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Abstract— Various techniques were used to reduce the test time 

and cost of chip development, some of which achieved their 
objective by reducing the test data volume through the 
implementation of compression technologies such as XOR-based 
decompressors. In the presence of XOR decompressor, the delivery 
of acceptable (encodable) test patterns can be challenging. To 
overcome this problem, the Align-Encode technique was introduced 
to manipulate the distribution of care bits in the test pattern in aim to 
increase the delivery of more encodable test patterns. The 
implementation of the Align-Encode algorithm proved that this 
algorithm suffers a major drawback when applied on large test 
patterns. In this paper, we propose a distributed algorithm for 
realizing the Align-Encode objectives but for large scale problems. 
This algorithm is designed to run on a scalable distributed 
environment. Moreover, it exploits the nature of the problem in order 
to make significant improvements in performance with respect to 
chip testing time as well as the number of encodable test patterns 
generated, which reflects positively on the cost of chip development 
and in test data compression as a result. 
 

Keywords— VLSI Chip testing, XOR-Decompression, Align-
Encode, Distributed processing.  

I. INTRODUCTION 
HE tremendous amount of test data - required to ensure 

the high quality testing of the chips of ever increasing 
sizes - translates into heightened levels of test costs on 
multiple fronts. The sizable test sets not only pressure the 
memory requirements imposed on the external tester, 
magnifying the associated tester costs, but they furthermore 
engender the challenge of test bandwidth limitations. The 
necessity to deliver a huge amount of test data through a 
limited number of tester channels onto the chip induces 
significant prolongations in test time, imposing intolerable test 
costs on the expensive tester.  

Logic cone structure of typical designs lead into don’t care 
bits (x’s) in test vectors, paving the way for test data 

squashing techniques. This type of a redundancy innate in test 
data can be exploited by compressing the test vectors. The 
compressed stimuli is stored and transmitted from the tester to 
the chip being tested, and is expanded on-chip. In a typical 
scan architecture that supports compression, a decompressor 
expands a few scan-in channels into a larger number of scan 
chains. While test data volume and test time are thus reduced, 
the underlying structure of the stimulus decompressor 
determines the encodability of a test pattern. In the case of 
combinational decompressors, for instance, the test vector 
fragment to be delivered into a scan slice is analyzed to judge 
whether the care bits of the fragment can be obtained intact at 
the outputs of the decompressor. A test vector is encodable if 
and only if each of its fragments can be obtained at the 
decompressor outputs. A single unencodable slice renders the 
test vector unencodable. Thus, the distribution of the care bits 
of a test vector determines whether the test vector is 
encodable. Unless an unencodable test vector is replaced by 
deliverable ones that cover the faults/defects that it detects, 
test quality is degraded. Alternatively, another test mode can 
be employed wherein the decompressor is bypassed, in order 
to deliver these unencodable test vectors serially, and hence to 
restore the test quality at the expense of test time and data 
volume. 
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Test stimulus manipulation techniques help enhance test 

vector encodability of a decompressor by changing the 
distribution of the care bits judiciously. One such technique, 
referred to as Align-Encode [1], [2], is based on the horizontal 
move of stimulus fragments inserted into scan chains. Such a 
capability can be attained by inserting controllable delay 
elements on the scan-in path of scan chains. By inserting a 
delay element on the selected chains, effectively the stimulus 
of the corresponding chain is shifted, offering an alternative 
distribution that may possibly be encodable. The work in [1], 
[2] has demonstrated the beneficial application of horizontal 
move of stimulus fragments to boost the encodability of fan-
out decompressors.  

