
 

 

  
Abstract— In practice, testing-based fault localization (TBFL), 

which uses test information to locate faults, has become a research 
focus in recent years. Dichotomy method is presented to perform on 
TBFL. First we optimize the test information itself from three aspects: 
searching scope localization using slice technique, redundant test case 
removal, and test suite reduction with nearest series. Secondly, the 
diagnosis matrix is set up according to the optimized test information 
and each code in failed slice is prioritized accordingly. Thirdly, the 
dichotomy method is iteratively applied to an interactive process for 
seeking the bug: the searching scope is cut in two by the checking point 
cp, which is of highest priority in searching scope; If cp is wrong, the 
bug is found; else we will ignore the codes before/after it according to 
the result of cp. Finally, we conduct three studies with Siemens suite 
of 132 program mutants. Our method scores 0.85 on average, which 
means we only need to check less than 15% of the program before 
finding out the bug. 
 

Keywords—diagnosis matrix, dichotomy method, execution slice, 
testing-based fault localization (TBFL), test suite optimization  

I. INTRODUCTION 
O improve the quality of a program, we have to remove as 
many defects as possible in it without introducing new 

bugs at the same time. However, localizing a fault is a complex 
and time-consuming process. To reduce the cost on debugging, 
it is natural to automate fault localization using information 
acquired from testing, which is referred to as testing-based 
fault localization (called TBFL in this paper).  

In practice, no clear continuity exists between the testing 
task and diagnosis one, i.e., locating faults in the program code. 
While the former aims at generating a minimal test suite with a 
high fault-revealing power, the latter uses, when possible, all 
available symptoms (e.g. traces) coming from testing to locate 
and correct the detected faults. The richer the information 
coming from testing, the more precise the diagnosis may be. 

To reduce the human effort, many approaches have been 
proposed in recent years to automate fault localization based on 
the analysis of execution traces, such as ①Dicing[1],[2], 
②TARTANTULA[3],[4], ③Interactive approach[5],[6], 
④Nearest Neighbor Queries approach[9], ⑤SAFL[7],[8], 
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⑥Control-flow based Difference Metric approach [10], and 
⑦our previous incremental approach[11] etc. 

All approaches except ③ are automatic carried out to give a 
report of the most suspicious codes or the possibility of each 
code containing bug and check the report one by one. While 
approach ③ is an interactive process, the information gathered 
from previous steps can be used to provide the ranking of 
suspicious statements for the current interaction step. 

In approach ④ and ⑥, only one successful test case, most 
similar to the failed one, is selected out according to some 
metrics. Then the difference between these two execution 
traces will determine the report. In approach ① and ⑦, several 
successful traces will be picked up to help to prioritize the code. 
For each code, more times to appear in the successful slice, less 
impossible to contain any bug.  In approach ②, ③ and⑤, an 
entire test suite is used to color the codes in the failed program, 
different color with different brightness stands for different 
possibility of containing bug.  

Most of the research in this topic has focused on how to 
compare the successful and failing execution traces. But the 
effectiveness of a fault localizer is largely depends on the 
quality of the given test suite or selected test case(s) themselves. 
Suppose we have access to the failed test case and its execution 
trace (called wt and Swt in this paper), how to maximizing the 
utility of test information is above all the first and most 
important question in TBFL technique. Approach ① to ④ will 
be compared with ours in this paper. 

II. PRELIMINARY WORK 
Typically, the TBFL problem can be formalized as follows 

[5]. Given a program, which is composed of a set of statements 
(denoted as P={s1,s2,…,sm}), and a set of test cases (denoted as 
T={t1,t2,…,tn}), the information acquired when running these 
test cases against the target program can be represented as a 
n*(m+1) boolean execution matrix(called a diagnosis matrix 
in this paper), denoted as E=(eij) (1≤i≤n, 1≤j≤m), where 
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Thus, the TBFL problem can be viewed as the problem of 
calculating which statements are most suspicious based on the 
diagnosis matrix. 
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The techniques described in this paper are based on the 
following observations [12],[13]: 
1) If a statement is not executed under a test case, it cannot 

affect the program output for that test case. 
2) Even if a statement is executed under a test case, it does not 

necessarily affect the particular output.  
3) The likelihood of a piece of code containing a specific 

fault is proportional to the number of failed tests that 
execute it. 

