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   Abstract—Malaria is transmitted to the person by the biting of 
infectious Anopheles mosquitoes. This infectious disease caused by 
the parasite genus Plasmodium. Four species of this parasite cause 
human malaria, namely, Plasmodium vivax, Plasmodium falciparum, 
Plasmodium ovale and Plasmodium malariae. The difference 
between P.vivax and P. falciparum is that a person suffering from P. 
vivax infection can suffer relapses of the disease. This is due the 
parasite being able to remain dormant in the liver of the cases where 
it is able to re-infect the case after a passage of time. During this 
stage, the case is classified as being in the dormant class. The model 
to describe the transmission between falciparum and vivax malaria 
consists of a human population divided into four classes, the 
susceptible, the infectious, the dormant and the recovered classes. 
The vector population is separated into two classes, the susceptible 
and infectious classes. We analyze our model by using standard 
dynamic modeling method. Two stable equilibrium states, a disease 
free state E0 and an endemic state E1, are found to be possible.  It is 
found that the E0 state is stable when a basic reproductive number R0 
is less than one.  If R0 is greater than one, the endemic state E1 is 
stable. The conditions for the local stability of each equilibrium state  
are established. The numerical simulations are shown to confirm the 
results. 
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I. INTRODUCTION 
ALARIA (bad air) is recorded in writing from ancient 
times. References to the fever, the well-known warning 
sign of malaria, are made in papyri of ancient Egypt 

[1]. The malaria disease is caused by the parasite of the genus 
Plasmodium Malaria parasite can be found in birds, mammals 
and lizards. There are four types of malaria parasites: 
Plasmodium falciparum, Plasmodium vivax, Plasmodium 
malariae and Plasmodium ovale. There are more than 3 
hundred million cases of malaria per year; with between 1 and 
1.5 million deaths annually (mostly in children) [2]. Malaria is 
a major public health problem in Thailand. It has not been 
eradicated for many reasons. First, Thailand has the physical 
features of the land that is suitable for mosquitoes’ to breed in. 

Parts of the population are also at a higher risk, for example 
the migrant worker and people who work in the forest. 
Finally, malaria is developing resistance to the malaria drugs.  
Malaria in Thailand is found along the border with Burma, 
Cambodia, and Malaysia [3,4]. The infection arising from 
Plasmodium falciparum, Plasmodium vivax and Plasmodium 
malariae were found to be 50-60%; 40-50% and less than 1%, 
respectively. Plasmodium ovale is not found in Thailand. 
Plasmodium vivax malaria has become a gargantuan problem. 
In 1994, 45,123 from 109,321 cases of malaria reported in 
Thailand were due to Plasmodium vivax [5].  Malaria is still 
transmitted in the jungle areas of many provinces, such as 
Chiang Rai, Lampoon, Petchaboon, Tak, Kanchanaburi, Yala 
and Chantaburi [5]. The malarial parasite has a complicated 
double life cycle: a sexual reproductive cycle while it lives in 
the mosquito and an asexual reproductive cycle while in the 
human host. While it was in its asexual, free-swimming stage, 
when it is known as a sporozoite, the malarial parasite is 
injected into the human bloodstream by a mosquito, passing 
through the skin along with the latter's saliva. The sporozoite 
eventually enters a red blood cell of its human host, where it 
goes through ring-shaped and amoeba-like forms before 
fissioning (dividing) into smaller forms called merozoites. The 
red blood cell containing these merozoites then ruptures, 
releases them into the bloodstream (and also causes the chills 
and fever that are typical symptoms of the disease). The 
merozoites can then infect other red blood cells and their 
cycles of development are repeated. The World Health 
Organization estimates that there are over one million child 
deaths per year in sub-Saharan Africa and there are 300-500 
million cases of malaria per year.  More than two billion 
people or total 41% of the world’s population throughout the 
world (e.g., part of Africa, Asia, the Middle East, Central and 
South America, Hispania and Oceania) live in areas where 
malaria is transmitted regularly and there are approximately 
1.5-2.7 million people who die from malaria each year [6]. 
 The progression of Plasmodium vivax malaria differs from 
Plasmodium falciparum in that a patient can breathe his last 
breath if he has Plasmodium falciparum malaria but will not 
pass away from Plasmodium vivax infection. A person who 
suffers from Plasmodium falciparum will recover from his 
bad health (if he does not die). An ill patient with a 
Plasmodium vivax infection will not die but will suffer 
relapses. As a consequence, the mathematical model of 
Plasmodium vivax malaria is different from that of 
Plasmodium falciparum [7]. The transmission of malaria is 
usually described by the Ross-MacDonald (RM) model [7]. 
Nevertheless, this model is only suitable for the transmission 
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of the P. falciparum malaria because it does not contain the 
possibility of relapses of the illness.  
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Fig 1.  Situation of Malaria in Thailand classified  
            by species of Plasmodium. 
 