 
In this paper, we propose a distributed implementation of the 
Align-Encode algorithm, in order to further improve the 
effectiveness of the XOR decompressor utilized on the 
development of large chips. We also emphasis the impact of 

T 
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parallelism on chip testing with the help of various Artificial 
Intelligence (AI) techniques in solving this challenging 
problem. As a result, we attain significant runtime 
improvements in finding the delay configuration to make 
larger patterns encodable. Due to the runtime improvements, 
the quality of results is also improved. A more efficient and 
parallel exploration of the search tree enables the distributed 
approach to increase the number of encodable patterns, some 
of which remain unencodable due to runtime limitation of the 
serial algorithm. The distributed algorithm enhances the 
compression levels of the accompanying decompressor, 
consequently.  

II. PEEVIOUS WORK 
Conceptually, stimulus manipulation techniques (Align-

Encode being the only one in the literature) can be utilized in 
conjunction with any combinational decompressor, in order to 
boost the encoding capability of the decompressor. Various 
decompressors were outlined in [3]. These techniques include 
fan-out decompressors [4]-[6], XOR decompressors [7], [8], 
multiplexer/fanout decompressors [9], and switch-based 
decompressors [10]. Other solutions include LFSR re-seeding 
[11]-[13], a combination of single input shift registers, clock 
gating logic and an XOR network [14], scan tree architectures 
[15], [16], and sequential decompressors [17].  

 
To compensate for the defect/fault coverage losses due to 

unencodable patterns, these techniques either employ an 
additional compression-free phase [4], [5], or they utilize test 
generation as well [7], [17], searching for alternative 
encodable test vectors for the missed faults. The idea of 
exploring various implementation strategies to further reduce 
test cost of integrated circuitry was earlier proposed FPGA 
realization of Open/Short Test on IC [18]. A different path for 
the process characterization and description using an empirical 
approach - rather than probabilistic one - in order to electronic 
device reliability assessment was suggested in [19].  

III. BENEFIT CARE BIT DISTRIBUTION 
MANIPULATION 

 
Fig. 1: Example of encodable and non-encodable patterns 

In test data compression, correlated test data delivery to 
scan cells is inevitable. The encodability of a test pattern is a 
matter of whether the care bit distribution within the pattern 
complies with the correlation induced by the decompressor. In 
the case of combinational decompressors, each scan slice can 

be analyzed individually and independently to judge on the 
encodability of the test vector. In Figure 1, one encodable and 
one unencodable test pattern are provided for an XOR-based 
3x7 decompressor. XOR-based decompressors necessitate 
solving a linear equation for each care bit in order to perform 
an encodability check. Three channels drive seven scan chains 
in Figure 1, necessitating the solution of the following set of 
linear equations: 

 
where vkj denotes the stimulus bit inserted from the kth scan-in 
channel during the jth shift cycle, and tij denotes the test 
pattern bit that corresponds to the jth scan cell of the ith scan 
chain. In the examples in Figure 1, 1 ≤ k ≤ 3, 1 ≤ j ≤ 6, and 1 ≤ 
i ≤ 7. It can be observed that the left hand side of the 
equations are constructed based on the decompressor 
structure, and the right hand side of the equations are 
composed of the test pattern bits. Any equation with an x on 
its right hand side can be safely deemed as automatically 
solvable. As an independent set of vkj ’s is introduced in every 
shift cycle, one system of equations for each shift cycle (scan 
slice) can be solved independently to compute these variables. 
Upon the successful solution of all the systems, the test pattern 
can be deemed as encodable; the test pattern in Figure 1.a is 
encodable. A single unsolvable system renders a pattern 
unencodable; the second and the fourth slices from the left 
render the test pattern in Figure 1.b unencodable. In the 
equations of the second slice, for instance, the first three 
equations necessitate that v12 = v22 = v32 = 1, which contradict 
with the fifth and the seventh equations. 
 
The distribution of care bits can be judiciously manipulated in 
order to improve test vector encodability. The manipulation of 
the care bit distribution can be achieved through delaying the 
shift-in operation of scan chains for the proper alignment of 
scan slices. Such a manipulation affects the right hand side of 
the equations, while it keeps the left hand side of the equations 
intact, as the latter depends on the XOR decompressor 
structure. 
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Figure 2: A pattern becomes encodable after applying 

Align-Encode 
 

Figure 2 demonstrates the beneficial impact of shift-in 
delay operations on the unencodable test pattern in Figure 
1(b). The shift-in of the first, fourth and fifth scan chains is 
delayed by a single cycle each, delivering the encodability of 
the originally unencodable pattern, as all the systems of linear 
equations become solvable. 

