
 

 

  

Abstract— In this paper it is considered an electric drive with 

static torque with constant component and speed proportional 

component. Using the classic calculus of variations is determined the 

extremal control and trajectory and the overheating that ensures 

maximum exploitation of the system resources represented by the 

achievement of a maximum variation of speed in the acceleration 

processes 

 

Keywords— analytic and numerical model, extremal trajectory, 

extremal control, optimal control, overheating 

I. INTRODUCTION 

N the case of electric drives working in continuous duty type, 

it is necessary to perform the start-up process and in the case 

of those electric drives working in continuous duty type with 

periodical change of speed, it is necessary to perform changes 

of speed.  

To estimate the heating process at the drive system 

acceleration, as performance number can be adopted the 

maximum exploitation of the system resources. Using the 

classic calculus of variations can be solved this optimization 

problem. 

II. PROBLEM FORMULATION 

Considered an electric drive with static torque with constant 

component, speed and square speed proportional component 

[1], [2], [3] 
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0 1 2sM = M  + k ω + k ω  

    or                                                                   (1)      

   
2

0 1 2sF = F  + k v + k v .                    

Neglecting the electromagnetic inertia in respect of the 

mechanics inertia, supposing a constant inertia moment, the 

electric drive will be described by the general movement 

equation 

 s s

dω dv
M = M + J , or F = F + J

dt dt
                (2)           

and by the dependence between speed and acceleration. 

   ω = ωdt∫ &   or  v = vdt∫ & .                   (3) 

To expand the interpretations and the conclusions, with and 

for the restraint of the value intervals, will be introduced 

relative coordinates. In this sense, considering as a reference 

for time the mechanical constant of time 

 N

N

Jω
T =

M
                                                                    (4) 

and for electricity, couple and speed, their nominal values will 

be obtained the relative values 

   

N N N N N

s 0 0
0

N N N N

2 2
1 N 1 N 2 N 2 N

N N N N

s

t i M F ω v
, , , ,

T I M F ω v

M F M F
, ,

M F M F

k ω k v k ω k v
,

M F M F
1 2

s

µ

µ µ

i ν

k k

τ = = = = = =

= = = =

= = = =

   (5)  

and for relative acceleration there will be the relation 

     
N N

v

/ T v / T
ν

ω
= =

ω

& &
& .              (6) 

 In the hypothesis of proportionality between the 

electromagnetic couple and the burden power, the equations 

(1), (2) and (3) in the relative coordinates it becomes [18] 

,

= + +

+ + = ∫ &

2
0 1 2

0 1 2

sµ µ k ν k ν

µ k k = 0 ν νdτ
                              (7) 
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 = = + = + + +& &
2

0 1 2si µ µ ν µ k ν k ν ν,                    (8) 

with the initial and fixed conditions 

 ( ) ( )1 1 1 2 2 2τ τ , ν τ ν , τ τ , ν τ ν .= = = =                   (9) 

The multitude of the conclusions admitted and the multitude of 

the trajectories that will be admitted will be considered 

marginal and open multitudes. If from electromechanical point 

of view, the drive is described by the general movement 

equation (7) and by the dependence between acceleration and 

speed given by (8), then from heating point of view, 

considering that the driving motor is a homogenous object and 

all the motor points have the same temperature in the same 

time, based on the infinitesimal heat balance results 

 Qd θ+qθ d t = ∆P d t ,                                (10) 

where θ  is the motor heating with respect to the temperature 

of the environment, Q is the quantity of heat necessary to rise 

with one degree the drive temperature, q is the quantity of heat 

yielded to the environment in time unit and at a temperature 

difference of one degree and ∆P  is the motor power loss 

which is transformed in heat.  

The differential equation of the driving motor heating is 

 θT dθ / dt + θ = ∆P / q ,                                  (11) 

where by Tθ  (heating time constant) it is noted the ratio /Q q . 

