
A Distributed Algorithm for XOR-
Decompression with Stimulus Fragment Move

to Reduce Chip Testing Costs
Mohammed Almulla and Ozgur Sinanoglu

Abstract— Various techniques were used to reduce the test time

and cost of chip development, some of which achieved their
objective by reducing the test data volume through the
implementation of compression technologies such as XOR-based
decompressors. In the presence of XOR decompressor, the delivery
of acceptable (encodable) test patterns can be challenging. To
overcome this problem, the Align-Encode technique was introduced
to manipulate the distribution of care bits in the test pattern in aim to
increase the delivery of more encodable test patterns. The
implementation of the Align-Encode algorithm proved that this
algorithm suffers a major drawback when applied on large test
patterns. In this paper, we propose a distributed algorithm for
realizing the Align-Encode objectives but for large scale problems.
This algorithm is designed to run on a scalable distributed
environment. Moreover, it exploits the nature of the problem in order
to make significant improvements in performance with respect to
chip testing time as well as the number of encodable test patterns
generated, which reflects positively on the cost of chip development
and in test data compression as a result.

Keywords— VLSI Chip testing, XOR-Decompression, Align-
Encode, Distributed processing.

I. INTRODUCTION
HE tremendous amount of test data - required to ensure

the high quality testing of the chips of ever increasing
sizes - translates into heightened levels of test costs on
multiple fronts. The sizable test sets not only pressure the
memory requirements imposed on the external tester,
magnifying the associated tester costs, but they furthermore
engender the challenge of test bandwidth limitations. The
necessity to deliver a huge amount of test data through a
limited number of tester channels onto the chip induces
significant prolongations in test time, imposing intolerable test
costs on the expensive tester.

Logic cone structure of typical designs lead into don’t care
bits (x’s) in test vectors, paving the way for test data

squashing techniques. This type of a redundancy innate in test
data can be exploited by compressing the test vectors. The
compressed stimuli is stored and transmitted from the tester to
the chip being tested, and is expanded on-chip. In a typical
scan architecture that supports compression, a decompressor
expands a few scan-in channels into a larger number of scan
chains. While test data volume and test time are thus reduced,
the underlying structure of the stimulus decompressor
determines the encodability of a test pattern. In the case of
combinational decompressors, for instance, the test vector
fragment to be delivered into a scan slice is analyzed to judge
whether the care bits of the fragment can be obtained intact at
the outputs of the decompressor. A test vector is encodable if
and only if each of its fragments can be obtained at the
decompressor outputs. A single unencodable slice renders the
test vector unencodable. Thus, the distribution of the care bits
of a test vector determines whether the test vector is
encodable. Unless an unencodable test vector is replaced by
deliverable ones that cover the faults/defects that it detects,
test quality is degraded. Alternatively, another test mode can
be employed wherein the decompressor is bypassed, in order
to deliver these unencodable test vectors serially, and hence to
restore the test quality at the expense of test time and data
volume.

Manuscript received June 5, 2009. A preliminary version [20] of this work

has been presented at the 8th WSEAS International Conference on Applied
Computer and Applied Computational Sciences, Hangzou, China, May 20-22,
2009.

M. Almulla is with the Dept of Math and Computer Science, Kuwait
University (phone: 965-2498-5335; fax: 965-2481-7201; e-mail:
m.almulla@ku.edu.kw).

O. Sinanoglu is with the Department of Math and Computer Science,
Kuwait University, (e-mail: ozgur@sci.kuniv.edu.kw).

Test stimulus manipulation techniques help enhance test

vector encodability of a decompressor by changing the
distribution of the care bits judiciously. One such technique,
referred to as Align-Encode [1], [2], is based on the horizontal
move of stimulus fragments inserted into scan chains. Such a
capability can be attained by inserting controllable delay
elements on the scan-in path of scan chains. By inserting a
delay element on the selected chains, effectively the stimulus
of the corresponding chain is shifted, offering an alternative
distribution that may possibly be encodable. The work in [1],
[2] has demonstrated the beneficial application of horizontal
move of stimulus fragments to boost the encodability of fan-
out decompressors.

In this paper, we propose a distributed implementation of the
Align-Encode algorithm, in order to further improve the
effectiveness of the XOR decompressor utilized on the
development of large chips. We also emphasis the impact of

T

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 256

parallelism on chip testing with the help of various Artificial
Intelligence (AI) techniques in solving this challenging
problem. As a result, we attain significant runtime
improvements in finding the delay configuration to make
larger patterns encodable. Due to the runtime improvements,
the quality of results is also improved. A more efficient and
parallel exploration of the search tree enables the distributed
approach to increase the number of encodable patterns, some
of which remain unencodable due to runtime limitation of the
serial algorithm. The distributed algorithm enhances the
compression levels of the accompanying decompressor,
consequently.