IV. THE ALIGN-ENCODE ALGORITHM 
The care bit distribution in each test pattern should be 
analyzed to compute the proper delay values that lead to the 
encoding of the test pattern. It is also possible that no delay 
assignment exists for the encoding of the pattern; in this case, 
the pattern remains unencodable, necessitating either a 
subsequent serial application or replacement with other 
encodable patterns. 
 
The input to the analysis is a scan pattern. The target of this 
analysis is the computation of the proper delays, either 0 or 1, 
for each scan chain so that the pattern becomes encodable in 
the new alignment of the slices. The analysis should be 
repeated for each scan pattern in order to compute the proper 
delay data for the entire test set. 
 
In this section, a test pattern analysis for XOR-based 
decompressors is provided. Align-Encode provides the 
capability of delaying any chain by a single cycle. Full 
exploration of the search space in order to find the proper 
delay values requires an exponential time complexity solution, 
as 2n different configurations exist for n chains. 
 
A pseudo-code for the algorithm is provided in Figure 3. The 
algorithm utilizes a backtracking technique which is simply an 
exploration of a binary decision tree. The decision tree helps 
prune the search space by identifying and eliminating in a 
depth-first-search manner delay configurations that leads to 
unencodability. 

 

 
 
The decision tree for the example in the previous section is 
provided in Figure 4. In this figure, the path that leads to the 
encodability of the pattern in Figure 1.b is also highlighted. 
The right nodes (denoted by 1’s) are selected in levels 1, 4 and 
5, denoting that chains 1, 4, and 5 should be delayed, in a 
manner consistent with the configuration in Figure 2. 
 
The algorithm starts from the root level, which corresponds to 
subsystems with no equations, and expands these sub-systems 
by one level (equation) at each step. In the process, the 
algorithm traverses the nodes of the decision tree in a depth-
first-search manner. When the algorithm traverses a node at 
level i, the sub-system of equations consist of those 
corresponding to scan chains 1 through i. Gaussian 
Elimination technique is applied to check the solvability of the 
subsystems in each step. It is possible that the subsystem of 
equations, which corresponds to the path from the root to the 
current node, is unsolvable for at least one of the slices. We 
exploit the fact that if a subsystem of equations is unsolvable, 
so will its further expansions be. Thus, in such a case, the sub-
tree, which is rooted by the current node in the current level, 
can be safely pruned, leading to computational savings. The 
pruning is affected by the depth-first-search nature of the 
algorithm, which backtracks by one level up and tries to solve 
the system of equations with the current chain delayed 
(extending the path by selecting the other node in the same 
level). If the system of equations becomes solvable for all the 
slices, the algorithm proceeds by extending the path deeper 
down in the decision tree. Otherwise, it backtracks one level 
up and changes the delay configuration of the chain in the 
preceding level. Upon the identification of the path from the 
root to one of the leaves that results in the encodability of the 
test pattern, the algorithm terminates successfully with the 
delay configuration corresponding to this path. If no such path 
exists, the algorithm terminates unsuccessfully. 
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Figure 4: Sample Search Tree 

V. DISTRIBUTED VERSION OF THE ALIGN-ENCODE 
ALGORITHM 

The problem’s nature is based on searching a large state-space 
where no dependency exists between different solutions. 
Thus, we can divide the search-space into equally-sized parts 
and explore these parts independently. Furthermore, the 
position of the solution within the decision tree affects the 
time required to find it dramatically. Therefore, being able to 
initiate the search anywhere in the search tree would enhance 
the performance of the search algorithm.  
 