          The data of Malaria in Thailand during 1965 to 2007 
are shown in figure 1. We will see that the most cases of 
Malaria are due to P.falciparum and P.vivax. The authors (PP 
& IMT) have presented the transmission model of P.vivax 
malaria but we did not consider the effect of P.falciparum 
malaria [8]. 

      The model for the transmission of Malaria is considered 
again. In this study, we consider the transmission of two 
species: P.falciparum and P.vivax. We introduce in Section 2, 
the modification of the model which would make it applicable 
to the transmission of P.falciparum and P.vivax malaria. In 
Section 3, we analyze our model to find the conditions for the 
local stability of each equilibrium state. The numerical 
simulations confirm the local stability of each equilibrium 
state.  

II. TRANSMISSION MODEL 
   To study the transmission between two species:  

P.falciparum and P.vivax. The population is separated into 
human and vector classes. Human population is subdivided 
into susceptible, infectious, dormant and recovered subclasses. 
The vector population is subdivided into susceptible and 
infectious subclasses. The variables are defined as follows: 

(t)Sh  is the number of susceptible human, 

(t)Ih   is the number of infectious human, 

(t)Dh   is the number of dormant human, 

(t)R h   is the number of recovered human, 

(t)Sv  is the number of susceptible vector, 
(t)Iv  is the number of infectious vector. 

An infectious human can recover and re-enter the susceptible 
class. Only the recovered humans who were infected with P. 
vivax are susceptible to further infections. However, an 
infected mosquito cannot recover. In Figure 2, we show a 
flow chart describing what is occurring in the human 
population and vector populations. λNT is the number of Thais 
entering the susceptible class through birth and and 

 as, respectively, the numbers of infected human 

who were infected with P. falciparum or P. vivax malaria but 
have recovered. The rate at which susceptible human are lost 
by becoming infected with P. falciparum is 

 and by becoming infected with P. vivax 

is . A susceptible human will be infected 

by the P. falciparum (P. vivax) parasite if bitten by a mosquito 
carrying the particular parasite. To take this into account, the 

infection rates, and should be proportional to 

the fraction of the infected mosquitoes with the particular type 
of parasite. Additional increases in the number of people 
infected with P. vivax malaria occur when the members of the 
dormant class relapse. 
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Fig.2  Flow chart of the model.    
         2a) For the human population    
         2b) For the vector population. 
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         The rate of change of the number of susceptible 
members is equal to the number entering minus the number 
leaving. This gives us the following differential equation for 
the rate of change of the susceptible human population:  
         

(t)Rr(t)Dr(t))Ir(r                   

(t)S (t))Iγ(γ-(t)Sμ-(t)Ir λN(t)S
dt
d

hv4hv3hv1F1

hv
'

hvh
'

hFhhhhv1hh

++++

+α−=
(1) 

 
   For the other population classes, we obtain 

(t)Dr(t))Ir(r-(t)I-               

(t))Ir(r-(t)S (t))Iγ(γ(t)I
dt
d

hv2hv5F5hh

hv1F1hv
'

hvh
'

hFhh

++μ

++=
   (2)          

(t))Dr(r-(t)Ir (t)D
dt
d

hhv3v2hv1h μ++α=           (3) 

(t))R(r-(t))Ir(r(t)R
dt
d

hhv4hv5F5h μ++=           (4) 

(t)(t)S)Iγ(γ(t)SμA(t)S
dt
d

vh
'

vhv
'

Fhvvvv +−−=  (5)    

(t)Iμ(t)(t)S)Iγ(γ(t)I
dt
d

vvvh
'

vhv
'

Fhvv −+=         (6) 

with the conditions  

hhhhh RDISN +++=  and                (7) vvv ISN +=

where  

μh is the death rate of  human population,  
'

hFhγ and   are the rates at which the P.falciparum(F) 

and P.vivax (V) parasites are transmitted from the mosquito to 
the human 

'
hvhγ

  and are the rates at which the 

P.falciparum(F) and P.vivax (V) parasites are transmitted 
from the human to the mosquito  

'
Fhvγ

'
vhvγ

λ   is the birth rate of human population,  
Nh  is the total number of human population,   
Nv  is the total number of vector population,   
α is the ratio of infected human in whom some hypnozoites 
remain dormant in the liver,  