II. PEEVIOUS WORK
Conceptually, stimulus manipulation techniques (Align-

Encode being the only one in the literature) can be utilized in
conjunction with any combinational decompressor, in order to
boost the encoding capability of the decompressor. Various
decompressors were outlined in [3]. These techniques include
fan-out decompressors [4]-[6], XOR decompressors [7], [8],
multiplexer/fanout decompressors [9], and switch-based
decompressors [10]. Other solutions include LFSR re-seeding
[11]-[13], a combination of single input shift registers, clock
gating logic and an XOR network [14], scan tree architectures
[15], [16], and sequential decompressors [17].

To compensate for the defect/fault coverage losses due to

unencodable patterns, these techniques either employ an
additional compression-free phase [4], [5], or they utilize test
generation as well [7], [17], searching for alternative
encodable test vectors for the missed faults. The idea of
exploring various implementation strategies to further reduce
test cost of integrated circuitry was earlier proposed FPGA
realization of Open/Short Test on IC [18]. A different path for
the process characterization and description using an empirical
approach - rather than probabilistic one - in order to electronic
device reliability assessment was suggested in [19].

III. BENEFIT CARE BIT DISTRIBUTION
MANIPULATION

Fig. 1: Example of encodable and non-encodable patterns

In test data compression, correlated test data delivery to
scan cells is inevitable. The encodability of a test pattern is a
matter of whether the care bit distribution within the pattern
complies with the correlation induced by the decompressor. In
the case of combinational decompressors, each scan slice can

be analyzed individually and independently to judge on the
encodability of the test vector. In Figure 1, one encodable and
one unencodable test pattern are provided for an XOR-based
3x7 decompressor. XOR-based decompressors necessitate
solving a linear equation for each care bit in order to perform
an encodability check. Three channels drive seven scan chains
in Figure 1, necessitating the solution of the following set of
linear equations:

where vkj denotes the stimulus bit inserted from the kth scan-in
channel during the jth shift cycle, and tij denotes the test
pattern bit that corresponds to the jth scan cell of the ith scan
chain. In the examples in Figure 1, 1 ≤ k ≤ 3, 1 ≤ j ≤ 6, and 1 ≤
i ≤ 7. It can be observed that the left hand side of the
equations are constructed based on the decompressor
structure, and the right hand side of the equations are
composed of the test pattern bits. Any equation with an x on
its right hand side can be safely deemed as automatically
solvable. As an independent set of vkj ’s is introduced in every
shift cycle, one system of equations for each shift cycle (scan
slice) can be solved independently to compute these variables.
Upon the successful solution of all the systems, the test pattern
can be deemed as encodable; the test pattern in Figure 1.a is
encodable. A single unsolvable system renders a pattern
unencodable; the second and the fourth slices from the left
render the test pattern in Figure 1.b unencodable. In the
equations of the second slice, for instance, the first three
equations necessitate that v12 = v22 = v32 = 1, which contradict
with the fifth and the seventh equations.

The distribution of care bits can be judiciously manipulated in
order to improve test vector encodability. The manipulation of
the care bit distribution can be achieved through delaying the
shift-in operation of scan chains for the proper alignment of
scan slices. Such a manipulation affects the right hand side of
the equations, while it keeps the left hand side of the equations
intact, as the latter depends on the XOR decompressor
structure.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 257

Figure 2: A pattern becomes encodable after applying

Align-Encode

Figure 2 demonstrates the beneficial impact of shift-in
delay operations on the unencodable test pattern in Figure
1(b). The shift-in of the first, fourth and fifth scan chains is
delayed by a single cycle each, delivering the encodability of
the originally unencodable pattern, as all the systems of linear
equations become solvable.

IV. THE ALIGN-ENCODE ALGORITHM
The care bit distribution in each test pattern should be
analyzed to compute the proper delay values that lead to the
encoding of the test pattern. It is also possible that no delay
assignment exists for the encoding of the pattern; in this case,
the pattern remains unencodable, necessitating either a
subsequent serial application or replacement with other
encodable patterns.

The input to the analysis is a scan pattern. The target of this
analysis is the computation of the proper delays, either 0 or 1,
for each scan chain so that the pattern becomes encodable in
the new alignment of the slices. The analysis should be
repeated for each scan pattern in order to compute the proper
delay data for the entire test set.