4) The likelihood of a piece of code containing a specific 
fault is inversely proportional to the number of successful 
tests that execute it. 

A. Sample Program 
Let’s have a sample program P in Fig. 1 and its diagnosis 

matrix in Table 1 to see how to use the test information; it will 
be further used to show how to prioritize the code and how to 
locate the bug in the following sections. 

The program in Fig. 1 reads the lengths of three sides of a 
triangle, classifies the triangle, computes its area, and outputs 
the class and the area computed.  

Table 1 gives the test cases in T and its corresponding 
execution path. The program produces correct outputs on all 
test cases except t5, which is marked grey in Table1. Because 
s11 uses the expression a*2 instead of a*a. 

B. Using slice to cross out irrespective statements 
An execution slice with respect to wt is the set of code 

executed by wt. Based on Observation 1), control didn’t reach 

the statements 8,10,12,13 as shown in Fig.2 during the 
execution of t5, we can be sure that the error could not be 
brought by those statements. Thus the row 8,10,12,13 will be 
first crossed off with single-lines illustrated in table 1 during 
the diagnosis process.  

A dynamic slice uses dynamic analysis to identify all and 
only the statements that contribute to the selected variables of 
interest on the particular anomalous execution trace. In this 
way, the dynamic slice technique prune away unrelated 
computation and the size of slice can be considerably reduced, 
thus allowing an easier location of the bugs [14]. P’s CFG is 
shown on the right in Fig. 2 and t5’s dynamic slice is marked 
grey, which can be obtained according to the dynamic control 
dependency and data dependency. According to observation 2), 
even statements 2,3,4,7 are executed but do not affect variable 
area. So the bug must exist in area’s dynamic slice with respect 
to t5. Thus the row 2,3,4,7 will be further crossed off with 
double-line illustrated in table 1 during the diagnosis process. 

 Let's use Swt to stand for the slice of wt, maybe execution or 
dynamic. We only need to focus on the statements in Swt. 

III. TEST SUITE OPTIMIZATION 
Given such a failing run, fault localization often proceeds by 

comparing the failed run with successful run or runs, that is, a 
run which does not exhibit the unexpected behavior. Because 
only one fault-revealing execution trace is considered in the 
manual fault localization process, then how to exploit multiple 
execution traces becomes the starting point of TBFL. 

A. Wrong and Right test suite 
However, TBFL approaches have an obvious shortcoming. 

The effectiveness of these approaches depends on the 
distribution of the test cases in the test suite. Intuitively, the 
more test cases in test suite, the more accuracy of the TBFL 
report. But if several pieces of code in different places are 
executed by the same test cases (called indistinguishing 
statements), those codes will be given the same rank whatever 
approaches taken. Experiments in [7],[15] show more 
indistinguishing statements, less accurate diagnosis.  

Let us use Req(t,wt) to stand for the common statements 
both executed by the test case t and wt, i.e.,  
Req(t,wt)=St∩Swt (2) 

Bigger |Req(t,wt)| is, more codes in execution of t and  wt are 

   
Fig. 2 program P’s DFD and CFG with respect to test case t5 

Table 1 diagnosis matrix of program P 

 t1 
(2,2,2) 

t2 
(4,4,3) 

t3 
(5,4,3) 

t4 
(6,5,4) 

t5 
(3,3,3) 

t6 
(4,3,3) 

s1 1 1 1 1 1 1 
s2 1 1 1 1 1 1 
s3 1 1 1 1 1 1 
s4 1 1 0 0 1 1 
s5 1 1 1 1 1 1 
s6 1 0 0 0 1 0 
s7 1 1 1 1 1 1 
s8 0 0 1 0 0 0 
s9 1 1 1 1 1 1 

s10 0 0 1 0 0 0 
s11 1 0 0 0 1 0 
s12 0 1 0 1 0 1 
s13 0 0 0 0 0 0 
s14 1 1 1 1 1 1 
S/F 1 1 1 1 0 1 

