

Abstract— In practice, testing-based fault localization (TBFL),

which uses test information to locate faults, has become a research
focus in recent years. Dichotomy method is presented to perform on
TBFL. First we optimize the test information itself from three aspects:
searching scope localization using slice technique, redundant test case
removal, and test suite reduction with nearest series. Secondly, the
diagnosis matrix is set up according to the optimized test information
and each code in failed slice is prioritized accordingly. Thirdly, the
dichotomy method is iteratively applied to an interactive process for
seeking the bug: the searching scope is cut in two by the checking point
cp, which is of highest priority in searching scope; If cp is wrong, the
bug is found; else we will ignore the codes before/after it according to
the result of cp. Finally, we conduct three studies with Siemens suite
of 132 program mutants. Our method scores 0.85 on average, which
means we only need to check less than 15% of the program before
finding out the bug.

Keywords—diagnosis matrix, dichotomy method, execution slice,
testing-based fault localization (TBFL), test suite optimization

I. INTRODUCTION
O improve the quality of a program, we have to remove as
many defects as possible in it without introducing new

bugs at the same time. However, localizing a fault is a complex
and time-consuming process. To reduce the cost on debugging,
it is natural to automate fault localization using information
acquired from testing, which is referred to as testing-based
fault localization (called TBFL in this paper).

In practice, no clear continuity exists between the testing
task and diagnosis one, i.e., locating faults in the program code.
While the former aims at generating a minimal test suite with a
high fault-revealing power, the latter uses, when possible, all
available symptoms (e.g. traces) coming from testing to locate
and correct the detected faults. The richer the information
coming from testing, the more precise the diagnosis may be.

To reduce the human effort, many approaches have been
proposed in recent years to automate fault localization based on
the analysis of execution traces, such as ①Dicing[1],[2],
②TARTANTULA[3],[4], ③Interactive approach[5],[6],
④Nearest Neighbor Queries approach[9], ⑤SAFL[7],[8],

S. Ji-Rong is with Sichuan Radio and TV University, Chengdu, CO 610073,
China (phone: +86-13378115339; e-mail: sunjirong@126.com).

N. Jian-Cheng is with School of computer science, Sichuan University, Chendu,
CO 610065, China. (e-mail: nijch@163.com).

L. Bao-Lin is with School of computer science, Sichuan University, Chendu,
CO 610065, China (e-mail: libaolin_2000@163.com)

⑥Control-flow based Difference Metric approach [10], and
⑦our previous incremental approach[11] etc.

All approaches except ③ are automatic carried out to give a
report of the most suspicious codes or the possibility of each
code containing bug and check the report one by one. While
approach ③ is an interactive process, the information gathered
from previous steps can be used to provide the ranking of
suspicious statements for the current interaction step.

In approach ④ and ⑥, only one successful test case, most
similar to the failed one, is selected out according to some
metrics. Then the difference between these two execution
traces will determine the report. In approach ① and ⑦, several
successful traces will be picked up to help to prioritize the code.
For each code, more times to appear in the successful slice, less
impossible to contain any bug. In approach ②, ③ and⑤, an
entire test suite is used to color the codes in the failed program,
different color with different brightness stands for different
possibility of containing bug.

Most of the research in this topic has focused on how to
compare the successful and failing execution traces. But the
effectiveness of a fault localizer is largely depends on the
quality of the given test suite or selected test case(s) themselves.
Suppose we have access to the failed test case and its execution
trace (called wt and Swt in this paper), how to maximizing the
utility of test information is above all the first and most
important question in TBFL technique. Approach ① to ④ will
be compared with ours in this paper.

II. PRELIMINARY WORK
Typically, the TBFL problem can be formalized as follows

[5]. Given a program, which is composed of a set of statements
(denoted as P={s1,s2,…,sm}), and a set of test cases (denoted as
T={t1,t2,…,tn}), the information acquired when running these
test cases against the target program can be represented as a
n*(m+1) boolean execution matrix(called a diagnosis matrix
in this paper), denoted as E=(eij) (1≤i≤n, 1≤j≤m), where

+=

≤≤

=
0

1mj l successfuis t case test
mj1 t testby executed si sstatement

e i

 ij

ij)(1

1 ）（

 (1)

Thus, the TBFL problem can be viewed as the problem of
calculating which statements are most suspicious based on the
diagnosis matrix.