F1r is the rate at which a person who infected with 

P.falciparum  leaves the infected class, 

v1r is the rate at which a person who infected with P.Vivax 

leaves the infected class, 

v2r  is the rate at which the dormant human relapses back to 

the infected human due to P.Vivax, 

v3r   is the recovery rate of the dormant human due to 

P.Vivax, 

v4r   is the rate at which the recovered human due to P.Vivax 

relapses back to the susceptible human, and 

F5r is the rate at which the infected human due to 

P.Falciparum recovers,  

v5r is the rate at which the infected human due to P.Vivax 

recovers,  
       The total human and vector populations are constant, thus 
the rate of change for both populations equal to zero. Then  

                 0N
dt
d

h  and          =          0N
dt
d

v       (8) =         

From (8), we obtain hμλ =  for human population and 

v
V

AN
μ

=  for vect ation. 

We normalize equations (1)-(6) by letting 

or popul

hN
hS

sh = , 
hN
hI
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hN
hD

dh = , 

hN
hR

rh = ,
)(A/

vS
s

v
v μ

= , 
)(A/

vI
i

v
v μ

=  

then the reduced equations become  

(t)))d(t)i(t)(s(1r(t)dr (t))ir(r              

(t)s (t))iγ
dt
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(9)
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d
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dt v
d

vvh
vhv
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with the conditions   

        and   1is vv =+1rdis hh =hh +++                

and         

⎟⎟
⎠

⎞
⎜⎜
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′
vhvh
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                         (13) 

III. ANALYSIS OF THE MODEL 

A. Analytical  Results  
Finding equilibrium states by setting the right hand side of 

all equations (9)-(12) equal to zero, and then we obtain two 
equilibrium states: 

=
hFhγ

h
'

vhv
vhvh

'
Fhv

Fhv Nγγ,Nγγ ==
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(20) 
cal stability for each equilibrium state can be 

etermined by the sign of all eigenvalues. If all eigenvalues 
at equilibrium state is local 

ty. The eigenvalues for each equilibrium state are 
calculated by setting           
                                                                     (21) 
where     is   the Jacobian matrix of the right hand side o
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The lo
d
have negative real part, then th
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These four eigenvalues have negative real part if they 
satisfy the Routh-Hurwitz criteria [9-12] :                                      
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From our evaluations, we have found that  coefficients 

and  satisfy (31), (32), (33) and (34) when  

     Thus, the endemic equilibrium state is local stability for 
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Fig. 3. Time series of susceptible human, infectious human, 
dormant human and infectious vector proportions. The values 
of parameters are in the text and =0.5 
 
 

0R

 

 

 

 
Fig.4. Time series of susceptible human, infectious human, 
dormant human and infectious vector proportions. The values 
of parameters are in the text and =10.96. 
Fig.3 and fig.4 show time development of human and vector 
classes. Fig.3 shows numerical solutions for < 1. Fig.4 
shows numerical solutions for > 1. The sol ons converge 
to the disease free equilibrium state as shown in fig. 3. Fig. 4, 
the solutions oscillate to the endemic equilibrium state 
(0.0981393,0.0101401,0.113396,0.0706756). 

 

IV. DISCUSSION AND CONCLUSION 
We formulate the transmission model of Malaria by 

considering the effect of two species: Plasmodium 
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Fig.5. Bifurcation diagrams of equations (9)-(12), demonstrate 
the equilibrium solutions of susceptible, infectious, dormant 
human and infectious vector populations, respectively. — 
represents the stable solutions and  ---  represents the unstable 
solutions. For < 1,  will be stable. For > 1,    
will be stable. 

0R 0E 0R 1E

 
    The basic reproductive number for the endemic equilibrium 
state will prevail if and only if the basic reproductive number 
exceeds one. The disease free equilibrium state exists and is 
local stability if the basic reproductive number is less than one 
and become unstable when the basic reproductive number is 
more than one. The numerical simulations are used to confirm 
results in the previous section. The behavior of solutions can 
be described in terms of the basic reproductive number; if this 
number is less than or equal to one, therefore an infective 
replace itself with less than one new infective, the disease die 
out. Furthermore, the susceptible fraction approaches one 
since everyone is susceptible when the disease has vanished. 
If the basic reproductive number is greater than one, the 
normalized susceptible human decreases. The normalized 
infectious human, dormant human populations increase. These 
subsequent behaviors occur because there are enough 
susceptible human to be infected from infectious vector.  
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