 

s1: read(a,b,c); 
s2: class:=scalene; 
s3: if a=b or b=c 
s4:    class:=isosceles; 
s5: if a=b and b=c 
s6:    class:=equilateral; 
s7: if a*a=b*b+c*c 
s8:     class:=right; 
s9: case class of 
s10:   right     :  area:=b*c/2; 
s11:   equilateral : area:=a*2*sqrt(3)/4 
s12:   otherwise :   s:=(a+b+c)/2; 
s13:               area:=sqrt(s*(s-a)(s-b)(s-c)); 

end； 
s14:  write(class,area); 

Fig. 1 example program P 
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common, i.e, that means more "nearest" to wt[9].  
We will create two subsets of T: Right and Wrong. Each 

failed test case will be allocated to Wrong. All successful test 
cases will be allocated to Right according to the following rules: 

(1)If several test cases' executions are the same in Right, only 
one will be included in Right set. 

(2)If its execution is the same as anyone in Wrong, ignore it. 
(3)At last the test cases in Right will be ordered according to 

the number of |Req(t,wt)|, the maximum is the first, the 
minimum is the last. 

Because all the failed test cases need fault localization, we 
only need to exclude the extra successful test cases. They are 
redundant, useless and even harmful to TBFL. Thus test case 
t1,t6 will be ignored in diagnosis process. 

B. Test suite reduction toward TBFL 
Reducing the testing effort implies generating a minimal test 

suite for reaching the given criterion. While an accurate bug 
diagnosis requires maximizing the information coming from 
testing process for a precise cross-checking and fault 
localization. However, experiments in [7],[15] have shown that 
redundant test cases may bias the distribution of the test suite 
and harm TBFL. We propose to use test suite reduction 
techniques to remove some harmful redundancy to boost TBFL. 

Suppose we aim at finding one faulty statement each time. 
As described in previous section, we only need to check the 
code in Swt. Given the diagnosis matrix E as input and the codes 
in Swt, reduce the test suite T to T':   

(1)T'=Φ. 
(2) The test cases are allocated to Right or Wrong based on E 

and Swt. according to section Ⅲ.A. 
(3)Select the test case from Right in-sequence which means 

the nearest to wt into T' until all statements in Swt are covered.  
(4)The test cases in Wrong must be existed in diagnosis 

process, so T'=T'+Wrong.  

C. Optimized diagnosis matrix 
Since some irrespective statements have been ruled out and 

some harmful redundant test cases are got rid off from T, so we 
need to build up a new diagnosis matrix E' aiding to rank the 
statements of Swt toward TBFL. The test cases in T' and the 
statements in Swt will only be evolved in E'.  

 For example, if we take up the dynamic slice technique with 
t5, then we can obtain a new optimized diagnosis matrix as 
shown in the left of Table 2. 

IV. DICHOTOMY METHOD IN TBFL 
Experimental results show that the developer needs to 

examine up to 20% of the total statements for less than 60% of 
faults and examine more statements for other faults [3],[9],[10]. 
That is, even the automatic TBFL report is with a high score, 
for a middle-sized program composed of several thousand 
statements, the developer has to examine several hundred 
statements to find the location of one fault. Therefore, current 
TBFL approaches still can hardly serve as an effective 
substitute of manual fault localization. We focus on how to 
combine the merit of manual fault localization and TBFL. To 
achieve this, we proposed a Dichotomy Method in TBFL. 