Experimental results of the Align-Encode algorithm indicate 
that this algorithm tends to be impractical for testing large 
patterns (≥ 64x64) [20]. Hence, distributed memory 
architecture [21] is being proposed since each instance of the 
application will run on a separate node, where some kind of 
inter-process (and inter-machine) communication has to take 
place to exchange data. For this purpose, the Message Passing 
protocol is used for exchanging messages between nodes. The 
Master-Slave model adopted in this solution is divided into 
two major modules:  
 

• The Controller Module (Master): This part of the 
application is executed on the controller node, which 
is responsible for reading input data, distributing the 
work (partitioning the search-space) over the 
working nodes and gathering the results.  

• The Working Module (Slaves): This part of the 
application receives input from the controller, 
searches the assigned search-space sequentially and 
reports the result back to the controller or will be 
waiting for other assigned tasks.  

 
 

Figure 5: Example search tree and work distribution with 
8 working nodes 

 
The controller is dedicated to manage the working nodes, 

synchronize them, distribute work and gather results. After 
reading the test pattern, the controller does a limited depth 
first traversal on the search tree up to the (k-1)th level building 
a bit sequence made up from the bits representing the branch 
chosen at each step (0 for left branch, 1 for right branch). 
When the deepest level is reached, the controller sends the test 
pattern data and the currently constructed bit sequence prefix 
to the corresponding working node initiating the processing as 
in Figure 5. The following pseudo-code describes the parallel 
XOR Align Encode algorithm:  

 
During the Limited DFS, the 2C-sized search space which 
consists of the set of all states representing the delay bit values 
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b0b1b2….bc-1 is divided equally over n nodes  where n = 2k, 
k≥1. Each working node wi will receive the input test patterns 
and start doing sequential search over the sub-space consisting 
of all states p0p1..pk-1bkbk+1…bc-1 where pj is the j-th bit in the 
k-bit binary representation of i. Each subspace has a size of 2C-

k. For example, if the number of chains of the test pattern is 8, 
and the number of working nodes is 8 then we have 28 = 256 
different delay configurations b1b2…b8. The distribution of the 
search space over the 8 nodes is as follows: 
 
       w0  { 000b3b4…b7 } 

 w1  { 001b3b4…b7 } 
 … 
 w7  { 111b3b4…b7 } 

Once the work distribution is completed, the controller 
starts listening and waiting for a working node to send a result 
back. If the received result contains a “No solution found” 
flag, the controller continues waiting for more results. When a 
valid delay configuration is received, the controller sends a 
“Stop work” message to all the remaining working nodes and 
waits a “Ready” message from each of them which indicates 
that a node is ready to receive and work on a new working 
node. If all the working nodes return result with “No solution 
found” flag, the test pattern is considered unencodable. The 
whole process is repeated until the input test patterns are 
processed. 

VI. EXPERIMENTAL RESULTS 
A scalable test environment was set in order to perform the 
necessary experiments. This environment consisted of a 
2m+1(=17 in our case where m=4) homogeneous nodes 
connected with an ad-hoc network. MPI and the test 
application were installed on every node. One of these nodes 
was designated as a controller (master) node. The working 
node module was installed on each of the other 16 machines. 
Each node had a single Pentium 4 processor with 1.7 GHz 
speed, 256 MB RAM and running Windows XP SP2 
operating system. This particular node configuration was 
suitable for test cases having 32x32 test patterns. For 64x64 
test cases, a higher node configuration was needed. Therefore, 
a similar yet more powerful environment was setup where 
each node having a single Pentium D (Dual Core) processor, 
with 3 GHz speed, 1GB RAM and running Windows XP SP2. 
In short, 32x32 test patterns were tested on the lower-end 
configuration machines while the 64x64 test patterns were 
tested on the higher-end configuration machines, with the 
number of nodes kept fixed in both environments. 
 