Dichotomy method in testing-based fault
localization

Sun Ji-Rong, Ni Jian-Cheng, and Li Bao-Lin

T

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007 94

mailto:sunjirong@126.com
mailto:nijch@163.com
mailto:libaolin_2000@163.com

The techniques described in this paper are based on the
following observations [12],[13]:
1) If a statement is not executed under a test case, it cannot

affect the program output for that test case.
2) Even if a statement is executed under a test case, it does not

necessarily affect the particular output.
3) The likelihood of a piece of code containing a specific

fault is proportional to the number of failed tests that
execute it.

4) The likelihood of a piece of code containing a specific
fault is inversely proportional to the number of successful
tests that execute it.

A. Sample Program
Let’s have a sample program P in Fig. 1 and its diagnosis

matrix in Table 1 to see how to use the test information; it will
be further used to show how to prioritize the code and how to
locate the bug in the following sections.

The program in Fig. 1 reads the lengths of three sides of a
triangle, classifies the triangle, computes its area, and outputs
the class and the area computed.

Table 1 gives the test cases in T and its corresponding
execution path. The program produces correct outputs on all
test cases except t5, which is marked grey in Table1. Because
s11 uses the expression a*2 instead of a*a.

B. Using slice to cross out irrespective statements
An execution slice with respect to wt is the set of code

executed by wt. Based on Observation 1), control didn’t reach

the statements 8,10,12,13 as shown in Fig.2 during the
execution of t5, we can be sure that the error could not be
brought by those statements. Thus the row 8,10,12,13 will be
first crossed off with single-lines illustrated in table 1 during
the diagnosis process.

A dynamic slice uses dynamic analysis to identify all and
only the statements that contribute to the selected variables of
interest on the particular anomalous execution trace. In this
way, the dynamic slice technique prune away unrelated
computation and the size of slice can be considerably reduced,
thus allowing an easier location of the bugs [14]. P’s CFG is
shown on the right in Fig. 2 and t5’s dynamic slice is marked
grey, which can be obtained according to the dynamic control
dependency and data dependency. According to observation 2),
even statements 2,3,4,7 are executed but do not affect variable
area. So the bug must exist in area’s dynamic slice with respect
to t5. Thus the row 2,3,4,7 will be further crossed off with
double-line illustrated in table 1 during the diagnosis process.

 Let's use Swt to stand for the slice of wt, maybe execution or
dynamic. We only need to focus on the statements in Swt.

III. TEST SUITE OPTIMIZATION
Given such a failing run, fault localization often proceeds by

comparing the failed run with successful run or runs, that is, a
run which does not exhibit the unexpected behavior. Because
only one fault-revealing execution trace is considered in the
manual fault localization process, then how to exploit multiple
execution traces becomes the starting point of TBFL.

A. Wrong and Right test suite
However, TBFL approaches have an obvious shortcoming.

The effectiveness of these approaches depends on the
distribution of the test cases in the test suite. Intuitively, the
more test cases in test suite, the more accuracy of the TBFL
report. But if several pieces of code in different places are
executed by the same test cases (called indistinguishing
statements), those codes will be given the same rank whatever
approaches taken. Experiments in [7],[15] show more
indistinguishing statements, less accurate diagnosis.

Let us use Req(t,wt) to stand for the common statements
both executed by the test case t and wt, i.e.,
Req(t,wt)=St∩Swt (2)

Bigger |Req(t,wt)| is, more codes in execution of t and wt are

Fig. 2 program P’s DFD and CFG with respect to test case t5

Table 1 diagnosis matrix of program P

 t1
(2,2,2)

t2
(4,4,3)

t3
(5,4,3)

t4
(6,5,4)

t5
(3,3,3)

t6
(4,3,3)

s1 1 1 1 1 1 1
s2 1 1 1 1 1 1
s3 1 1 1 1 1 1
s4 1 1 0 0 1 1
s5 1 1 1 1 1 1
s6 1 0 0 0 1 0
s7 1 1 1 1 1 1
s8 0 0 1 0 0 0
s9 1 1 1 1 1 1

s10 0 0 1 0 0 0
s11 1 0 0 0 1 0
s12 0 1 0 1 0 1
s13 0 0 0 0 0 0
s14 1 1 1 1 1 1
S/F 1 1 1 1 0 1

s1: read(a,b,c);
s2: class:=scalene;
s3: if a=b or b=c
s4: class:=isosceles;
s5: if a=b and b=c
s6: class:=equilateral;
s7: if a*a=b*b+c*c
s8: class:=right;
s9: case class of
s10: right : area:=b*c/2;
s11: equilateral : area:=a*2*sqrt(3)/4
s12: otherwise : s:=(a+b+c)/2;
s13: area:=sqrt(s*(s-a)(s-b)(s-c));

end；
s14: write(class,area);