In this section, a test pattern analysis for XOR-based
decompressors is provided. Align-Encode provides the
capability of delaying any chain by a single cycle. Full
exploration of the search space in order to find the proper
delay values requires an exponential time complexity solution,
as 2n different configurations exist for n chains.

A pseudo-code for the algorithm is provided in Figure 3. The
algorithm utilizes a backtracking technique which is simply an
exploration of a binary decision tree. The decision tree helps
prune the search space by identifying and eliminating in a
depth-first-search manner delay configurations that leads to
unencodability.

The decision tree for the example in the previous section is
provided in Figure 4. In this figure, the path that leads to the
encodability of the pattern in Figure 1.b is also highlighted.
The right nodes (denoted by 1’s) are selected in levels 1, 4 and
5, denoting that chains 1, 4, and 5 should be delayed, in a
manner consistent with the configuration in Figure 2.

The algorithm starts from the root level, which corresponds to
subsystems with no equations, and expands these sub-systems
by one level (equation) at each step. In the process, the
algorithm traverses the nodes of the decision tree in a depth-
first-search manner. When the algorithm traverses a node at
level i, the sub-system of equations consist of those
corresponding to scan chains 1 through i. Gaussian
Elimination technique is applied to check the solvability of the
subsystems in each step. It is possible that the subsystem of
equations, which corresponds to the path from the root to the
current node, is unsolvable for at least one of the slices. We
exploit the fact that if a subsystem of equations is unsolvable,
so will its further expansions be. Thus, in such a case, the sub-
tree, which is rooted by the current node in the current level,
can be safely pruned, leading to computational savings. The
pruning is affected by the depth-first-search nature of the
algorithm, which backtracks by one level up and tries to solve
the system of equations with the current chain delayed
(extending the path by selecting the other node in the same
level). If the system of equations becomes solvable for all the
slices, the algorithm proceeds by extending the path deeper
down in the decision tree. Otherwise, it backtracks one level
up and changes the delay configuration of the chain in the
preceding level. Upon the identification of the path from the
root to one of the leaves that results in the encodability of the
test pattern, the algorithm terminates successfully with the
delay configuration corresponding to this path. If no such path
exists, the algorithm terminates unsuccessfully.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 258

Figure 4: Sample Search Tree

V. DISTRIBUTED VERSION OF THE ALIGN-ENCODE
ALGORITHM

The problem’s nature is based on searching a large state-space
where no dependency exists between different solutions.
Thus, we can divide the search-space into equally-sized parts
and explore these parts independently. Furthermore, the
position of the solution within the decision tree affects the
time required to find it dramatically. Therefore, being able to
initiate the search anywhere in the search tree would enhance
the performance of the search algorithm.

Experimental results of the Align-Encode algorithm indicate
that this algorithm tends to be impractical for testing large
patterns (≥ 64x64) [20]. Hence, distributed memory
architecture [21] is being proposed since each instance of the
application will run on a separate node, where some kind of
inter-process (and inter-machine) communication has to take
place to exchange data. For this purpose, the Message Passing
protocol is used for exchanging messages between nodes. The
Master-Slave model adopted in this solution is divided into
two major modules:

• The Controller Module (Master): This part of the
application is executed on the controller node, which
is responsible for reading input data, distributing the
work (partitioning the search-space) over the
working nodes and gathering the results.

• The Working Module (Slaves): This part of the
application receives input from the controller,
searches the assigned search-space sequentially and
reports the result back to the controller or will be
waiting for other assigned tasks.

Figure 5: Example search tree and work distribution with
8 working nodes

The controller is dedicated to manage the working nodes,

synchronize them, distribute work and gather results. After
reading the test pattern, the controller does a limited depth
first traversal on the search tree up to the (k-1)th level building
a bit sequence made up from the bits representing the branch
chosen at each step (0 for left branch, 1 for right branch).
When the deepest level is reached, the controller sends the test
pattern data and the currently constructed bit sequence prefix
to the corresponding working node initiating the processing as
in Figure 5. The following pseudo-code describes the parallel
XOR Align Encode algorithm:

During the Limited DFS, the 2C-sized search space which
consists of the set of all states representing the delay bit values