In order to estimate the effect of parallelism and to investigate 
the relationship between the number of nodes used and the 
speedup gained, the test set ran on different cluster sizes (1 
(sequential), 2, 4, 8 and 16 nodes). The test set contained test 
cases that cover a combination of preset values of the test 
pattern size S (32x32, 64x64), number of decompressor 
variables V (8, 9, 10, 11, 12) and ratio in percentage of don’t 

care bits R (0.80, 0.85, 0.90, 0.95). Each test case consisted of 
250 randomly generated (prepared by a test pattern generator 
utility) test patterns. For test cases with test patterns of size 
64x64, a time limit per test pattern was set to 10 minutes. For 
each test case, execution time and solvability status were 
reported. 
 
The following figures show the execution time (in 
millisecond) consumed by running a set of test cases with R = 
0.80, 0.85, 0.90 and 0.95 don’t care bit ratios, respectively, on 
32x32 test patterns.  
 

 
Figure 7 

 

 
Figure 8 

 

 
Figure 9 
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Figure 10 

 
Figures 7 – 10: Execution time (32x32 test patterns) for R 

= 0.80, 0.85, 0.90, and 0.95, respectively 
 
We also computed the number of originally solvable test 
patterns (Org), the number of cases solvable after align 
encode (AE) and the number of cases with which the 
algorithm has timed out (TO), and we report these results in 

Tables 1 and 2. As in some test cases, a big percentage of the 
search space is pruned and no solution was found in the 
unpruned parts, a “No solution found” is reported, which 
means no valid delay sequence that would make the test 
pattern encodable exists. The number of such patterns can be 
calculated by num_of_test_patterns – (Org + AE + TO). An 
example of this case can be observed in the results of Table 1 
with (R=80, V=8, any cluster size) where the number of 
patterns that are definitely unencodable is 2. Another example 
can be found in Table 2 with n=1, R=90, V=8 where the 
number of patterns that have no valid delay configuration is 9. 
In general, the algorithm’s ability to decide that more test 
patterns to be unencodable instead of having a timeout is 
considered an advantage of the parallel algorithm. When we 
know that a test pattern has no valid delay data that makes it 
encodable, further attempts in finding a solution, such as 
increasing the timeout limit, can be eliminated. 

 
8 9 10 11 12 

  Org AE TO Org AE TO Org AE TO Org AE TO Org AE TO 
80 0 248 0 4 246 0 31 219 0 99 151 0 135 115 0 
85 31 219 0 70 180 0 163 87 0 163 87 0 235 15 0 
90 189 81 0 214 36 0 233 17 0 247 3 0 249 1 0 
95 243 7 0 242 8 0 247 3 0 243 7 0 250 0 0 

Table 1: Encodable and unencodable pattern counts (32x32 test patterns). This result set was obtained with n = 1, 2, 4, 8, 
16 

8 9 10 11 12   

Org AE TO Org AE TO Org AE TO Org AE TO Org AE TO 
90 0 52 189 0 153 97 2 225 23 28 212 10 72 174 4 n=1 
95 134 110 6 178 71 1 209 39 2 235 15 0 245 5 0 
90 0 82 168 0 178 72 2 231 17 28 212 10 72 174 4 n=2 
95 134 113 3 178 71 1 209 40 1 235 15 0 245 5 0 
90 0 113 137 0 191 59 2 234 14 28 213 9 72 174 4 n=4 
95 134 113 3 178 72 0 209 40 1 235 15 0 245 5 0 
90 0 142 108 0 207 43 2 237 11 28 217 5 72 174 4 n=8 
95 134 114 2 178 72 0 209 40 1 235 15 0 245 5 0 
90 0 163 87 0 220 30 2 239 9 28 217 5 72 174 4 n=16 
95 134 114 2 178 72 0 209 40 1 235 15 0 245 5 0 

Table 2: Encodable and unencodable pattern counts (64x64 test patterns) 
 
It is quite common to employ a second test application phase 
subsequent to scan compression mode. In the first phase, 
encodable patterns (Torg) are delivered into the shorter scan 
chains (of length depth_short) through a decompressor, while 
in the latter phase, shorter scan chains are concatenated into 
fewer longer ones (of length depth_long) and the remaining 
test patterns (T - Torg), which were unencodable in the first 
phase, are inserted into these longer scan chains, wherein the 
decompressor block is bypassed. Thus the per pattern shift 
cycles increases in the second phase.  