Fig. 1 example program P

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007 95

common, i.e, that means more "nearest" to wt[9].
We will create two subsets of T: Right and Wrong. Each

failed test case will be allocated to Wrong. All successful test
cases will be allocated to Right according to the following rules:

(1)If several test cases' executions are the same in Right, only
one will be included in Right set.

(2)If its execution is the same as anyone in Wrong, ignore it.
(3)At last the test cases in Right will be ordered according to

the number of |Req(t,wt)|, the maximum is the first, the
minimum is the last.

Because all the failed test cases need fault localization, we
only need to exclude the extra successful test cases. They are
redundant, useless and even harmful to TBFL. Thus test case
t1,t6 will be ignored in diagnosis process.

B. Test suite reduction toward TBFL
Reducing the testing effort implies generating a minimal test

suite for reaching the given criterion. While an accurate bug
diagnosis requires maximizing the information coming from
testing process for a precise cross-checking and fault
localization. However, experiments in [7],[15] have shown that
redundant test cases may bias the distribution of the test suite
and harm TBFL. We propose to use test suite reduction
techniques to remove some harmful redundancy to boost TBFL.

Suppose we aim at finding one faulty statement each time.
As described in previous section, we only need to check the
code in Swt. Given the diagnosis matrix E as input and the codes
in Swt, reduce the test suite T to T':

(1)T'=Φ.
(2) The test cases are allocated to Right or Wrong based on E

and Swt. according to section Ⅲ.A.
(3)Select the test case from Right in-sequence which means

the nearest to wt into T' until all statements in Swt are covered.
(4)The test cases in Wrong must be existed in diagnosis

process, so T'=T'+Wrong.

C. Optimized diagnosis matrix
Since some irrespective statements have been ruled out and

some harmful redundant test cases are got rid off from T, so we
need to build up a new diagnosis matrix E' aiding to rank the
statements of Swt toward TBFL. The test cases in T' and the
statements in Swt will only be evolved in E'.

 For example, if we take up the dynamic slice technique with
t5, then we can obtain a new optimized diagnosis matrix as
shown in the left of Table 2.

IV. DICHOTOMY METHOD IN TBFL
Experimental results show that the developer needs to

examine up to 20% of the total statements for less than 60% of
faults and examine more statements for other faults [3],[9],[10].
That is, even the automatic TBFL report is with a high score,
for a middle-sized program composed of several thousand
statements, the developer has to examine several hundred
statements to find the location of one fault. Therefore, current
TBFL approaches still can hardly serve as an effective
substitute of manual fault localization. We focus on how to
combine the merit of manual fault localization and TBFL. To
achieve this, we proposed a Dichotomy Method in TBFL.

A. Code prioritization in Swt
Let's use F(s) to be a subset of Wrong and any test case in F(s)

executes the statement s. We use %Failed(s) to stand for the
ratio of failed test cases that execute s. So according to
observation 3), it means the error possibility of s.

100%
|Wrong|

|F(s)|Failed(s) ×＝％ (3)

Let's use R(s) be a subset of T' and any test case in R(s) is
successful and executes the statement s. We use %Successful(s)
to represent the ratio of successful test cases in T' that execute s.
According to observation 4), it means the correct possibility.

100%
|Wrong||T'|

|R(s)|(s)Successful ×
－

＝％ (4)

 Let's use Priority(s) stand for the possibility of statement s
containing a bug. It can be obtained by combining the equation
(3) and (4) as follows:

(s)SuccessfulFailed(s)
Failed(s))Priority(s
＋％％

％
＝ (5)

Thus all the statements in Swt are to be ranked with a priority.
Intuitively, the higher Priority(s) is, the more suspicious a
statement s is, and thus it should be examined earlier. Any
TBFL tool described above rank the statement directly without
optimizing the testing information and will be ceased at this
step, a report with a list of code's priority turned in. Then the
code will be checked one by one from the highest priority to the
least. While our TBFL tool is a semi-automatic, each time
which statement is to be checked depends on the checking
result last time.

