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Abstract: We study two algorithms to decom-
pose a numerical semigroupS as intersection of ir-
reducible numerical semigroups. We also present a
compared study of two algorithms to compute the in-
tersection of two numerical semigroups with embed-
ding dimension two and the same multiplicity.

1 Introduction and basic concepts
Let N be the set of non negative integers. Anumer-
ical semigroupS is a subset ofN which contains the
zero, is closed under addition and generatesZ as a
group (hereZ denotes the set of the integers). From
this definition, we can deduce thatS admits a unique
minimal system of generators{s1 < · · · < sp}, mean-
ing thatS= {∑p

i=1aisi | a1, . . . ,ap ∈N} and no proper
subset of{s1, . . . ,sp} generatesS. The integerss1 and
p are known as themultiplicity andembedding di-
mensionof S. Moreover,N\Sis finite, and the largest
integer not belonging toS is known as theFrobenius
number of S, usually denoted by g(S).

Givens1 ∈ S\{0}, theApéry set(called so after
[1]) of S with respect tos1 is defined by Ap(S,s1) =
{s∈ S | s− s1 6∈ S} and it can be proved that if we
choosew(i) to be the least element inScongruent with
i modulos1, then Ap(S,s1) = {0,w(1), . . . ,w(n−1)}.
The set Ap(S,s1) determines completely the semi-
group S, since S = 〈Ap(S,s1) ∪ {s1}〉. Moreover,
Ap(S,s1) contains in general more information that an
arbitrary set of generators ofS; for instance, g(S) =
max(Ap(S,s1))−s1.

We say that a numerical semigroup isirreducible
if it can not be expressed as an intersection of two
numerical semigroups containing it properly. From
[2] and [3] we can deduce that the class of irre-
ducible numerical semigroups with odd (respectively
even) Frobenius number is the same that the class of
symmetric (respectivelypseudo-symmetric) numer-
ical semigroups. This kind of numerical semigroups
have been widely studied in literature not only from

the semigroupist point of view but also by their ap-
plications in Ring Theory. In [2] it is show that the
semigroup ring associated to an irreducible numerical
semigroup is Gorestein or Kunz if the Frobenius num-
ber is odd or even, respectively.

The contents of this work are organized as fol-
lows. In Section 2, we compare two different algo-
rithms to obtain a numerical semigroup as an intersec-
tion of irreducibles numerical semigroups. In Section
3, we present an algorithm to compute the intersec-
tion of two numerical semigroups with embedding di-
mension two and the same multiplicity, and we com-
pare the classical intersection algorithm with this one.
In both cases we study the complexity of these algo-
rithms.

2 Two algorithms for decomposition
of numerical semigroups as an in-
tersection of irreducibles

Let S be a numerical semigroup. We say that an el-
ementx ∈ Z is a pseudo-Frobenius numberof S if
x /∈Sbutx+s∈Sfor all s∈S\0. We denote by Pg(S)
the set of pseudo-Frobenius numbers ofS.

We define inS the following partial order:a≤S
b if b−a∈ S.

In [3, Proposition 7] is proved the following
result showing the connection between the pseudo-
Frobenius number and the Apéry set ofs1 in S.

Lemma 1 If S is a numerical semigroup, s1 ∈ S\
{0} and {wi1, . . . ,wit} = maximals≤SAp(S,s1), then
Pg(S) ={wi1 −s1, . . . ,wit −s1}.

Given a numerical semigroupS, denote by

H(S) = N\S

EH(S)= {x∈H(S) : 2x∈S,x+s∈S for all s∈S\{0}}.
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The set EH(S) is a subset of Pg(S) and thus
#EH(S) ≤ #PG(S) ≤ m(S)− 1. From definition of
EH(S), it easy to prove the next result, which de-
scribes those elements that added to a numerical semi-
group yield a numerical semigroup.

Proposition 2 Let S be a numerical semigroup and
x /∈ S. Then x∈ EH(S) if only if S∪{x} is a numerical
semigroup.

Every numerical semigroup containing properly
the numerical semigroupS must contain an element
of EH(S). Let EH(S) = {x1, . . . ,xk}, from an numeri-
cal semigroupSadding only an element of EH(S) we
get new numerical semigroupsS∪{x1}, . . . ,S∪{xk}.
Thus we can compute a finite family of numerical
semigroups that containS, denote it byV (S).

In [5] it is presented thatS is irreducible if and
only if S is maximal in the set of numerical semi-
groups not containing g(S). Then we get the following
result:

Corollary 3 A numerical semigroup S is irreducible
if and only if#EH(S) = 1.

The idea is the following one: fromSwe compute
the set EH(S) = {x1,x2, · · · ,xk}, and thus we obtain
the numerical semigroupsS∪{xi}; for eachS∪{xi}
we make the same. We stop when #EH(Si) = 1, and
thus we get all irreducible numerical semigroups that
containS.

Using the above results fromS we can compute
V (S) and thusS=

⋂
i Si , with Si ∈ V (S) andSi irre-

ducibles. If we remove the irreducibles that not mini-
mal, we have the following:

Proposition 4 Let S be a numerical semigroup. Then

S= S1∩ . . .∩Sn.

such that S1, . . . ,Sn are the minimal irreducible
elements inV (S).