 
We utilize the results from Table 1 and 2 in order to compare 
the test data volumes of the architecture without versus with 
Align-Encode in a two-phase test application process. No 
compression of test patterns (all serial application) is referred 
to as the base case in our computations. We provide 
percentage reductions in test data volume delivered by the 
decompressor alone and by the decompressor along with 
Align-Encode, both with respect to the base case. Test data 
volume of the base case is computed as a product of the 
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number of scan chains (chains), the number of test patterns 
(T), which is 250, and the scan depth (depth_long). Test data 
volume of the first phase in the case of no Align-Encode is 
computed as the product of the number of scan-in channels 
(V), the number of encodable patterns (Torg) and the scan 
depth (depth_short). Test data volume of the first phase of 
Align-Encode is also computed similarly, except that the 
penalty incurred due to delay information and to one 
additional cycle per pattern are also included for the patterns 
that became encodable due to Align-Encode (TAE). The second 
phase test data volume is computed identically for both cases; 
it is computed as the product of the number of scan chains 
(chains), the number of unencodable test patterns (without 
AE: T – Torg , with AE: T – Torg - TAE), and scan depth  
(depth_short): 
 
TDVbase = all_patterns .  chains . depth_long 
TDVNO_AE = (T – Torg) . chains . depth_long   +   Torg . V . 
depth_short 

TDVAE = (T – Torg – TAE) . chains . depth_long   +   Torg . V . 
depth_short   +   Torg . (V+1) . ( depth_short+1) 
We are interested in the finding the reduction in test data 
volume without versus with applying Align-Encode then find 
the difference between the two reductions to analyze how this 
difference changes as the number of nodes is increased. To 
find the reduction in test data volume we use the following 
formula: 

TDV-ReductionNO_AE = (TDVbase  - TDVNO_AE ) / TDVbase 
TDV-ReductionNO_AE = (TDVbase  - TDVAE ) / TDVbase 
Appling these formula while using the pattern counts obtained 
in Tables 1 and 2, we can summarize the test data volume 
reductions for our test cases as shown in Tables 3 and 4 that 
show the reduction value with (AE) and without applying 
Align-Encode (NO_AE). Tables 5-7 summarize the test data 
volume reduction differences between decompressor alone 
and decompressor together with Align-Encode. 

 
8 9 10 11 12 

  NO AE AE NO AE AE NO AE AE NO AE AE NO AE AE 
80 0.000 0.704 0.012 0.678 0.085 0.651 0.260 0.630 0.338 0.605 
85 0.093 0.715 0.201 0.689 0.448 0.673 0.428 0.641 0.588 0.622 
90 0.567 0.797 0.615 0.713 0.641 0.685 0.648 0.656 0.623 0.625 
95 0.729 0.749 0.696 0.717 0.679 0.687 0.638 0.655 0.625 0.625 

Table 3: Test data volumes reductions when using XOR decompressors with no Align-Encode vs. with Align-Encode 
(32x32 test patterns), Obtained for n=1, n=2, n=4, n=8, n=16 