The priority of each code in Swt with respect to t5 is listed in
the right of Table 2.

B. Dichotomizing search method in TBFL
We call our TBFL technique as dichotomy method for it is

similar with finding for an item in an ordered list using
dichotomizing search. The architecture of dichotomizing
search method in TBFL is illustrated in Fig. 3.

The whole process can be elaborated as follows:
①Acquiring diagnosis matrix E: Given the traces and

results of each test case obtained from testing process as input,
it will out put the diagnosis matrix E;
②Acquiring slice of wt: Given a failed test case wt, its output

variable v is not correspondence with the expected. Then we try

Table 2 optimized diagnosis matrix and priority(s) of St5
optimized diagnosis matrix

Si t2
(4,4,3)

t3
(5,4,3)

t4
(6,5,4)

t5
(3,3,3)

%S %F Prior(si)

1:s1 1 1 1 1 100% 100% 0.5
2:s5 1 1 1 1 100% 100% 0.5
3:s6 0 0 0 1 0 100% 1
4:s9 1 1 1 1 100% 100% 0.5

5:s11 0 0 0 1 0 100% 1
6:s14 1 1 1 1 100% 100% 0.5
S/F 1 1 1 0

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007 96

to find out what makes v abnormal and fault localization is
needed. Suppose we aim at one default at a time. If use
execution slice technique, no other resource needed and the
trace of wt is Swt.; If use dynamic slice, the dynamic slice Swt will
be acquired with the help of slicing tools. We can preliminary
conclude that the bug exists in Swt. As described in section Ⅲ, it
will be further used in test suite reduction and diagnosis matrix
optimization, i.e. the covering criterion R. In section Ⅴ, we
will compare the effectiveness of different technique.
③Acquiring Right and Wrong: Allocating each test case in

the initial test suite T to Right and Wrong individually
according to the rules elaborated in section Ⅲ.A.
④Test suite reduction: It has been proved in [7],[15] that

redundant test case will harm the accuracy of TBFL. We use the
greedy algorithm to select out nearest test cases from T to T'.
⑤Acquiring optimized diagnosis matrix E': After some

redundant information from testing process, a new diagnosis
matrix E' is required to rank the code in Swt. The statements are
listed in the same order as the program execution and then to be
re-numbered for convenience.
⑥ Prioritizing code: In this step, given an initial or

optimized diagnosis matrix E as input, each code in E will be
evaluated with a priority. Then a report will be turned in with
the ranked code list. We let a=0, b=|E|. The index a,b are used
to present the searching range. The bug must exist in the
statements between a and b. If the input is an optimized
diagnosis matrix, then we only need to check the code in Swt,
otherwise in whole program.
⑦Setting the checking point cp: Looking up the report, find

a statement cp with maximum Priority(cp) from a to b and
make it a checking point. We use pred(cp) and succ(cp) to
stand for the variables before and after cp separately. We are
sure that cp is the most possible of containing fault. The
variables that are accessed by the checking point cp are
examined carefully, especially those contribute to the error
output v. If there are several statements ranked with the same
highest priority, then we pick the last one as checking point cp.
Because we think the code in the earlier has been checked
more times, it is less to be faulty. Variable k is used to count
the iteration times, which means how many statements have
been examined before the bug found. In table2, s6 and s14 are
ranked the same, so first cp is set to s14. And it is faulty, the
algorithm terminates.
⑧ Dichotomizing the searching range: The different

conditions are to be analyzed: 1)If these values are already
incorrect before executing cp, i.e. pred(cp) is error, we can
assume that there should be a faulty statement before cp. Thus
the codes after cp are innocent to the bug, b=cp-1; 2) If both
pred(cp)and succ(cp) are correct, we would assume that no
faulty statement has been executed yet, a=cp+1. 3) If pred(cp)
is correct and succ(cp) is incorrect, we may determine that the
statement cp is a faulty one, thus the algorithm terminates and
the bug is found. Otherwise go to ⑦ for next iteration.

 From the beginning, we have supposed to find out one bug a
time. We can use the dichotomy method to gradually narrow
down the searching range. Steps ② to ⑤ are marked within
dashed rectangle in Fig.3. Those steps aim to maximize the
utility of testing information and to give an accurate report.
Steps ⑥ to ⑧ are used to dichotomize the searching range.
Using the statement with highest rank (i.e. cp) to split the
suspect range in two, we look into the variables accessed by cp
to see whether abnormal occurs. Thus the next binary search
range is determined.

