pressure jump on the actuator 
disk. Assuming simple linear relationships between the 
angles and coefficients, the new angles are found to get the 
desired thrust and zero moments. Then, calculate the 
coefficients again using the modified angles. This procedure is 
repeated until the angles are converged or a specified iteration 
number has been met.  

IV.  RESULTS 

For the numerical investigation of rotor-fuselage 
interaction, two configurations are selected. The first is 
Georgia Tech (GT) rotorcraft model [41], which is 
geometrically simple and has been extensively studied. The 
second application is ROBIN airframe model that has been 
tested by Freeman and Mineck [42]. Both of the 
configurations are computed without rotor model first for 
validation of developed code. Then, the rotor model using 
actuator disk is tested.  

A. GT Rotor Model 
Fig. 4 shows the configuration of GT rotor model. The 

fuselage consists of hemisphere and cylinder body. Two rotor 
blades have a 2.7% cutout and rectangular planform of 
NACA0015 section. Each rotor blades are untwisted with a 
constant pitch angle of 10 degrees and zero cyclic pitch angle. 
The clearance between rotor and airframe, Rh / , is 0.3. Since 
the fuselage length is not specified, it is assumed to three rotor 
radii. In the experiments, the fuselage is mounted on a strut, 
which is not modeled in the computation due to the lack of 
detail geometry. The freestream is parallel to the fuselage, and 
the rotor shaft is tilted 6 degrees. The measured flap angle is 
shown in Eq. (16) without pre-cone. 

ψψβ cos94.1sin02.2 °−°−=  (16) 

where β  is a flap angle, and ψ  an azimuth angle. The 

rotational speed of the rotor is 2100 RPM with an advance 
ratio of 0.1. The measured thrust coefficient, 

TC , is 0.009045. 

The corresponding Reynolds number based on the fuselage 
length is 510196.9 × , and freestream Mach number 0.029, 
assuming standard atmosphere at sea level. In the 
computation, the freestream Mach number is increased to 0.3 
to prevent instability caused by incompressibility, while other 
nondimensional parameters (i.e. Reynolds number, thrust 
coefficient, and advance ratio) are maintained. 

In the present study, three numerical cases are tested on the 
GT rotor model. First, the Euler and the RANS calculations 
are performed without accounting for a blade flapping motion, 
which is intended to investigate the viscous effect on the rotor-
fuselage interaction. The other case considers the effect of the 
blade flapping in the RANS calculation. Two methods of the 
blade flap motion in the actuator disk method are known to 
date. One adds the flap velocity into the induced velocity 
normal to the disk plane that is located on the shaft plane [3], 
[43]. In the other method, the rotor disk is placed on the TPP 
without velocity modification [10]. In current study, the latter 
is chosen due to the difficulty in velocity scaling. A simple 
time derivative of the flap angle would not be suitable for 
specifying the disk boundary condition, since the freestream 
condition of the computation is different from the experiment. 
In addition, the flapping model using the TPP does not require 
an additional computation in the blade element method to find 
the flap velocity. In all three cases, the numerical boundaries 
are located 5 times of fuselage length from the center. The 
refinement level is 8 with a root cell dimension of 202226 ×× , 
which results in the largest +y  of 169.9 and 218.6 for RANS 

calculations with and without flapping, respectively. The flow 
cells are refined at high gradient regions of divergence and 
vorticity. In the Euler calculation, the solution adaption is 
performed based only on the divergence. The total numbers of 
cells in the Euler and RANS calculations without flapping are 
1,622,670 and 1,616,738, respectively, at the final iteration. 
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2
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Fig. 5. Sectional lift and drag distributions in blade element method. 

 
Fig. 4. Georgia Tech (GT) rotor. 
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That of the RANS calculation with flapping is 1,599,970. The 
freestream turbulent intensity is assumed to be 1% and the 
normalized freestream eddy viscosity is 0.1. Assuming smooth 
wall on the rotor fuselage, the parameter related to the 
roughness parameter is set to 5.0 utilized in the law of the 
wall.  