Taking into account only the heat determined by the load 

current through Joule effect and relating the equation with the 

nominal heating / Nθ θ ϑ= , and the time with the time 

mechanics constant  

 
2

2

/ /

/ /

∆
= =

∆ N N

P q Ri q

P q RI q

2i ,            (12) 

the differential equation in relatives coordinates becomes 

  T

T

θ 2+ =
d

i
d

ϑ
ϑ

τ
.                                    (13) 

 It is noted with m the ratio between the time mechanics 

constant that takes values of seconds or seconds fractions size 

and the heating constant that takes values of tenth of minutes 

size and taking into account the equation (7), the heating 

differential equation becomes 

  
2 2

0 1 2/ ( )+ = + + +& &m k kϑ ϑ µ ν ν ν .          (14) 

 The set of accepted controls and trajectories are considered 

as open and bounded sets. To use the driving motor at its 

whole capacity, the set of heating trajectories is considered as 

close and bounded set, that means will exists the heating upper 

restriction  

  
m ax 1≤ ≤ϑ ϑ .                                            (15) 

III. THE OPTIMIZATION CRITERION 

To estimate the drive system working, a maximum 

exploitation criterion of the system resources can be adopted. 

This criterion is represented by the achievement of a maximum 

variation of speed and is expressed by the integral 

( ) 2

1
2 1J ν τ d

τ
ν ν ν ν ττ  = ∆ = − =  ∫ & .                     (16) 

IV. FORMULATION OF OPTIMIZATION PROBLEM 

The optimization problem consists in determining the 

admitted optimal control i*
(τ) or µ *

(τ), that assures the system 

evolution from the initial conditions (τ1,ν(τ1), ( )1ϑ τ ) to final 

conditions (τ2,ν(τ2), ( )2ϑ τ ), on an admitted trajectories 

represented by the speed extremal ν*
(τ) and by the motor 

overheating extremal ( )*ϑ τ , so that is obtained the 

maximizing of the speed variation that is the maximizing of the 

criterion functional 

 ( ) 2

1
2 1= ∆ = − =   ∫ &J ν τ d

τ
τ

ν ν ν ν τ =max.     (17) 

for a given value of the time interval expressed by  

 2

1
2 1 1− = ∫ d

τ
τ

τ τ τ ,                               (18) 

satisfying the differential link (14), the initial and final 

conditions and the temperature restriction (15). To solve the 

isometric extreme problem it is necessary to reduce it to an 

unconditional extreme problem, by determining Lagrange 

auxiliary function with the help of Lagrange multiplier ( )λ τ  

  2 2
0 1 2( ) / ( ) = + + − + + + 

&& &L m k kν λ τ ϑ ϑ µ ν ν ν ,    (19) 

and determining the unconditional extreme with the following 

functional  [17] 

   
( ) ( )

( ) ( ) ( )

,

, ,
2

1

τ

τ

J ν τ

L dτ m in .

ϑ τ

ϑ τ ϑ τ ν τ

=  

 = = ∫ & &

    (20) 

V. THE EXTREME CONDITION 

The low extreme necessary condition is expressed by Euler-

Lagrange equation [17], [18] 

  
∂ ∂

− =
∂ ∂ &

L d L
0

dϑ τ ϑ
                                   (21) 

where, having 

  ∂
=

∂
L

λ
ϑ

,  1∂
=

∂ &

L

m
λ

ϑ
 and 1∂

=
∂

&
&

d L

d m
λ

τ ϑ
,          (22) 

results the homogeneous differential equation in λ  
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  0− =& mλ λ ,                                                (23) 

and from Euler-Lagrange equation for the function ν  [4], [5] 

  L d L
0

dν τ ν
∂ ∂

− =
∂ ∂ &

.                                      (24) 

Where 

( )( )2
0 1 2 1 22 2

∂
= − + + + +

∂
&

L
k k k kλ µ ν ν ν ν

ν
 

 ( )2
0 1 21 2

∂
= − + + +

∂
&

&

L
k kλ µ ν ν ν

ν
                (25) 

  ( )
( )

2
0 1 2

1 2

2

2 2

∂
= − + + −

∂
− + +

&

&

& & &&&

d L
k k

d

k k v

λ µ ν ν
τ ν

λ ν νν ν

 

results the linear differential equation of the second order 

  
( ) ( )
( )( )

2
1 2 0 1 2

2
0 1 2 1 2

2

2 .

k k k k

k k k k 0

λ ν νν ν λ µ ν ν ν

λ µ ν ν ν ν

+ + + + + + −

+ + + + =

&& & && &

&

      (26) 