8 9 10 11 12 

  NO AE AE NO AE AE NO AE AE 
NO 
AE AE 

NO 
AE AE 

90 0.000 0.178 0.000 0.515 0.007 0.750 0.093 0.779 0.234 0.786 n=1 
95 0.469 0.846 0.612 0.851 0.705 0.834 0.778 0.827 0.796 0.812 
90 0.000 0.281 0.000 0.599 0.007 0.769 0.093 0.779 0.234 0.786 n=2 
95 0.469 0.856 0.612 0.851 0.705 0.837 0.778 0.827 0.796 0.812 
90 0.000 0.387 0.000 0.643 0.007 0.779 0.093 0.783 0.234 0.786 n=4 
95 0.469 0.856 0.612 0.854 0.705 0.837 0.778 0.827 0.796 0.812 
90 0.000 0.487 0.000 0.697 0.007 0.789 0.093 0.795 0.234 0.786 n=8 
95 0.469 0.860 0.612 0.854 0.705 0.837 0.778 0.827 0.796 0.812 
90 0.000 0.559 0.000 0.740 0.007 0.796 0.093 0.795 0.234 0.786 n=16 
95 0.469 0.860 0.612 0.854 0.705 0.837 0.778 0.827 0.796 0.812 

Table 4: Test data volumes reductions when using XOR decompressors with no Align-Encode vs. with Align-Encode 
(64x64 test patterns) 

  8 9 10 11 12 
80 0.704 0.667 0.565 0.370 0.267 
85 0.622 0.488 0.225 0.213 0.035 
90 0.230 0.098 0.044 0.007 0.002 
95 0.020 0.022 0.008 0.017 0.000 

Table 5: Test data volumes reduction differences between the cases when no Align-Encode applied and when applying 
Align-Encode (32x32 test patterns), Obtained for n=1, n=2, n=4, n=8, n=16 
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 R=0.9
0 8 9 10 11 12 

1 0.178 0.515 
0.74

3 0.687 
0.55

2 

2 0.281 0.599 
0.76

3 0.687 
0.55

2 

4 0.387 0.643 
0.77

3 0.690 
0.55

2 

8 0.487 0.697 
0.78

3 0.703 
0.55

2 

16 0.559 0.740 
0.78

9 0.703 
0.55

2 
Table 6 

 R=0.9
5 8 9 10 11 12 

1 
0.37

7 0.239 
0.12

9 
0.04

9 
0.01

6 

2 
0.38

7 0.239 
0.13

2 
0.04

9 
0.01

6 

4 
0.38

7 0.242 
0.13

2 
0.04

9 
0.01

6 

8 
0.39

1 0.242 
0.13

2 
0.04

9 
0.01

6 

16 
0.39

1 0.242 
0.13

2 
0.04

9 
0.01

6 
Table 7 

Table 6 - 7: Test data volumes reduction differences between the cases when no Align-Encode applied and when applying 
Align-Encode (64x64 test patterns) where R=0.90, R=0.95 respectively 
 
To visualize the effect of changing different factors on test 
data volume, we plot in Figure 11 test data volume reduction 
difference of Align-Encode and no Align Encode versus the 
number of processing nodes (n) for R=0.90 and 64x64 test 
patterns:  
 
 

 

FIGURE 11: THE TEST DATA VOLUME REDUCTION 
DIFFERENCE BETWEEN APPLYING AE AND NOT APPLYING AE 
WHERE R=0.90 (64X64 TEST PATTERNS). THE DIFFERENCE IS 

GENERALLY INCREASING AS THE NUMBER OF NODES 
INCREASES. THE HIGHEST INCREASE RATE IS NOTICED WHEN 

V=8 

VII. REMARKS AND EXPECTATIONS 
The results can be analyzed from two different 

perspectives: with respect to run-time and quality of results. 
The latter aspect directly hinges on the former one, as there is 
a timer mechanism built in our algorithm. With shorter run-
times, the chances of finding a solution within preset time 
constraints are higher, improving the quality of results. 

 
The proposed solution is based on solving linear equations, 

and thus, on the repetitive execution of the Gaussian 
Elimination Technique with different delay configurations. 

The solvability of systems is directly dependent on the number 
of equations and the number of free variables. In our context, 
the number of equations equals at most the number of scan 
chains. However, equations with a don’t care bit on the right 
hand side are dropped. So, the higher the don’t care bit ratio 
R, the fewer the equations. The number of free variables in 
our systems equals the number of channels V.  