A. Code prioritization in Swt   
Let's use F(s) to be a subset of Wrong and any test case in F(s) 

executes the statement s. We use %Failed(s) to stand for the 
ratio of failed test cases that execute s. So according to 
observation 3), it means the error possibility of s.  

100%
|Wrong|

|F(s)|Failed(s) ×＝％  (3) 

Let's use R(s) be a subset of T' and any test case in R(s) is 
successful and executes the statement s. We use %Successful(s) 
to represent the ratio of successful test cases in T' that execute s. 
According to observation 4), it means the correct possibility.  

100%
|Wrong||T'|

|R(s)|(s)Successful ×
－

＝％  (4) 

  Let's use Priority(s) stand for the possibility of statement s 
containing a bug. It can be obtained by combining the equation 
(3) and (4) as follows: 

(s)SuccessfulFailed(s)
Failed(s))Priority(s
＋％％

％
＝  (5) 

Thus all the statements in Swt are to be ranked with a priority. 
Intuitively, the higher Priority(s) is, the more suspicious a 
statement s is, and thus it should be examined earlier. Any 
TBFL tool described above rank the statement directly without 
optimizing the testing information and will be ceased at this 
step, a report with a list of code's priority turned in. Then the 
code will be checked one by one from the highest priority to the 
least. While our TBFL tool is a semi-automatic, each time 
which statement is to be checked depends on the checking 
result last time. 

The priority of each code in Swt with respect to t5 is listed in 
the right of Table 2.  

B. Dichotomizing search method in TBFL  
We call our TBFL technique as dichotomy method for it is 

similar with finding for an item in an ordered list using 
dichotomizing search. The architecture of dichotomizing 
search method in TBFL is illustrated in Fig. 3.  

The whole process can be elaborated as follows: 
①Acquiring diagnosis matrix E: Given the traces and 

results of each test case obtained from testing process as input, 
it will out put the diagnosis matrix E;    
②Acquiring slice of wt: Given a failed test case wt, its output 

variable v is not correspondence with the expected. Then we try 

Table 2 optimized diagnosis matrix and priority(s) of St5 
optimized diagnosis matrix 

Si t2 
(4,4,3) 

t3 
(5,4,3) 

t4 
(6,5,4) 

t5 
(3,3,3) 

%S %F Prior(si) 

1:s1 1 1 1 1 100% 100% 0.5 
2:s5 1 1 1 1 100% 100% 0.5 
3:s6 0 0 0 1 0 100% 1 
4:s9 1 1 1 1 100% 100% 0.5 

5:s11 0 0 0 1 0 100% 1 
6:s14 1 1 1 1 100% 100% 0.5 
S/F 1 1 1 0    
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to find out what makes v abnormal and fault localization is 
needed. Suppose we aim at one default at a time. If use 
execution slice technique, no other resource needed and the 
trace of wt is Swt.; If use dynamic slice, the dynamic slice Swt will 
be acquired with the help of  slicing tools. We can preliminary 
conclude that the bug exists in Swt. As described in section Ⅲ, it 
will be further used in test suite reduction and diagnosis matrix 
optimization, i.e. the covering criterion R.  In section Ⅴ, we 
will compare the effectiveness of different technique. 
③Acquiring Right and Wrong: Allocating each test case in 

the initial test suite T to Right and Wrong individually 
according to the rules elaborated in section Ⅲ.A. 
④Test suite reduction: It has been proved in [7],[15] that 

redundant test case will harm the accuracy of TBFL. We use the 
greedy algorithm to select out nearest test cases from T to T'. 
⑤Acquiring optimized diagnosis matrix E': After some 

redundant information from testing process, a new diagnosis 
matrix E' is required to rank the code in Swt. The statements are 
listed in the same order as the program execution and then to be 
re-numbered for convenience.   
⑥ Prioritizing code: In this step, given an initial or 