VI. OPTIMAL SOLUTION FOR CONSTANT STATIC TORQUE IN 

THE CONDITIONAL EXTREME CASS, WITH HEATING EMPHASIS 

Considering the transportation equipment loaded, that is 

with a constant static torque, by particularizing   

20, 0, ,≠ = = =0 1 0sµ 0 , k k µ µ       (27) 

the extreme condition expressed by Euler-Lagrange equation 

(24), where having 

( )∂ ∂
 = = + = ∂ ∂

&
&

0

L d L d
0 , 2 λ µ ν 0

ν dτ ν dτ     (28) 

results the differential equation  

( ) 1+ =&
0λ µ ν C  .                (29) 

By integrating the differential equation in λ (23) and taking 

into account the characteristic attached equation 

r - m = 0, r = m.               (30) 

Lagrange multiplier is determined 

( ) 2
mτλ τ = C e .                (31) 

Based on the equation (29) and taking into account the 

movement general equation (8) and Lagrange multiplier 

expression  (31) the time current (torque) evolution is 

obtained 

-1

2

mC
i = µ = e

C

τ
  .                       (32) 

Considering the current initial condition, the arbitrary 

constant is determined 

( ) ( ) 1
1 1

2

C
τ = 0, i τ = i 0 =

C
,              (33) 

and the current (torque) optimal equation becomes 

( ) ( ) ( )∗ ∗ −= = + =&0
mi τ µ τ µ ν i 0 e τ

  .               (34) 

Expressing the acceleration from the current expression 

 

( ) ( ) −= −&
0

mν τ i 0 e µτ
              (35) 

and by integrating, the speed extremal is resulted  

( ) -
0 3

mi 0
ν = - e - µ τ +C

m

τ
 .           (36) 

The initial condition for speed allows determining the 

integrating constant 

( ) ( )

( )
3

3 ,

= = − + =

⇒ = +

1 1 1

1

i 0
τ 0, ν 0 ν , C ν

m
i 0

C ν
m

         (37) 

the speed extremal having the expression 

( ) ( ) ( )∗ −= − − +0 1
mi 0

ν τ 1 e µ τ ν
m

τ
 .           (38) 

From the equation: 

( ) − − =0
mi 0 e µ 0 ,τ

               (39) 

can be calculated the critical time 

( )
,cr

0

i 0
m τ = ln

µ
                    (40) 

for which the acceleration is canceled and the speed has the 

maximum value.   

Considering again the heating differential equation (14) and 

allowance the optimal current expression (34) 

( )& 2 2 -2m
0+ m = mi = mi e τϑ ϑ            (41) 

a differential equation is obtained, such as 

( ) ( )&y + P x y = Q x                 (42) 

with a general solution 

 
  

∫ ∫∫
- xPdx Pd

y = e Qe dx +C .           (43) 

Having 

∫ ∫Pdx = m dτ = mτ               (44) 

and  
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( )
( )

=

∫
∫

∫
2 -

2 -2

Pdx
m

m m
Qe dx =

= -i 0 e
mi 0 e e dτ

τ
τ τ    (45)  

the general solution of the temperature differential equation 

(41) is 

( )
( )

− −

− −

 = − + = 
= − +

2

2 2

m m

m m

e i 0 e C

i 0 e C e

τ τ

τ τ

ϑ
          (46) 

and by determining the integrating constant from the initial 

condition 

( ) ( )
( )⇒

2

1 1 1

2

1

0 0 0 Cτ = , = , - i + = ,

C = i 0 +

ϑ ϑ ϑ
ϑ

     (47) 

the time evolution of the over optimal temperature becomes 

(fig.1) 

( ) ( )( )∗ − − −= − +2 2
1

m m mτ i 0 e e eτ τ τϑ ϑ .      (48) 

For an exponential evolution of the current (34), the over 

temperature expression has a maximum. The maximum 

condition of the over temperature is given by the equation 

resulted by canceling the over temperature derivate 

( )( )2 −− + − =m
1

τi 0 1 2e 0ϑ            (49) 

from which can be obtained the critic time value for which 

results this maximum  

( )
( )

 
  
 

1
cr 2

1
2

2
m = ln = ln2 - ln 1+

i 0
1+

i 0

τ
ϑ

ϑ
.    (50) 