V. EXPERIMENT

We apply our dichotomy method together with Approach ①
to ④. Among them, ①,②and ④ are automatic and end with a
report of ranking list, while ③and ours are semi-automatic to
continue with the report for further localization.

To investigate the effectiveness of our technique and guide
our future work, we considered three questions:

1. How many check points has been set before finding out
the faulty code with different slice technique? Does
dynamic technique really outperform the execution
one?

2. Does diagnosis matrix optimization really work? How
does the quality of test suite itself influence the effect of
TBFL tool?

3. Does our method really overwhelm others in quality?
To investigate the effectiveness of our dichotomy method in

finding out the faulty statements, we have designed a number of
studies. The first set of studies investigates the effectiveness of
dichotomy technique when using execution slice and dynamic
slice separately, at this study, the initial test suite is used. The
second set of studies evaluates the effectiveness of diagnosis
optimization. The third set of studies compares the accuracy of
our method with other methods.

A. Programs under test
The target programs used in our experiment are the Siemens

programs, which were first collected and used by Hutchins et
al.[13] and were also used in the experiments of some other
fault localizer [5],[9],[10],[15].

Fig.3 architecture of dichotomizing search method in TBFL

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007 97

The Siemens programs consist of 132 versions of seven
programs in C with injected faults, as shown in Table 3.Their
Lines of Code(LOC) range from 138 to 516. Each faulty
version has exactly one injected fault. Some of the faults are
code omissions; some are stricter or looser conditions in the
statements; some focus on the type faults of variables, and so on.
The Siemens programs not only have various faulty versions,
but also have the correct version for each faulty program.
Because all those 5 approaches in our experiment are
testing-based fault localization, we try to imitate the true
testing process. For each program, its initial test suite T is first
created by the black-box test suite and then more test cases are
manually added in to ensure that each executable statement,
edge, and definition-use pair in the is covered by at least 30
different test cases. The overview of the Siemens program suite
is shown in Table 3. The last four columns show LOC, the
number of test cases in T and failed test cases in Wrong, the
number of faulty versions, respectively.

In our experiment, we use the initial test suite T of each
Siemens programs to execute its faulty versions. For each faulty
version, record the corresponding execution matrix E.

B. Evaluation Framework
Based on the execution matrices, in our method, we first

reduce the test suite with respect to wt (i.e. a faulty version) and
then in the optimized diagnosis matrix E', a report of ranked
statement list can be obtained; While the other four above
methods directly analyze the execution matrices to obtain a
report of ranked statements list. Because the faulty statement is
injected manually, we can know where it is before hand. Thus
from the report, we can directly know how many codes will be
examined or how many check points will be set before the bug
has been found.

 To evaluate the performance of these different TBFL tools,
we need a quantitative measure of a fault localizer's report
quality. Formally, given a report of a mutant, that is, a list of
program features the localizer indicates as possible locations of
the bug, we want to compute and assign a score to it. We adapt
the evaluation technique that was originally proposed by
Renieris and Reiss [9] and later adopted by Hao et al [5] and
Guo et al [10]. For each fault, this measure defines a score that
indicates how much portion of code does not need to be
examined for finding its location. For example, for a faulty
program consisting of 100 statements, if we need to examine 5
statements before we find the faulty one, the score is 0.95. The
higher this score is, more accurate the report is and the better
the performance is.

We use Score(wt) to stand for the effectiveness of a method
with respect to wt when checking the bug in a given version.
Using all mutants of a program, the average diagnosis accuracy
is computed, it estimates the quality of the diagnosis method.
Thus the score of a method for P is the average of scores of all
versions, which can be calculated by equation (6).

|NoV|
Score(wt)Score(P) ∑＝ (6)

C. Study 1: execution slice vs. dynamic slice
We conduct the experiment in this study with the initial test

suite, aiming at comparing the effectiveness of slice technique
in finding the bug.

First Steps ② ,③,④ and ⑤ are ignored, we only use
dichotomy method to seek the bug in the whole program from
initial diagnosis matrix. The score's distribution of the report is
listed in Table 4 column Program(T). And then step ② is added,
execution slice and dynamic slice are applied on wt
individually and the codes in Swt only need be examined for
each version. The results are shown in last two column of
Table 4.