The rotor disks are located on the shaft plane in the Euler 
and RANS calculations. The sectional lift and drag applied in 
the blade element method are shown in Fig. 5. The maximal 
and minimal lift coefficients are assumed to be 1.6 and -1.6 at 

°±= 16α , which correspond to the airfoil data in [44]. The 
drag coefficient is obtained from the following equation.  

24.00216.00087.0 αα +−=dc  (17) 

The constants used in the above equation are cited from 
Gessow and Tapscott [45]. The compressibility correction of 
the blade element method is not applied due to the low Mach 
number of the experimental model. The rotor trim analysis is 
performed at every 100 iterations to match the experimental 
rotor thrust. Since the GT rotor model has zero lateral and 
longitudinal cyclic pitch, only the collective pitch angle is 
adjusted by the trim loop. 

The final grid configuration of a RANS calculation is 
shown with entropy contours in Fig. 6. The transparent red 
disk represents the actuator disk. Considering that the quantity 
of entropy is a measure of vorticity, the flow cells near the 
vortex core are automatically refined due to large vorticity. 
The cells near the rotor disk and the solid wall are also refined 
as a result of large divergence and vorticity, respectively. A 
close observation of the picture reveals that the vortex rollup 
generated at the tip of the rotor disk propagates and descends 
downstream. The tip vortex generated at the fore part of the 
disk propagates as a vortex sheet and dissipates rapidly, while 
the vortex generated at the lateral tips merges to a strong line 
vortex and travels further than the vortex sheet. This is clearly 
illustrated in Fig. 7, which shows iso-surfaces of the computed 
entropy. Note that the advancing side has a much stronger 
vortex rollup than the retreating side, since the rotor has a 
constant pitch angle. 

The pressure distributions on the upper centerline of the 
GT rotor are shown in Fig. 8. The Euler and the RANS results 
without flapping are very close to each other, and clearly show 
the peaks and drop of the pressure caused by the rotor motion. 
The solution with flapping motion shows much better 
correlation with the experiment and better accuracy in the 
prediction of the peak pressure than the other solutions. 
Considering the fact that the current flap model does not 
require an additional computation, the accuracy can be easily 

Fig. 7. Entropy iso-surfaces of GT rotor model from RANS 
calculation without flapping. 

 
Fig. 6. Final grid configuration and entropy contours of GT rotor 
model from RANS calculation without flapping. 
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Fig. 8. Upper centerline pressure distribution for GT rotor model with 
rotor. 
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improved without extra cost. However, there still exists an 
inconsistency with the measured pressure near the nose and 
the local peak at 3.0/ =Rx . The predicted pressure near the 
fuselage tail is also lower than the experiment. Because many 
researchers (see [7], [10], and [39]) also found these flow 
patterns in their actuator disk modeling on the GT rotor, it 

seems that the discrepancies in the computed pressure are not 
due to a problem of the current solver, but a limit of the 
actuator disk model. As shown in the graph, the problems of 
the under-prediction of the peak pressures and their locations 
can be solved by adding the rotor flapping, but the local peak 
problem at 3.0/ =Rx  still remains. In the experiment, the 
local peak seems to be primarily caused by the unsteady wake 
effect of the rotor blade motion. An individual rotor blade 
generates a number of vortex filaments, which interact with 
the wakes from the other blades. Therefore, the resultant wake 
appears to form helical line vortex, not to be vortex sheet as 
shown in Fig. 7. A series of line vortices would be imposed on 
the surface, which drops the pressure. However, the actuator 
disk model is based on the time-averaged airfoil loading, 
which would not generate the helical shape line vortices but 
do the vortex sheet that dissipates rapidly. As explained above, 
the line vortex is stronger and propagates further than the 
vortex sheet. For more accurate calculation, a full unsteady 
computation might be required. This problem is analyzed and 
described well by O’Brien and Smith [10] who have 
extensively studied the rotor blade modeling. There is very 
small difference between the Euler and RANS results without 
flapping motion, excluding the fact that the RANS calculation 
results in slightly lower pressure due to the viscous dissipation 
and wake where the pressure peaks exist. This explains why 
other researchers (see [7] and [39]) employed an Euler solver 
to analyze the GT rotor configuration. The trimmed collective 
pitch angles are presented in Table 1, which are within 3%  
error from the test result.