For a final time smaller than the critical time τ2 ≤ τcr the over 

temperature ( )ϑ τ  increases, having its maximum value at the 

end of the interval [0, τ2], and the maximum speed variation 

can be obtained on the extremal trajectory  ( )ν τ  and ( )*ϑ τ  

under the optimal control action ( ) ( )* *i τ = µ τ . The over 

temperature restriction 1ϑ ≤  marked the end of the domain 

on which the extremal is defined. For using the driving motor 

at its entire capacity under thermal aspect, the equality sign 

from the restriction 1ϑ ≤  is imposed to be obtained in the 

point of the final moment  τ = τ2, that is 

( ) ( )( )- -2 -2 2 2 2
1 1

m m m= i 0 e - e + e = 1τ τ ττϑ ϑ        (51) 

from where can be calculated the initial value of the optimum 

current (fig.2) 

( )
−

− −

−
=

−

2
1

22 2

m

m m
1 e

i 0
e e

τ

τ τ
ϑ

.            (52) 

This initial current value is than replaced in all the relations 

previous obtained.   

The existence of the initial over temperature 1ϑ  has as a 

result the decreasing of the critical time (50) and of the initial 

value of the current (52). 

For the case in which the final time overtakes the critical 

time τ2 >τcr, the maximum of the over temperature is touched 

inside the interval [0, τ2], and the extreme of the functional, 

that is the speed maximum variation is obtained on the 

trajectory made from the extremal ( )ϑ τ  for ∈  cr,0τ τ  and 

from the boundary of the domain  1ϑ =  for  ∈  cr 2,τ τ τ . 

VII. OPTIMAL SOLUTION FOR CONSTANT  STATIC TORQUE IN 

THE UNCONDITIONAL EXTREME 

Another modality of solving the optimization problem 

consists in building such of expression of the optimization 

Fig. 1 Time over temperature evolution for different 

values of the initial current and ϑ =1 0  

Fig. 2 Optimal evolution of the current  

  and temperature  ( 1ϑ =0, τ2 > τcr) 
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criterion so that involves, from the beginning, un unconditional 

extreme. In this way, following further the maximization of the 

speed variation, the acceleration is explained from the 

equation (14) 

0

1
ν = + - µ

m
ϑ ϑ&&                (53)  

and it is replaced in the optimization criterion (17), having as a 

result the expression 

.

2

2 1

1

1
2

2

0

1

τ

J = ν - ν ν dτ =
τ

τ
1

= + - µ dτ = max
mτ

ϑ ϑ

=

 
  
     

∫

∫

&

&

            (54)  

having 

 
 
 

&

1

2

0

1
F = + - µ

m
ϑ ϑ .           (55)            (54)

The necessary condition of low relative extreme, expressed 

by Euler equation 

F d F
0

dτϑ ϑ
∂ ∂

− =
∂ ∂ &

           (56) 

in which 

,

,

−

−

−

∂  = + ∂  

∂  = + ∂  

∂    = − + +   ∂    

&

&
&

& &&
&

1

2

1

2

3

2

F 1 1

2 m

F 1 1

2m m

d F 1 1 1

d 4m m mτ

ϑ ϑ
ϑ

ϑ ϑ
ϑ

ϑ ϑ ϑ ϑ
ϑ

           (57) 

becomes a differential linear equation of second range, with 

constant coefficients and homogeneous. 

 
 
 

&& &

& &

3

1
+

1 1 1 m+ = 0
2 4m1 1+ +m m

ϑ ϑ

ϑ ϑ ϑ ϑ

 

or            (58) 

2+3m + 2m = 0 .ϑ ϑ ϑ&& &   

Based on the characteristic attached equation 

2 2r + 3mr + 2m = 0            (59) 

with the solutions 

1 2r = -m, r = -2m            (60) 

the general solution, that is the family of trajectories for the 

over temperature, is as 

ϑ - -2

1 2

m m
C C

τ τ= e + e .             (61) 

Using the initial condition for over temperature = 01τ  

( ) 1 1 2 1 1 2 10 = ,C +C = , C = -C +ϑ ϑ ϑ ϑ⇒&               (62) 

the over temperature can be written as: 

( )- -2 -
2 1

m m m= -C e - e + eτ τ τϑ ϑ .              (63)  

By derivation the over temperature and by replacing in the 

equation (14) is obtained the following equation 

( ) ( )
( ) ,&

- -2 - -m -2m

2 1 2

2-m

1 0

m m m τ τ

τ

τ τ τC e - 2 e - e - C e - e +

+ e = µ +ν

ϑ

ϑ
    (64) 

or, the equation  

( )& 22 -2m

0 2

τi = µ +ν = -C e                  (65) 

considering the general movement equation (8). 