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 259

b0b1b2….bc-1 is divided equally over n nodes where n = 2k,
k≥1. Each working node wi will receive the input test patterns
and start doing sequential search over the sub-space consisting
of all states p0p1..pk-1bkbk+1…bc-1 where pj is the j-th bit in the
k-bit binary representation of i. Each subspace has a size of 2C-

k. For example, if the number of chains of the test pattern is 8,
and the number of working nodes is 8 then we have 28 = 256
different delay configurations b1b2…b8. The distribution of the
search space over the 8 nodes is as follows:

 w0 { 000b3b4…b7 }

 w1 { 001b3b4…b7 }
 …
 w7 { 111b3b4…b7 }

Once the work distribution is completed, the controller
starts listening and waiting for a working node to send a result
back. If the received result contains a “No solution found”
flag, the controller continues waiting for more results. When a
valid delay configuration is received, the controller sends a
“Stop work” message to all the remaining working nodes and
waits a “Ready” message from each of them which indicates
that a node is ready to receive and work on a new working
node. If all the working nodes return result with “No solution
found” flag, the test pattern is considered unencodable. The
whole process is repeated until the input test patterns are
processed.

VI. EXPERIMENTAL RESULTS
A scalable test environment was set in order to perform the
necessary experiments. This environment consisted of a
2m+1(=17 in our case where m=4) homogeneous nodes
connected with an ad-hoc network. MPI and the test
application were installed on every node. One of these nodes
was designated as a controller (master) node. The working
node module was installed on each of the other 16 machines.
Each node had a single Pentium 4 processor with 1.7 GHz
speed, 256 MB RAM and running Windows XP SP2
operating system. This particular node configuration was
suitable for test cases having 32x32 test patterns. For 64x64
test cases, a higher node configuration was needed. Therefore,
a similar yet more powerful environment was setup where
each node having a single Pentium D (Dual Core) processor,
with 3 GHz speed, 1GB RAM and running Windows XP SP2.
In short, 32x32 test patterns were tested on the lower-end
configuration machines while the 64x64 test patterns were
tested on the higher-end configuration machines, with the
number of nodes kept fixed in both environments.

In order to estimate the effect of parallelism and to investigate
the relationship between the number of nodes used and the
speedup gained, the test set ran on different cluster sizes (1
(sequential), 2, 4, 8 and 16 nodes). The test set contained test
cases that cover a combination of preset values of the test
pattern size S (32x32, 64x64), number of decompressor
variables V (8, 9, 10, 11, 12) and ratio in percentage of don’t

care bits R (0.80, 0.85, 0.90, 0.95). Each test case consisted of
250 randomly generated (prepared by a test pattern generator
utility) test patterns. For test cases with test patterns of size
64x64, a time limit per test pattern was set to 10 minutes. For
each test case, execution time and solvability status were
reported.

The following figures show the execution time (in
millisecond) consumed by running a set of test cases with R =
0.80, 0.85, 0.90 and 0.95 don’t care bit ratios, respectively, on
32x32 test patterns.

Figure 7

Figure 8

Figure 9

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 260

Figure 10

Figures 7 – 10: Execution time (32x32 test patterns) for R

= 0.80, 0.85, 0.90, and 0.95, respectively

We also computed the number of originally solvable test
patterns (Org), the number of cases solvable after align
encode (AE) and the number of cases with which the
algorithm has timed out (TO), and we report these results in

Tables 1 and 2. As in some test cases, a big percentage of the
search space is pruned and no solution was found in the
unpruned parts, a “No solution found” is reported, which
means no valid delay sequence that would make the test
pattern encodable exists. The number of such patterns can be
calculated by num_of_test_patterns – (Org + AE + TO). An
example of this case can be observed in the results of Table 1
with (R=80, V=8, any cluster size) where the number of
patterns that are definitely unencodable is 2. Another example
can be found in Table 2 with n=1, R=90, V=8 where the
number of patterns that have no valid delay configuration is 9.
In general, the algorithm’s ability to decide that more test
patterns to be unencodable instead of having a timeout is
considered an advantage of the parallel algorithm. When we
know that a test pattern has no valid delay data that makes it
encodable, further attempts in finding a solution, such as
increasing the timeout limit, can be eliminated.