B. ROBIN Rotorcraft Model 
The Euler and RANS calculations using actuator disk are 

performed on the ROBIN (ROtor Body INteraction) model, 
which has been tested in NASA Langley in 2000 [46]. The 
fuselage shape is close to real helicopter, while its body is 
streamlined without any attachment for simplicity. The 
fuselage has the length of L2  where L  represents the 
characteristic length. The fuselage centerline is yawed 1.2° 
nose left. The strut which supports the fuselage is mounted, is 
not modeled in the present study, since the detailed geometry 
is not known. The rotor consists of four blades, whose root 
cutout are at 24% of the radius, R , which is set to 

86.0/ =LR . The rotor blades have a rectangular planform 
with a chord of L066.0  and a linear twist of °− 8 . The center 

of the rotor hub is slightly offset to the advancing side, located 
at x/L=0.696, y/L=0.051, and z/L=0.332.. 

The computations are performed to match the test 
conditions of 051.0=µ . Assuming standard air at sea level, 

the freestream Mach number and the Reynolds number based 
on the fuselage length are 0.0266 and 610312.1 × , 
respectively. The rotor shaft angle of attack is zero, and the 
measured thrust coefficient is 0.00636. The pitch angle of the 
rotor is given as  








 −°+°−°+°=
R

r
75.08sin3.1cos3.19.5 ψψθ  (18) 

It is reported from the experiment that there is no 
significant pitch-flap coupling. Hence, the tip-path-plane is 
located normal to the rotor shaft and the coning angle is 
assumed to be zero. In both Euler and RANS calculations, the 
freestream Mach number is increased to 0.3, while the other 
nondimensional parameters are matching with the experiment. 

The numerical boundaries are located 5 times of fuselage 
length from the center. The refinement level is 8 with a root 
cell dimension of 201622 ××  to yield the maximum +y  of 

324.9 for RANS calculation. The Euler calculation also 
employs the same initial grid. The total numbers of cells in the 
final solutions are 740,377 and 1,614,516 for the Euler and the 
RANS calculations, respectively. The freestream turbulent 
intensity is assumed to be 1% and the normalized freestream 
eddy viscosity is 0.1. Assuming smooth wall on the rotor 
fuselage, the parameter related to the roughness parameter is 
set to 5.0 utilized in the law of the wall. The solution adaption 
is performed based on the divergence and vorticity as done in 
GT rotor calculation. The actuator disk is located on the rotor 
shaft plane. Since the airfoil section is not given, the lift and 
the drag in the blade element method follow the GT rotor case. 
The compressibility correction is not applied due to the low 
Mach number of the experimental model. The rotor trim 
analysis is performed at very 100 iterations to match the 
experimental rotor thrust and to eliminate the lateral and  
longitudinal moments about the hub.

 

Fig. 9. Final grid and entropy contours of ROBIN. 

Table 1. Trimmed collective pitch angles in GT rotor model. 
 

 Experiment Euler, no flap RANS, no flap RANS, flap 

0A  (degree) 10.0 9.879 9.856 9.720 
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The adapted grid configuration and entropy contours are 
shown in Fig. 9. As shown in the GT rotor case, strong line 
vortex is formed at lateral sides of the rotor disk and 
propagates downstream. The cells are refined along with the 
propagated wakes. Relatively low entropy region is shown at 

8.0/ =Lx  in a doughnut shape, which is caused by the root 
cutout of the rotor. Since there is no blade loading inside the 
cutout region, the increase of the entropy is smaller than its 
surrounding. 