optimized diagnosis matrix E as input, each code in E will be 
evaluated with a priority. Then a report will be turned in with 
the ranked code list. We let a=0, b=|E|. The index a,b are used 
to present the searching range. The bug must exist in the 
statements between a and b.  If the input is an optimized 
diagnosis matrix, then we only need to check the code in Swt, 
otherwise in whole program. 
⑦Setting the checking point cp: Looking up the report, find 

a statement cp with maximum Priority(cp) from a to b and 
make it a checking point. We use pred(cp) and succ(cp) to 
stand for the variables before and after cp separately. We are 
sure that cp is the most possible of containing fault. The 
variables that are accessed by the checking point cp are 
examined carefully, especially those contribute to the error 
output v. If there are several statements ranked with the same 
highest priority, then we pick the last one as checking point cp. 
Because we think the code in the earlier has been checked 
more times, it is less to be faulty. Variable k is used to count 
the iteration times, which means how many statements have 
been examined before the bug found. In table2, s6 and s14 are 
ranked the same, so first cp is set to s14. And it is faulty, the 
algorithm terminates. 
⑧ Dichotomizing the searching range: The different 

conditions are to be analyzed: 1)If these values are already 
incorrect before executing cp, i.e. pred(cp) is error, we can 
assume that there should be a faulty statement before cp. Thus 
the codes after cp are innocent to the bug, b=cp-1; 2) If both 
pred(cp)and succ(cp) are correct, we would assume that no 
faulty statement has been executed yet, a=cp+1.  3) If pred(cp) 
is correct and succ(cp) is incorrect, we may determine that the 
statement cp is a faulty one, thus the algorithm terminates and 
the bug is found. Otherwise go to ⑦ for next iteration. 

 From the beginning, we have supposed to find out one bug a 
time. We can use the dichotomy method to gradually narrow 
down the searching range. Steps ② to ⑤ are marked within 
dashed rectangle in Fig.3. Those steps aim to maximize the 
utility of testing information and to give an accurate report. 
Steps ⑥ to ⑧ are used to dichotomize the searching range. 
Using the statement with highest rank (i.e. cp) to split the 
suspect range in two, we look into the variables accessed by cp 
to see whether abnormal occurs. Thus the next binary search 
range is determined.  

V. EXPERIMENT  

We apply our dichotomy method together with Approach ① 
to ④. Among them, ①,②and ④ are automatic and end with  a 
report of ranking list, while ③and ours are semi-automatic to 
continue with the report for further localization.  

To investigate the effectiveness of our technique and guide 
our future work, we considered three questions: 

1. How many check points has been set before finding out 
the faulty code with different slice technique? Does 
dynamic technique really outperform the execution 
one? 

2. Does diagnosis matrix optimization really work? How 
does the quality of test suite itself influence the effect of 
TBFL tool? 

3. Does our method really overwhelm others in quality? 
To investigate the effectiveness of our dichotomy method in 

finding out the faulty statements, we have designed a number of 
studies. The first set of studies investigates the effectiveness of 
dichotomy technique when using execution slice and dynamic 
slice separately, at this study, the initial test suite is used. The 
second set of studies evaluates the effectiveness of diagnosis 
optimization. The third set of studies compares the accuracy of 
our method with other methods.  

A. Programs under test 
The target programs used in our experiment are the Siemens 

programs, which were first collected and used by Hutchins et 
al.[13] and were also used in the experiments of some other 
fault localizer [5],[9],[10],[15]. 

 
Fig.3 architecture of dichotomizing search method in TBFL 
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The Siemens programs consist of 132 versions of seven 
programs in C with injected faults, as shown in Table 3.Their 
Lines of Code(LOC) range from 138 to 516. Each faulty 
version has exactly one injected fault. Some of the faults are 
code omissions; some are stricter or looser conditions in the 
statements; some focus on the type faults of variables, and so on. 
The Siemens programs not only have various faulty versions, 
but also have the correct version for each faulty program. 
Because all those 5 approaches in our experiment are 
testing-based fault localization, we try to imitate the true 
testing process. For each program, its initial test suite T is first 
created by the black-box test suite and then more test cases are 
manually added in to ensure that each executable statement, 
edge, and  definition-use pair in the is covered by at least 30 
different test cases. The overview of the Siemens program suite 
is shown in Table 3. The last four columns show LOC, the 
number of test cases in T and failed test cases in Wrong, the 
number of faulty versions, respectively.  