 
A system of equations can be deemed easily solvable as 

long as the number of free variables exceeds the number of 
equations. Conversely, difficult-to-solve systems are those 
with fewer variables than equations. In our context, increasing 
R or V helps in rendering the system of equations easy to 
solve. With higher values of R or V, possibly multiple 
solutions may exist, and the proposed algorithm searches for 
one of these solutions in a distributed manner. With lower 
values of R or V, it is possible that no solutions exist, and our 
algorithm ends up terminating unsuccessfully upon hitting the 
timer limit. 

 
It can be noticed that for lower values of R, the run-time 

time generally decreases as the number of nodes increases, 
regardless of the number of decompressor variables. This 
behavior starts to reverse as the ratio R is increased; at 
R=0.90, the change in execution time is too small and in a 
non-fixed direction. At R=0.95, the trend totally changes and 
the execution time increases as the number of nodes is 
increased. This can be explained as follows: as R increases, 
the problem becomes easy to solve. Therefore, a small number 
of nodes (even one) suffice to efficiently solve such a test 
case. Considering the increased communication overhead with 
added nodes, the sequential version is expected to give the 
best performance. 

  
Similarly, it can be noticed that for small V, the effect of 

using the parallel algorithm is advantageous in terms of 
runtime, since the problem is harder. Increasing V leads to 
easier-to-solve problems, and ultimately to barely any 
performance difference even with an increased number of 
nodes. 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 263



The results also show that the number of test patterns that 
gave “Timeout” decreases as the number of nodes increases. 
For example, at R = 90, V = 8, with 1 node 189 timeouts were 
obtained, while only 87 were obtained with 16 nodes. This 
means that more test patterns could be solved for, as we 
increase the number of nodes within the given time period.  

 
Parallelism benefit doesn’t just include execution time 

improvements, it also positively affects the number of test 
cases that were determined to be encodable, reducing further 
the test data volume, and thus improving the quality of results. 
This is a quite important result, as the quality of results 
directly determine the actual cost of testing electronic chips, 
and parallelism helps reduce this cost. 

 
These results indicate that in practical scenarios where test 

pattern sizes exceed 64x64 to reach 128x128 and more, it is 
expected to get better test data volumes (smaller) which mean 
improvements in both the test quality and the cost. This 
improvement is expected to further increase as we increase the 
number of employed nodes. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, an important feature – the ability to exploit 
parallelism on the data level – has been observed and 
implemented trying to improve the performance of the 
original algorithm. Both the sequential and parallel algorithms 
have been tested on a variety of test cases. Significant speedup 
has been gained when applying the parallel implementation of 
the algorithm on relatively hard problems where deep search 
should be performed and just less frequent pruning is done. 
With such hard problems, increasing the number of nodes 
showed improvements in the execution time and the number 
of solved test patterns. As the problem gets relaxed, the 
sequential implementation tends to be the best among the 
others where the execution time is similar between the 
sequential version and the parallel version except for the 
added communication time in the parallel implementation. 

In some cases where a node returns a result of “No solution”, 
such nodes remain idle until the next test case is provided. 
One solution to this possible inefficiency is to apply the idea 
of load balancing. With load balancing, a busy working node 
can pass part of its work to an idle node either directly or 
through the controller node. Therefore, once a node got idle, it 
sends a “need work” request. Based on certain criteria, a busy 
node is chosen and part of its work is passed to the idle one. 
With this enhancement, node’s maximum utilization would be 
achieved. 

The current version of the algorithm has a restriction on the 
number of nodes. It should be a power of two. Our intention is 
to generalize the algorithm to work with any number of nodes 
n. The idea relies on making the work distribution occur in 
two levels. Another direction is to improve over the 

performance of the algorithm on large-scale configuration 
such as 128 or 256-chain test pattern using heuristic 
knowledge obtained during the process of delay bit 
distribution among the bits of the test patterns. 
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