Determining the integration constant value from the initial 

condition for current 

( )2
1 2= 0, i 0 = -Cτ = τ              (66) 

the optimal control value will be 

( ) ( ) ( )* * -m
0

τi τ = µ τ = µ +ν = i 0 e&             (67) 

and from this can be distinguished the acceleration 

respectively the dynamic torque 

( ) ( ) ( )&
* * -m

0 0

τ
0ν τ = µ τ = i e - µ .             (68) 

By integrating the acceleration is determined the speed 

( ) ( )
  

∫

∫

&

-m -m

0 0 3

0τ τ
0 C

ν = ν dτ =

i
= i e - µ dτ = e - µ +

m
τ

  (69) 

and based on the initial condition, the integration constant 

value is obtained  

( )
( ) ( )

1 1

3 1 3 1

= 0, ν 0 = ν ,

i 0 i 0
- +C = ν , C = +ν

m m

τ = τ

⇒
             (70) 

having as a result the following expression for speed: 

( ) ( ) ( ) .* -m
0 1

i 0 τν τ = 1- e - µ + ν
m

τ             (71) 
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Being determined the constant value C2, the extremal over 

temperature trajectory becomes 

( ) ( )( ) .* 2 -m -2m -mτ

1

τ τ
0τ = i e - e +θ eϑ             (72)  

As a conclusion, the results obtained in this way are 

similarly with the previous obtained results, those from the 

conditional extreme case. 

VIII. THE EXTREME NATURE 

To analyzed the extreme nature, Legendre condition is 

determined 

2

2
,

∂  
= − + < ∂  

&
2

F 1 1
0

m4m
ϑ ϑ

ϑ
          (73) 

having as a result that the realized extreme is a maximum. 

IX. THE OPTIMAL SOLUTION FOR  STATIC TORQUE  WIT 

CONSTANT COMPONENT AND SPEED PROPORTIONAL 

COMPONENT 

Considering electric drive loaded with static constant 

component and a component proportional to speed, making 

customizations 

1kµ0,k0,k0,µ 10210 =+=≠≠     (74) 

static torque becoms 

.= +0 1sµ µ k ν                 (75) 

The extreme necessary condition expressed by the 

differential equation (25) becomes 

( ) ( )
( )

1 0 1

1 0 1 0 .

k k

k k

λ ν ν λ µ ν ν

λ µ ν ν

+ + + + −

− + + =

&& && &

&

             (76) 

The characteristic equation attached to the differential 

equation (21) [17] 

0− =r m , =r m                                                      (77) 

has the general solution 

0= mC e τλ .                                                (78) 

Replacing λ  and its derivative in the differential equation 

(24), it is obtained 

  
( ) ( )

( )
0 1 0 0 1

1 0 0 1 0

+ + + + −

+ + =

& && &

&

m m

m

C e k mC e k

k C e k

τ τ

τ

ν ν µ ν ν

µ ν ν
      (79) 

and then the differential equation for speed 

( ) ( )mkmkkm −=−−+ 1011 µννν &&& .                     (80) 

Having the particular solution of the heterogeneous 

differential equation 

2
1 1( ) 0+ − − =r m r k k m                        (81) 

with   

  mkr −= 11 ,  12 kr −=                 (82) 

with the general solution of the homogeneous differential 

equation 

           
( ) ττν 11

21
kmk

g eCeC
−− +=                                 

will results the general solution of the heterogeneous 

differential equation, that is the speed trajectories family 

  ( ) ττµ
ν 11

21
1

0 kmk
eCeC

k

−− ++−= .                      (83) 

Using the speed initial condition  

01 =τ , ( ) 10 νν = ,  ν
µ

=++− 21
1

0 CC
k

 .                   (84) 

Obtained 

11
1

0
2 ν

µ
+−= C

k
C                                        (85) 

the speed trajectories are 

( ) ( )( )0 11 1 1
1 1

1

1
k mk k ke C e e e

k

τ τ τµ
ν ν−− − −= − − + − + .     (86) 