In our experiment, we use the initial test suite T of each 
Siemens programs to execute its faulty versions. For each faulty 
version, record the corresponding execution matrix E.  

B. Evaluation Framework 
Based on the execution matrices, in our method, we first 

reduce the test suite with respect to wt (i.e. a faulty version) and 
then in the optimized diagnosis matrix E', a report of ranked 
statement list can be obtained; While the other four above 
methods directly analyze the execution matrices to obtain a 
report of ranked statements list. Because the faulty statement is 
injected manually, we can know where it is before hand. Thus 
from the report, we can directly know how many codes will be 
examined or how many check points will be set before the bug 
has been found. 

 To evaluate the performance of these different TBFL tools, 
we need a quantitative measure of a fault localizer's report 
quality. Formally, given a report of a mutant, that is, a list of 
program features the localizer indicates as possible locations of 
the bug, we want to compute and assign a score to it. We adapt 
the evaluation technique that was originally proposed by 
Renieris and Reiss [9] and later adopted by Hao et al [5] and  
Guo et al [10]. For each fault, this measure defines a score that 
indicates how much portion of code does not need to be 
examined for finding its location. For example, for a faulty 
program consisting of 100 statements, if we need to examine 5 
statements before we find the faulty one, the score is 0.95. The 
higher this score is, more accurate the report is and the better 
the performance is.  

We use Score(wt) to stand for the effectiveness of a method 
with respect to wt when checking the bug in a given version. 
Using all mutants of a program, the average diagnosis accuracy 
is computed, it estimates the quality of the diagnosis method. 
Thus the score of a method for P is the average of scores of all 
versions, which can be calculated by equation (6). 

|NoV|
Score(wt)Score(P) ∑＝  (6) 

C. Study 1: execution slice vs. dynamic slice 
We conduct the experiment in this study with the initial test 

suite, aiming at comparing the effectiveness of slice technique 
in finding the bug. 

First Steps ② ,③,④ and ⑤ are ignored, we only use 
dichotomy method to seek the bug in the whole program from 
initial diagnosis matrix. The score's distribution of the report is 
listed in Table 4 column Program(T). And then step ② is added, 
execution slice and dynamic slice are applied on wt 
individually and the codes in Swt only need be examined for 
each version.  The results are shown in last two column of 
Table 4. 

Table 4 compares the distribution of scores with non-slice, 
execution slice and dynamic slice over the percentage of total 
versions. We found that slice technique really does work in 
comparing with non-slice and dynamic slice technique do 
performs better than execution one. When examining less than 
20% statements of the program, only 62.12% fault can be found 
with non-slice technique, while 77.27% faults with execution 
slice, and 84.09% with dynamic slice.  

For a given failed test case wt in relation to one version, there 
maybe more than one failed test case at the same time. The 
codes in P but out of Swt can also be executed by other failed test 
cases, thus can be ranked with a higher priority, which may 
mislead the diagnosis when the searching range is not limited 
to Swt. So first to local the searching range in Swt is very 
essential.   

D. Study 2: T vs. T' 
From steps ③ to ⑤, we have tried to get rid of the harmful 

information and furthest utilize the information from testing 
process. In this study, we try to estimate how those steps 
contribute to the scores of our dichotomy method. Based on 
study 1, steps ③ to ⑤ are added in to acquire T' of each version. 
When optimizing the diagnosis matrix in step ⑤, we adopt the 
execution and dynamic slice separately. 