8 9 10 11 12

 Org AE TO Org AE TO Org AE TO Org AE TO Org AE TO
80 0 248 0 4 246 0 31 219 0 99 151 0 135 115 0
85 31 219 0 70 180 0 163 87 0 163 87 0 235 15 0
90 189 81 0 214 36 0 233 17 0 247 3 0 249 1 0
95 243 7 0 242 8 0 247 3 0 243 7 0 250 0 0

Table 1: Encodable and unencodable pattern counts (32x32 test patterns). This result set was obtained with n = 1, 2, 4, 8,
16

8 9 10 11 12

Org AE TO Org AE TO Org AE TO Org AE TO Org AE TO
90 0 52 189 0 153 97 2 225 23 28 212 10 72 174 4 n=1
95 134 110 6 178 71 1 209 39 2 235 15 0 245 5 0
90 0 82 168 0 178 72 2 231 17 28 212 10 72 174 4 n=2
95 134 113 3 178 71 1 209 40 1 235 15 0 245 5 0
90 0 113 137 0 191 59 2 234 14 28 213 9 72 174 4 n=4
95 134 113 3 178 72 0 209 40 1 235 15 0 245 5 0
90 0 142 108 0 207 43 2 237 11 28 217 5 72 174 4 n=8
95 134 114 2 178 72 0 209 40 1 235 15 0 245 5 0
90 0 163 87 0 220 30 2 239 9 28 217 5 72 174 4 n=16
95 134 114 2 178 72 0 209 40 1 235 15 0 245 5 0

Table 2: Encodable and unencodable pattern counts (64x64 test patterns)

It is quite common to employ a second test application phase
subsequent to scan compression mode. In the first phase,
encodable patterns (Torg) are delivered into the shorter scan
chains (of length depth_short) through a decompressor, while
in the latter phase, shorter scan chains are concatenated into
fewer longer ones (of length depth_long) and the remaining
test patterns (T - Torg), which were unencodable in the first
phase, are inserted into these longer scan chains, wherein the
decompressor block is bypassed. Thus the per pattern shift
cycles increases in the second phase.

We utilize the results from Table 1 and 2 in order to compare
the test data volumes of the architecture without versus with
Align-Encode in a two-phase test application process. No
compression of test patterns (all serial application) is referred
to as the base case in our computations. We provide
percentage reductions in test data volume delivered by the
decompressor alone and by the decompressor along with
Align-Encode, both with respect to the base case. Test data
volume of the base case is computed as a product of the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 261

number of scan chains (chains), the number of test patterns
(T), which is 250, and the scan depth (depth_long). Test data
volume of the first phase in the case of no Align-Encode is
computed as the product of the number of scan-in channels
(V), the number of encodable patterns (Torg) and the scan
depth (depth_short). Test data volume of the first phase of
Align-Encode is also computed similarly, except that the
penalty incurred due to delay information and to one
additional cycle per pattern are also included for the patterns
that became encodable due to Align-Encode (TAE). The second
phase test data volume is computed identically for both cases;
it is computed as the product of the number of scan chains
(chains), the number of unencodable test patterns (without
AE: T – Torg , with AE: T – Torg - TAE), and scan depth
(depth_short):

TDVbase = all_patterns . chains . depth_long
TDVNO_AE = (T – Torg) . chains . depth_long + Torg . V .
depth_short

TDVAE = (T – Torg – TAE) . chains . depth_long + Torg . V .
depth_short + Torg . (V+1) . (depth_short+1)
We are interested in the finding the reduction in test data
volume without versus with applying Align-Encode then find
the difference between the two reductions to analyze how this
difference changes as the number of nodes is increased. To
find the reduction in test data volume we use the following
formula:

TDV-ReductionNO_AE = (TDVbase - TDVNO_AE) / TDVbase
TDV-ReductionNO_AE = (TDVbase - TDVAE) / TDVbase
Appling these formula while using the pattern counts obtained
in Tables 1 and 2, we can summarize the test data volume
reductions for our test cases as shown in Tables 3 and 4 that
show the reduction value with (AE) and without applying
Align-Encode (NO_AE). Tables 5-7 summarize the test data
volume reduction differences between decompressor alone
and decompressor together with Align-Encode.

8 9 10 11 12

 NO AE AE NO AE AE NO AE AE NO AE AE NO AE AE
80 0.000 0.704 0.012 0.678 0.085 0.651 0.260 0.630 0.338 0.605
85 0.093 0.715 0.201 0.689 0.448 0.673 0.428 0.641 0.588 0.622
90 0.567 0.797 0.615 0.713 0.641 0.685 0.648 0.656 0.623 0.625
95 0.729 0.749 0.696 0.717 0.679 0.687 0.638 0.655 0.625 0.625

Table 3: Test data volumes reductions when using XOR decompressors with no Align-Encode vs. with Align-Encode
(32x32 test patterns), Obtained for n=1, n=2, n=4, n=8, n=16