The acceleration is determined by speed differentiation 

     ( ) ( )11 1 1
0 1 1 1 1 1 .

k mk k k
e C k m e k e k e

ττ τ τν µ ν−− − − = − + − + −  
&   (87) 

Corresponding to the movement general equation, the current 

(the torque) is 

   

( ) ( )( )
( ) ( )

( ) ( )

11 1

11 1

11 1

0 0 1 1

1 1 1 1 1

0 1 1 1 1

1

2 .

k mk k

k mk k

k mk k

i e k C e e

k e C k m e k e

e k e C k m e

ττ τ

ττ τ

ττ τ

µ µ µ

ν

µ ν

−− −

−− −

−− −

= = − − + −

 + + − + −  

− − = −

         (88) 

Considering the current initial condition 01 =τ , 

( ) ( )10 2i C k m= − .              (89) 

To obtain 

( )
mk

i
C

−
=

1
1

2

0
,                    (90) 

The optimal current (torque) has the exponential expression 

(fig.3) 

  ( ) ( ) ( ) ( )10
k m* *i i eτ µ τ τ−= = .                   (91) 

The arbitrary constant C1 being determined, extremals for 

speed and acceleration will by (fig.3) 
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( ) ( ) ( ) 
 
 

 
+  

 

1 1

1

- -*

1

-0 0
1

1 1

k m k
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Imposing the condition like the speed has the value 2ν  at 

the end of the acceleration interval  
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it can be determined the initial value of the acceleration 

current    
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that assures the requested speed variation. 

The performance number that is the maximum speed 

variation has the value 
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The heating differential equation (41), for K2= 0, taking 

into account the movement general equation and the optimal 

current expression (4), can be written as 

  ( ) ( )22 1k m
m mi 0 e

τϑ ϑ −+ =&                        (97) 

being of type 

  ( )xQyPy 00 =+&                                            (98)  

with the general solution  
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Having 

 P0 = m,  0P dx md mτ τ= =∫ ∫ ,           (100) 
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he overheating will be 
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Using the overheating initial condition, it is determined the 

arbitrary constant 
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and the overheating extremal trajectory 
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This expression is consistent as time 1≤θ . The acceleration 

current (torque) for m >k1 (excepting the case m=2k1) is time 

decreasing (fig. 4 and fig.5), for m=k1 is constant (fig. 6), and 

for m<k1 (fig. 7) is time increasing.  

Initial values of the acceleration current ( )i 0  and of the 

acceleration ( )0ν& , that exceed the admissible values because 

of the big heating time constant, result by calculating the static 

current (torque) initial value from the final condition of 

heating ( )2 1ϑ τ = , at reduced values of the initial heating and 

specially at reduced values of the acceleration time interval. 

The speed exceeds the necessary values at the end of the 

Fig.3 Evolution speed, acceleration, temperature 

and current extremals 

(µ0=0.9,k1=0.1, ν1=0.2, 1ϑ =0.4,m=0.1) 
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acceleration interval. Such situations determine a bigger 

heating and power loss. 

For this reason, it is imposed to calculate the initial value of 

the acceleration current i(0) both from the final speed 

condition ( )2 2=ν τ ν  and  from the overheating final 

condition ( )2 1ϑ τ =  and to use the least value for the other 

expressions (current, acceleration, speed and overheating). 

X. PROCESSES MONITORED WITH THERMOGRAPHY  IN IR FOR 

HEATING CONSIDERATION 

Thermovision/thermography in infrared is a recent technique 

in the domain of modern methods of diagnosis in industry, and 

it offers high precision results which reduce the time to detect 

faults and which evaluate very precisely the state of 

equipments during work, without their stop or their removal 

and transportation to a diagnosis centre.  

In some industrial processes there are systems or parts of the 

process which don’t need to be permanently observed and 

diagnosed, but which regularly need a kind of inspection or 

analysis based on previous behavior within the process. 

Usually, when a problem appears at a part of a working 

system, it overheats. It emits more heat than before, in normal 

functioning conditions. There are equipments which are more 

resistant in time, but still have a point where they fail. This 

failure point can be predicted with a lot of time before the 

actual failure happens. For this kind of equipments or systems 

we thought up a system capable of extracting the useful data 

about it’s temperature in infrared, administrate it over a period 

of time which is not critical in case of fault appearance, and 

process it at a certain point, established from the beginning. 