Table 3 relative data of the experimental program 
No. Program Descption LOC |T| |Wrong| NoV 
P1 Replace Pattern replacement 516 5,542 3–309 32 
P2 Printtokens Lexical analyzer 402 4,130 6–186 7 
P3 Printtokens2 Lexical analyzer 483 4,115 33–518 20 
P4 Schedule1 Priority scheduler 299 2,650 7–293 9 
P5 Schedule2 Priority scheduler 297 2,710 2–65 10 
P6 Tot_info Information measure 346 1,052 3–251 23 
P7 Tcas Altitude separation4 138 1,608 1–131 41 

 

Table 4 Versions(% ) of average Score distribution 
Score Program(T) Execution(T) Dynamic (T) 
0-0.1 3.03 2.27 2.27 

0.1-0.2 9.09 1.52 1.52 
0.2-0.3 1.52 0.00 0.00 
0.3-0.4 1.52 0.00 0.00 
0.4-0.5 0.76 0.00 0.00 
0.5-0.6 4.55 0.76 0.76 
0.6-0.7 6.06 5.30 3.79 
0.7-0.8 11.36 12.88 7.58 
0.8-0.9 19.70 25.00 28.79 
0.9-1.0 42.42 52.27 55.30 
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 Thus the score of each version can be calculated with 
optimized E' and its distribution is shown in Fig. 4(a), where 
execution and dynamic slice technique is in comparison. With 
either slice technique, more than 50% bugs can be found in less 
than 10% of the program and more than 80% bugs can be found 
in less than 20% of the program.  

  Combine with the result in study 1, the scores of dichotomy 
method regarding T and T' can be acquired respectively, which 
are illustrated in Fig.4(b). The test suite optimization really 
works, which promote about 4% diagnosis accuracy.  

E. Study 3: Dichotomy method vs. other TBFL tool 
As accquiring dynamic slice needs more resources and the 

execution trace (slice) of each test case has already existed and 
also be used in other TBFL tools, to be fair, we will take the 
execution slice of wt in study 3 in contrast.  

The scores of Approach ① to ④ can be obtained from 
reference [5],[9],[10]. Then the effectiveness of those 5 TBFL 
tools is illustrated in Fig 5. The score of our dichotomy method 
outperforms the others at least by 30%  including the 
interactive approach ③. 

We have also found that there exist some bugs which can be 
located nearly whole program having been examined, whatever 
approach adopted. 

VI. CONCLUSION AND FUTURE WORK 
Testing-based fault localization (TBFL) has become a 

research focus in recent years. In this paper, we present the 
details of our dichotomy method in TBFL.  

First we limit the searching scope to the slice Swt of a given 
failed test case wt. Second we optimize the initial test suite to 
exclude some redundant and harmful test cases. Then only 
nearest test case which contributes most to a given fault in Swt is 
selected out to cover the statement in Swt. Third the diagnosis 
matrix is accordingly optimized to rule out the useless 

information from the testing process. And each code in Swt will 
be evaluated with a priority of containing a fault based on 
diagnosis matrix. At last, we extend the TBFL tool to use an 
interactive process to handle the information gathered from the 
previous interaction step to decide which suspicious statement, 
i.e., checking point cp, next to be examined. In each iteration, 
dichotomy method is applied to decrease the searching scope: 
Looking into the diagnosis matrix, select out a statement as cp 
with highest priority within the searching scope, and inspect 
the variables before and after cp carefully. If the variables 
before cp is right and after cp is wrong, then cp is the faulty 
code, algorithm terminates; If the variables before cp is wrong, 
then checking scope will be set before cp; If the variables before 
and after cp both are right, then checking scope will be set after 
cp. 

 Based on the results of three studies that evaluate the 
effectiveness of dichotomy method, we find that each step in 
our technique does contribute to helping locate suspicious 
statements and our technique does outperform the others at 
least by 30% in score. 

The studies also suggest some directions for our future work: 
(1) what kind of fault in a program is always with a low score 
nearly to 0? (2) When several faults are injected to a version at 
the same time, could our method preserve to be superior to 
others? 
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