The comparison of the computed pressure distribution on 
the upper centerline is presented in Fig. 10. The open symbols 
represent the steady state pressure, and the filled symbols 
represent the averaged value from unsteady pressure. Since the 
measured locations have slight offsets from the upper 
centerline, two values are plotted at the same x-locations. Both 
of the Euler and the RANS results are well correlated with the 
measured values, and there is not a large difference between 
them except the regions around the pylon and the nose. The 
difference between two numerical solutions occurred near the 
pylon is appears to be due to flow separation. The Euler solver 
can not simulate the flow separation. This produces the local 
pressure peak, which disappears in the RANS solution.  

The sectional pressure distributions at various x-locations 
are shown in Fig. 11. The solutions from the Euler and the 
RANS calculations are similar and show good agreement with 
the experiment near the nose at 353.0/ =Lx . The difference 
between two solutions is increased as the sectional location 
approaches downstream. This seems reasonable since the 
boundary layer grows downstream and the difference between 
inviscid and viscous solution would be enlarged. However, the 
numerical solutions do not clearly distinguish the pressure on 
the lift and right surfaces and follow the measured value of 
one side at the tail region as shown in the picture d). One of 
the possible reasons is the difference of the model 
configurations between the computations and the experiment. 
In the wind tunnel test, there exist a rotor shaft above the 
pylon and a strut underneath the fuselage at 0.1/ ≈Lx , which 
is not reflected in the numerical analysis. These attachments 
would produce a complicated flow pattern that is different 
from the computational result. A close observation of  Fig. 11 
b) right aft of the strut reveals that the measured pressure is 
decreased at the bottom while the computed pressure is 
increased. In the experiment, the flow would separate around 
the strut and the resultant vortex would propagate 
downstream. This may affect the pressure field downstream 
and yield the discrepancy in Fig. 11 c). The rotor shaft is also 
likely to disturb the flow around the rotor disk, which alters 
the disk boundary condition and resultant disk loading. This 
may explain that the over-predicted pressure at the tail region 
in Fig. 11 and a large difference between numerically trimmed 
and measured pitch angles in Table 2.  

V. CONCLUSIONS 

In present study, new wall boundary conditions are 
implemented into the existing unstructured Cartesian grid 
framework. Instead of an embedded wall boundary, immersed 
boundary approach is applied with ghost cell boundary 
condition. The standard k-epsilon model by Launder and 
Spalding is employed in the calculation of RANS equations 

 for the turbulence modeling, and the RANS solver with 
developed boundary condition is applied in the analysis of the 
rotorcraft model with the actuator disk model to simulate the 
rotor-fuselage interaction. A number of conclusions are shown 
below. 

• When the RANS solver with developed boundary 
condition is applied in the analysis of the rotorcraft model 
with the actuator disk model, the wakes created by the 
rotor disk are well captured using the adapted grid 
technique.  

• The actuator disk model with the blade element method 
provides a good analysis of the steady state influence of 
the rotor in a couple in the computations of the GT rotor 
and the ROBIN model, although complicated unsteady 
effects may not be revealed. This yields a reasonable 
solution within the accuracy of the computational models 
used, and is computationally efficient (in terms of CPU 
time and memory on a single PC).  

• The inclusion of blade flap into the actuator disk model 
improves the accuracy without an additional computation 
cost.  

• Considering that the unstructured Cartesian grid solver has 
an advantage over the other grid topology in the grid 
generation over a complex geometry, the current research 
would provide a very useful aerodynamic tool in the 
preliminary design of a helicopter. 
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Fig. 10. Pressure distribution on the upper centerline of ROBIN 
configuration. 

 

Table 2. Trimmed pitch angles of ROBIN model. 

 Experiment Euler RANS 

0A  (degree) 5.9 10.12 10.05 

1A  (degree) -1.3 -0.94 -0.98 

1B  (degree) 1.3 1.65 1.53 
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Fig. 11. Pressure distribution across ROBIN section. 
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