8 9 10 11 12

 NO AE AE NO AE AE NO AE AE
NO
AE AE

NO
AE AE

90 0.000 0.178 0.000 0.515 0.007 0.750 0.093 0.779 0.234 0.786 n=1
95 0.469 0.846 0.612 0.851 0.705 0.834 0.778 0.827 0.796 0.812
90 0.000 0.281 0.000 0.599 0.007 0.769 0.093 0.779 0.234 0.786 n=2
95 0.469 0.856 0.612 0.851 0.705 0.837 0.778 0.827 0.796 0.812
90 0.000 0.387 0.000 0.643 0.007 0.779 0.093 0.783 0.234 0.786 n=4
95 0.469 0.856 0.612 0.854 0.705 0.837 0.778 0.827 0.796 0.812
90 0.000 0.487 0.000 0.697 0.007 0.789 0.093 0.795 0.234 0.786 n=8
95 0.469 0.860 0.612 0.854 0.705 0.837 0.778 0.827 0.796 0.812
90 0.000 0.559 0.000 0.740 0.007 0.796 0.093 0.795 0.234 0.786 n=16
95 0.469 0.860 0.612 0.854 0.705 0.837 0.778 0.827 0.796 0.812

Table 4: Test data volumes reductions when using XOR decompressors with no Align-Encode vs. with Align-Encode
(64x64 test patterns)

 8 9 10 11 12
80 0.704 0.667 0.565 0.370 0.267
85 0.622 0.488 0.225 0.213 0.035
90 0.230 0.098 0.044 0.007 0.002
95 0.020 0.022 0.008 0.017 0.000

Table 5: Test data volumes reduction differences between the cases when no Align-Encode applied and when applying
Align-Encode (32x32 test patterns), Obtained for n=1, n=2, n=4, n=8, n=16

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 262

 R=0.9
0 8 9 10 11 12

1 0.178 0.515
0.74

3 0.687
0.55

2

2 0.281 0.599
0.76

3 0.687
0.55

2

4 0.387 0.643
0.77

3 0.690
0.55

2

8 0.487 0.697
0.78

3 0.703
0.55

2

16 0.559 0.740
0.78

9 0.703
0.55

2
Table 6

 R=0.9
5 8 9 10 11 12

1
0.37

7 0.239
0.12

9
0.04

9
0.01

6

2
0.38

7 0.239
0.13

2
0.04

9
0.01

6

4
0.38

7 0.242
0.13

2
0.04

9
0.01

6

8
0.39

1 0.242
0.13

2
0.04

9
0.01

6

16
0.39

1 0.242
0.13

2
0.04

9
0.01

6
Table 7

Table 6 - 7: Test data volumes reduction differences between the cases when no Align-Encode applied and when applying
Align-Encode (64x64 test patterns) where R=0.90, R=0.95 respectively

To visualize the effect of changing different factors on test
data volume, we plot in Figure 11 test data volume reduction
difference of Align-Encode and no Align Encode versus the
number of processing nodes (n) for R=0.90 and 64x64 test
patterns:

FIGURE 11: THE TEST DATA VOLUME REDUCTION
DIFFERENCE BETWEEN APPLYING AE AND NOT APPLYING AE
WHERE R=0.90 (64X64 TEST PATTERNS). THE DIFFERENCE IS

GENERALLY INCREASING AS THE NUMBER OF NODES
INCREASES. THE HIGHEST INCREASE RATE IS NOTICED WHEN

V=8

VII. REMARKS AND EXPECTATIONS
The results can be analyzed from two different

perspectives: with respect to run-time and quality of results.
The latter aspect directly hinges on the former one, as there is
a timer mechanism built in our algorithm. With shorter run-
times, the chances of finding a solution within preset time
constraints are higher, improving the quality of results.

The proposed solution is based on solving linear equations,

and thus, on the repetitive execution of the Gaussian
Elimination Technique with different delay configurations.

The solvability of systems is directly dependent on the number
of equations and the number of free variables. In our context,
the number of equations equals at most the number of scan
chains. However, equations with a don’t care bit on the right
hand side are dropped. So, the higher the don’t care bit ratio
R, the fewer the equations. The number of free variables in
our systems equals the number of channels V.

A system of equations can be deemed easily solvable as

long as the number of free variables exceeds the number of
equations. Conversely, difficult-to-solve systems are those
with fewer variables than equations. In our context, increasing
R or V helps in rendering the system of equations easy to
solve. With higher values of R or V, possibly multiple
solutions may exist, and the proposed algorithm searches for
one of these solutions in a distributed manner. With lower
values of R or V, it is possible that no solutions exist, and our
algorithm ends up terminating unsuccessfully upon hitting the
timer limit.