Table 4 compares the distribution of scores with non-slice,
execution slice and dynamic slice over the percentage of total
versions. We found that slice technique really does work in
comparing with non-slice and dynamic slice technique do
performs better than execution one. When examining less than
20% statements of the program, only 62.12% fault can be found
with non-slice technique, while 77.27% faults with execution
slice, and 84.09% with dynamic slice.

For a given failed test case wt in relation to one version, there
maybe more than one failed test case at the same time. The
codes in P but out of Swt can also be executed by other failed test
cases, thus can be ranked with a higher priority, which may
mislead the diagnosis when the searching range is not limited
to Swt. So first to local the searching range in Swt is very
essential.

D. Study 2: T vs. T'
From steps ③ to ⑤, we have tried to get rid of the harmful

information and furthest utilize the information from testing
process. In this study, we try to estimate how those steps
contribute to the scores of our dichotomy method. Based on
study 1, steps ③ to ⑤ are added in to acquire T' of each version.
When optimizing the diagnosis matrix in step ⑤, we adopt the
execution and dynamic slice separately.

Table 3 relative data of the experimental program
No. Program Descption LOC |T| |Wrong| NoV
P1 Replace Pattern replacement 516 5,542 3–309 32
P2 Printtokens Lexical analyzer 402 4,130 6–186 7
P3 Printtokens2 Lexical analyzer 483 4,115 33–518 20
P4 Schedule1 Priority scheduler 299 2,650 7–293 9
P5 Schedule2 Priority scheduler 297 2,710 2–65 10
P6 Tot_info Information measure 346 1,052 3–251 23
P7 Tcas Altitude separation4 138 1,608 1–131 41

Table 4 Versions(%) of average Score distribution
Score Program(T) Execution(T) Dynamic (T)
0-0.1 3.03 2.27 2.27

0.1-0.2 9.09 1.52 1.52
0.2-0.3 1.52 0.00 0.00
0.3-0.4 1.52 0.00 0.00
0.4-0.5 0.76 0.00 0.00
0.5-0.6 4.55 0.76 0.76
0.6-0.7 6.06 5.30 3.79
0.7-0.8 11.36 12.88 7.58
0.8-0.9 19.70 25.00 28.79
0.9-1.0 42.42 52.27 55.30

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007 98

 Thus the score of each version can be calculated with
optimized E' and its distribution is shown in Fig. 4(a), where
execution and dynamic slice technique is in comparison. With
either slice technique, more than 50% bugs can be found in less
than 10% of the program and more than 80% bugs can be found
in less than 20% of the program.

 Combine with the result in study 1, the scores of dichotomy
method regarding T and T' can be acquired respectively, which
are illustrated in Fig.4(b). The test suite optimization really
works, which promote about 4% diagnosis accuracy.

E. Study 3: Dichotomy method vs. other TBFL tool
As accquiring dynamic slice needs more resources and the

execution trace (slice) of each test case has already existed and
also be used in other TBFL tools, to be fair, we will take the
execution slice of wt in study 3 in contrast.

The scores of Approach ① to ④ can be obtained from
reference [5],[9],[10]. Then the effectiveness of those 5 TBFL
tools is illustrated in Fig 5. The score of our dichotomy method
outperforms the others at least by 30% including the
interactive approach ③.

We have also found that there exist some bugs which can be
located nearly whole program having been examined, whatever
approach adopted.

VI. CONCLUSION AND FUTURE WORK
Testing-based fault localization (TBFL) has become a

research focus in recent years. In this paper, we present the
details of our dichotomy method in TBFL.

First we limit the searching scope to the slice Swt of a given
failed test case wt. Second we optimize the initial test suite to
exclude some redundant and harmful test cases. Then only
nearest test case which contributes most to a given fault in Swt is
selected out to cover the statement in Swt. Third the diagnosis
matrix is accordingly optimized to rule out the useless

information from the testing process. And each code in Swt will
be evaluated with a priority of containing a fault based on
diagnosis matrix. At last, we extend the TBFL tool to use an
interactive process to handle the information gathered from the
previous interaction step to decide which suspicious statement,
i.e., checking point cp, next to be examined. In each iteration,
dichotomy method is applied to decrease the searching scope:
Looking into the diagnosis matrix, select out a statement as cp
with highest priority within the searching scope, and inspect
the variables before and after cp carefully. If the variables
before cp is right and after cp is wrong, then cp is the faulty
code, algorithm terminates; If the variables before cp is wrong,
then checking scope will be set before cp; If the variables before
and after cp both are right, then checking scope will be set after
cp.