The result would be whether there is a change compared to the 

previous check-up, and if there is, establish the cause for that, 

and of course, acting to stop the problem to appear. The 

logical scheme for the proposed system is in figure 8. 

Fig. 7 Eextremals in the case of acceleration 

(µ0=.9,k1=0.1,m=0.05,ν1=0.2,ν2=0.2,0<m<k1) 

Fig. 4 Speed, acceleration, temperature and current 

extremals in the case of acceleration (µ0=0.9, 

k1=0.1,m=0.15,ν1=0.2,ν1=0.2, k1<m<2k1) 

Fig. 5 Speed, acceleration, temperature and current 

extremals in the case of acceleration 

(µ0=0.9,  k1=0.1,m=0.25,ν1=0.2,ν1=0.2, m>2k1) 

Fig. 6 Speed, acceleration, temperature and current 

extremals in the case of acceleration (µ0=.9, 

k1=0.1,m=0.1,ν1=0.2,ν1=0.2,m=k1,) 
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In the power production, transport, distribution and use of 

electric energy installations, the unprogrammed stops may lead 

to significant increase of the exploitation costs. 

The collected data consists of a number of infrared images 

of our equipment, captured at a certain period of time 

(established by the inspector) with a simple thermovision 

(thermography in infrared) camera, which has no capacity to 

record the images or perform operations on them. If, for 

example, the camera is programmed to capture an image each 

second, there would be 86400 pictures per day. Collected data 

comes, also, from a simple environmental temperature sensor. 

Thermovision or thermography refers to a high performance, 

modern technique which allows real-time visualization and 

(depending of the type the camera is) generation of thermal 

maps (“thermal images”, thermographs) of the technical (of 

biological) systems under observation. All objects which have 

a temperature above 0
o
K (- 273,15

o
C) have a molecular 

movement, thus emit an energy we feel as temperature, which 

can only be seen in infrared specter. Thermography made it 

possible to “see” the distribution of temperature at the surface 

of the objects which are measured, and also measure it. These 

cameras measure the infrared radiation using specialized 

sensors which then convert it in order for us to see it as 

thermal images. Modern thermovision cameras are able to 

measure temperatures from -40°C and to +1500
o
C, and can 

identify temperature differences of up to 0,05
o
C.In the electric 

domain, not interfering is very important for measurements, 

monitoring and diagnosis of the equipments and processes, 

because it doesn’t emit harmful radiations, nor influences the 

temperature and material of the monitored components, and 

mainly because it needs no contact (useful for electric 

equipments under voltage, inaccessible installations, moving 

objects etc), can be used in hazardous environments, and most 

of all, there is no need to stop the process or to transport the 

equipments to a specialized lab. Even though there are so 

many advantages, quality cameras are expensive, images can 

be hard to interpret accurately, and the IR expert must always 

be prepared, and he only obtains a surface temperature, which, 

of course, is a consequence of an interior temperature. 

With the help of thermography in infrared, specialists can 

identify: problems related to the lubrication of the assemblies 

from rotative components (bearings, balls, axels, 

transmissions); problems related to aligning and equilibration 

of assemblies in movement; 

- overheating of the coilings due to overload of isolation 

problems. In the following pictures there are some 

examplesfor figure 9 and figure 10. 

 

 
a)  

           
b)  

Fig. 9: a) Overheating at an alternative current motor;b) 

Overheat at the bearing of the axel of a hydraulic pump; 

 

  

 

Fig. 10 Overheating at one of the motors at a pump assembly. 
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Fig. 8. The logic scheme of the portable system 
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XI. CONCLUSION 

The obtained results expressed throw the extremal control 

and trajectory can be used both in design and in optimal 

control of electric drive systems with static torque speed 

dependent working in continuous duty or in continuous duty 

with periodical change of speed. An increase of the quality and 

of the efficiency of those electric drive systems is obtained due 

to these results.  

The system thermography in infrared is very efficient when 

used for non real-time observation. It is, indeed, a little 

expensive, but the cost of problems it prevents or stops from 

happening would exceed the cost of acquisition. 
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