It can be noticed that for lower values of R, the run-time

time generally decreases as the number of nodes increases,
regardless of the number of decompressor variables. This
behavior starts to reverse as the ratio R is increased; at
R=0.90, the change in execution time is too small and in a
non-fixed direction. At R=0.95, the trend totally changes and
the execution time increases as the number of nodes is
increased. This can be explained as follows: as R increases,
the problem becomes easy to solve. Therefore, a small number
of nodes (even one) suffice to efficiently solve such a test
case. Considering the increased communication overhead with
added nodes, the sequential version is expected to give the
best performance.

Similarly, it can be noticed that for small V, the effect of

using the parallel algorithm is advantageous in terms of
runtime, since the problem is harder. Increasing V leads to
easier-to-solve problems, and ultimately to barely any
performance difference even with an increased number of
nodes.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 263

The results also show that the number of test patterns that
gave “Timeout” decreases as the number of nodes increases.
For example, at R = 90, V = 8, with 1 node 189 timeouts were
obtained, while only 87 were obtained with 16 nodes. This
means that more test patterns could be solved for, as we
increase the number of nodes within the given time period.

Parallelism benefit doesn’t just include execution time

improvements, it also positively affects the number of test
cases that were determined to be encodable, reducing further
the test data volume, and thus improving the quality of results.
This is a quite important result, as the quality of results
directly determine the actual cost of testing electronic chips,
and parallelism helps reduce this cost.

These results indicate that in practical scenarios where test

pattern sizes exceed 64x64 to reach 128x128 and more, it is
expected to get better test data volumes (smaller) which mean
improvements in both the test quality and the cost. This
improvement is expected to further increase as we increase the
number of employed nodes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, an important feature – the ability to exploit
parallelism on the data level – has been observed and
implemented trying to improve the performance of the
original algorithm. Both the sequential and parallel algorithms
have been tested on a variety of test cases. Significant speedup
has been gained when applying the parallel implementation of
the algorithm on relatively hard problems where deep search
should be performed and just less frequent pruning is done.
With such hard problems, increasing the number of nodes
showed improvements in the execution time and the number
of solved test patterns. As the problem gets relaxed, the
sequential implementation tends to be the best among the
others where the execution time is similar between the
sequential version and the parallel version except for the
added communication time in the parallel implementation.

In some cases where a node returns a result of “No solution”,
such nodes remain idle until the next test case is provided.
One solution to this possible inefficiency is to apply the idea
of load balancing. With load balancing, a busy working node
can pass part of its work to an idle node either directly or
through the controller node. Therefore, once a node got idle, it
sends a “need work” request. Based on certain criteria, a busy
node is chosen and part of its work is passed to the idle one.
With this enhancement, node’s maximum utilization would be
achieved.

The current version of the algorithm has a restriction on the
number of nodes. It should be a power of two. Our intention is
to generalize the algorithm to work with any number of nodes
n. The idea relies on making the work distribution occur in
two levels. Another direction is to improve over the

performance of the algorithm on large-scale configuration
such as 128 or 256-chain test pattern using heuristic
knowledge obtained during the process of delay bit
distribution among the bits of the test patterns.

REFERENCES
[1] Sinanoglu, O.: ‘Align-Encode: Improving the Encoding Capability of Test
Stimulus Decompressors’, International Test Conference, Santa Clara, CA,
USA, paper 9.2, October 2008

[2] Sinanoglu, O.: ‘Scan Architecture with Align-Encode’, IEEE Transaction
on Computer Aided Design of Integrated Circuits and Systems, 2008, 27, (12),
pp. 2304–2317

[3] Touba, N. A.: ‘Survey of Test Vector Compression Techniques’, IEEE
Design and Test, 2006, 23, (4), pp. 294–303.

[4] Jas, A., Pouya, B., and Touba, N.: ‘Virtual Scan Chains: A Means for
Reducing Scan Length in Cores’, VLSI Test Symposium, Montreal, Canada,
April 2000, pp. 73–78.

[5] Hamzaoglu, I., and Patel, J. H.: ‘Reducing Test Application Time for Full
Scan Embedded Cores’, Fault Tolerant Computing Symosium, Madison, WI,
USA, June 1999, pp. 260–267.

[6] Pandey, A. R., and Patel, J. H.: ‘Reconfiguration Technique for Reducing
Test Time and Test Data Volume in Illinois Scan Architecture Based
Designs’, VLSI Test Symposium, Monterey, CA, USA, April 2002, pp. 9–15.

[7] Bayraktaroglu, I., and Orailoglu, A.: ‘Decompression Hardware
Determination for Test Volume and Time Reduction Through Unified Test
Pattern Compaction and Compression’, VLSI Test Symposium, Napa Valley,
CA, USA, April 2003, pp. 113–118.