 Based on the results of three studies that evaluate the
effectiveness of dichotomy method, we find that each step in
our technique does contribute to helping locate suspicious
statements and our technique does outperform the others at
least by 30% in score.

The studies also suggest some directions for our future work:
(1) what kind of fault in a program is always with a low score
nearly to 0? (2) When several faults are injected to a version at
the same time, could our method preserve to be superior to
others?

REFERENCES
[1] H.Agrawal, J.Horgan, S.London, and W.Wong. Fault Localization using

Execution Slices and Dataflow Tests. Proceedings of ISSRE'95(Int.
Symposium on Software Reliability Engineering), Toulouse, France,
October 1995.

[2] W. E. Wong, Y. Qi, An execution slice and inter-block data
dependency-based approach for fault localization. Proceedings of the 11th
Asia-Pacific Software Engineering Conference 2004 (APSEC’04),
pp.366-373.

[3] J.A.Jones, M.J.Harrold, and J.Stasko. Visualization of Test Information to
Assist Fault Localization. In Proc. of the 24th International Conference on
Software Engineering, May 2002, pp.467-477,

[4] J.A.Jones and M.J.Harrold. Empirical Evaluation of the Tarantula
Automatic Fault Localization Technique. Proceedings of
ASE'05(Automated Software Engineering), Long Beach, California, USA,
November 2005.

[5] D.Hao, L.Zhang, H.Zhong, H.Mei and J.Sun. Towards Interactive Fault
Localization Using Test Information. In Proc. of the 13th Asia Pacific
Software Engineering Conference, 2006. APSEC 2006. Dec. pp.277-284

[6] D.Hao. Testing-Based Interactive Fault Localization. In Proc. of the the 28th
international conference on Software engineering 2006, pp.957-960

[7] D.Hao, L.Zhang, H.Zhong, H.Mei and J.Sun. Eliminating Harmful
Redundancy for Test-Based Fault Localization using Test Suite Reduction:
An Experimental Study. In Proc. of the International Conference on
Software Maintenance,Sep.25-30,2005.

[8] D.Hao, Y.Pan, L.Zhang, W.Zhao, H.Mei and J. Sun. A Similarity-Aware
Approach to Testing Based Fault Localization. In Proc. of the 20th IEEE
International Conference on Automated Software Engineering,
November,pp.291-294,2005.

[9] M.Renieris and S.P.Reiss. Fault Localization with Nearest Neighbor
Queries. In Proc. of International Conference on Automated Software
Engineering, pp.30-39,2003.

[10] L. Guo, A. Roychoudhury, and T. Wang. Accurately choosing execution
runs for software fault localization. In CC, 2006.

[11] J. Sun, Z. Li, J. Ni, F.Yin. Priority Strategy of Software Fault Localization.
In Proc. of the 6th WSEAS International Conference on APPLIED
COMPUTER SCIENCE. (ACOS '07), pp. 500-506

0

1 0

2 0

3 0

4 0

5 0

6 0

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

S co re

%V
er

si
on

s

① ②
③ ④
D i c h o t o m y

Fig. 5 effectiveness of different TBFL tool

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score

%
V
e
r
s
i
o
n
s

Execution(T')
Dynamic(T')

0.6

0.7

0.8

0.9

1

Execution Dynamic

Sc
or

e

T T'

(a) Execution vs. Dynamic (b) T vs. T'

Fig.4 effectiveness of test suite reduction in dichotomy method.

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007 99

[12] H. Agrawal, J.R. Horgan, E.W. Krauser, Incremental regression testing.
Proceeding of the Conference on Software Maintaiance, 1993,pp.299-308.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the
effectiveness of dataflow and control flow-based test adequacy criterions. In
Proc. of the 16th Int’l. Conf. on software. Eng., pp. 191-200, May 1994.

[14] H. Agrawal, R. A. DeMillo, and E. H. Spafford, Dubugging with Dynamic
Slicing and Backtracking, Software-Practice & Experience, 23(6):589-616,
June, 1996

[15] B. Baudry, F. Fleurey, and Y. Le Traon. Improving Test Suites for Efficient
Fault Localization. In Proc. of International Conference on Software
Engineering, (ICSE '06), May 2006, pp. 82-91

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007 100