[8] Mitra, S., and Kim, K. S.: ‘XPAND: An Efficient Test Stimulus
Compression Technique’, IEEE Transactions on Computers, 2006, 55, (2), pp.
163–173.

[9] Sitchinava, N., Samaranayake, S., Kapur, R., Gizdarski, E., Neuveux, F.,
and Williams, T. W.: ‘Changing the Scan Enable During Shift’, VLSI Test
Symposium, Napa Valley, CA, USA, April 2004, pp. 73–78.

[10] Tang, H., Reddy, S. M., and Pomeranz, I.: ‘On Reducing Test Data
Volume and Test Application Time for Multiple Scan Chain Designs’,
International Test Conference, Charlotte, NC, USA, September 2003, pp.
1070–1088.

[11] Koenemann, B.: ‘LFSR-Coded Test Patterns for Scan Designs’, European
Test Conference, Munich, Germany, April 1991, pp. 237–242.

[12] Hellebrand, S., Rajski, J., Tarnick, S., Venkatamaran, S., and Courtois,
B.: ‘Generation of Vector Patterns Through Reseeding of Multiple Polynomial
LFSRs’, International Test Conference, Baltimore, MD, USA, September
1992, pp. 120–129.

[13] Hakmi, A.-W., Wunderlich, H.-J., Zoellin, H. G., Glowatz, A., and
Hapke, A.: ‘Programmable Deterministic Built-in Self-Test’, International
Test Conference, Santa Clara, CA, USA, October 2007, pp. 1–9.

[14] Koenemann, B., Barnhart, C., Keller, B., Snethen, T., Farnsworth, O., and
Wheater, D.: ‘A SmartBIST Variant with Guaranteed Encoding’, Asian Test
Conference, Kyoto, Japan, November 2001, pp. 325–330.

[15] Xiang, D., Li, K., Sun, J., and Fujiwara, H.: ‘Reconfigured Scan Forest
for Test Application Cost, Test Data Volume, and Test Power Reduction’,
IEEE Transactions on Computers, 2007, 56, (4), pp. 557-562.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 264

[16] Miyase, K., and Kajihara, S.: ‘Optimal Scan Tree Construction With Test
Vector Modification for Test Compression’, Asian Test Symposium, Xian,
China, November 2003, pp. 136–141.

[17] Rajski, J., Kassab, M., Mukherjee, N., Tamarapalli, N., Tyzser, J., and
Qian, J.: ‘Embedded Deterministic Test for Low-cost Manufacturing’, IEEE
Design and Test, 2003, 20, (5), pp. 58–66.

[18] W.L. Pang, K. W. Chew, Florence Choong, C.L. Tan, FPGA Realization
of Open/Short Test on IC, International journal of circuits, systems and signal
processing, issue 2, vol. 1, 2007, pp. 109-116.

[19] Radovan Novotny, Process Characterization and Description in Order to
Reliability Assessment, International journal of circuits, systems and signal
processing, issue 4, vol. 1, 2007, pp. 303-309.

[20] Taha, N., Al-Awadhi, N., Sinanoglu, O. and Al-Mulla, M., Align-Encode
Delay Assignment In The Case of XOR-Decompressors: Impact of Parallel
Computations, Proceedings of the 8th WSEAS International Conference on
Applied Computer & Applied Computational Science (ACACOS '09),
Hangzhou, China, May 20-22, 2009.

[21] Kumar, V., Grama, A., Gupta, G., Karpis, G.: Introduction to Parallel
Computing: Design and Analysis of Parallel Algorithms, Benjamin-
Cummings, 1994.

Mohammed Almulla received his Master degree in Computer Science 1990,
and his PhD. in Computer Science from McGill University, Montreal, Canada
1995. Currently he is associate professor at Kuwait University. His main
research interests include automated theorem proving, parallel/distributed
search algorithms, and heuristic search. In addition, he is an adviser for many
government agencies in the area of e-Government projects and services.

Ozgur Sinanoglu Dr. Ozgur Sinanoglu has obtained his M.S. and Ph.D.
degrees in the Computer Science and Engineering Department, University of
California, San Diego, in 2001, and 2004, respectively. Between 2004 and
2006, he worked as a senior DfT engineer at Qualcomm, San Diego. Since
Fall 2006, he is a faculty member with the Department of Mathematics and
Computer Science, Kuwait University. His research interests include CAD
and reliability of VLSI circuits..

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 265