Our objective is to compare two different ways
to obtain a semigroupSas intersection of irreducible
semigroups. This algorithm is presented in [8] and it
needs to construct the set EH(S). We start by describ-
ing two different algorithms to compute the set EH(S).
Suppose thatS= {0,s1,s2, . . . ,sr ,−→} is a semigroup
represented as a set starting at 0 and has all elements
of S until sr = g(S)+ 1. From the definition we can
easily see that the set EH(S) is finite.

Algorithm EH 1

INPUT: A semigroupS= {0,s1,s2, . . . ,sr ,−→}

1. Compute the setH(S) = N\S.

2. Compute the setD(S) = {x∈ H(S) : 2x∈ S}

3. Compute the set EH(S) by checking ifx+ s∈ S
for all x∈ D(S) ands∈ S.

OUTPUT: The set EH(S).

Proposition 5 The Algorithm EH 1, computes the set
EH(S).

Proof.
It is obvious from de definition of EH(S).

Algorithm EH 2

INPUT: A semigroupS= {0,s1,s2, . . . ,sr ,−→}

1. Compute Ap(S,s1) = {Ap1, . . . ,Aps1}, Apéry set
of S

2. Compute the setE(S) = max(Ap(S)) with re-
spect to the partial order< in Ap(S)).

3. ComputePGS(S), the pseudo Frobenius num-
bers ofS.

4. Compute EH(S) = {x∈ PGS(S) : 2x∈ S}

OUTPUT: The setEH(S).

Proposition 6 The Algorithm EH 2, computes the set
EH(S).

Proof.
From de definition ofPGS(S) and EH(S).

The main algorithm is the following:

Algorithm Intersection 1/2

INPUT: A semigroupS= {0,s1,s2, . . . ,sr ,−→}

1. SetR= {} andE = {}.

2. Compute EH(S) = {e1, . . . ,ep}, using algorithm
EH 1/2.

3. If p = 1 thenRF(S) = {S} and goto step 10.

4. SetRi = S∪{ei} for i = 1, . . . , p andR= R∪{Ri}

5. Set j = 1 andt = p
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6. Compute EH(Rj) = {ej,1, . . . ,ej,p j} and setE =
E∪{EH(Rj)}

7. SetR#R+1 = Rj ∪{ej,k} for k = 1, . . . , p j andR=
R∪{R#R+1}

8. If t 6= #R then sett = t + 1, j = j + 1 and goto
step 6.

9. Set RF(S) = {Ri1, . . .Riq} where q is minimal
such thatS=

⋂
X∈RF(S) X.

10. ReturnRF(S).

OUTPUT: A list RF(S) of semigroups such that
S=

⋂
X∈RF(S) X.

Proposition 7 Let S be a semigroup. Algorithm In-
tersection 1/2 computes a minimal set of semigroups
which intersection is S.

Proof.
From the proposition 4.

2.1 The Complexity

The complexity of these algorithms will be expressed
as function of g(S), s1, . . . ,sp the set of generators of
Sand the size of the tree of semigroups.

The semigroupS is given by its generators so we
have complexityO(g(S)) to write S in the forme de-
scribed above. To compute the Apéry set ofSwe have
again complexityO(g(S)).

The complexity of Algorithm EH 1

First, we compute D(S) with complexity
O(g(S) − s1

2 ). Now to compute EH(S) we must
test if x− s ∈ S for all s ∈ S and x ∈ D(S) so we
achieve this with complexityO(g(S)2− s1

2 g(S)). We
conclude that the complexity of Algorithm EH 1 is
O(g(S)− s1

2 +g(S)2− s1
2 g(S)) = O(g(S)2− s1

2 g(S))

The complexity of Algorithm EH 2

First, we computeAp(S,s1) with complexity
O(g(S) + s1). We have that #Ap(S,s1) = s1 and so
the complexity of ordering this set, to computeE(S),
is O(s1(s1 − 1)) = O(s2

1). The setPGS(S) is com-
puted with O(#Ap(S,s1)) = O(s1) complexity. Fi-
nally the setEH(S) is computed with complexity
O(s1). Hence the total complexity of this algorithm
is O(g(S)+s1 +s2

1 +s1) = O(g(S)+s2
1)

Remark 8 Note that if S=< s1,s2 > then g(S) =
s1s2−(s1+s2) or in the case where S=< s1, . . . ,sp >
is a MED− semigroup theng(S) = sp− s1 and thus
we can use this result above. We can see that in these
cases the complexity of Algorithm EH 1 is greater than
the complexity of Algorithm EH 2.

The complexity of Algorithm Intersection 1/2

We start by computingEH(S) (usingAlgorithm
EH 1/2) with complexity O(EH) described above.
Then after constructing the semigroupsRi = S∪{ei}
we computeEH(Ri) and repeat this process until there
are no new semigroups that appear. This is done with
complexity O(T)O(EH), whereT is the total num-
ber of semigroups to intersect. Finally we eliminate
those which are redundant. So the final complex-
ity of these algorithms areO(T(g(S)2− s1

2 g(S))) and
O(T(g(S)+s2

1)) respectively.
The value ofT is not predictable. Meaning that

we do not know any upper bound for it because it
arises from a tree structure (see [8]). We will indi-
cate in the experimental results the maximum value of
T for each set of tested semigroups.

2.2 Experimental results

In order to test the efficiency of both algorithms we
defined 200 random semigroups with 3 up to 10 gen-
erators bounded by 100, 200 and 300. We computed
the maximum running time (MRT) of each algorithm
and the overall average running time (ART). The re-
sults (given in seconds) are summarized in the follow-
ing tables:

• For generators with values up to 100:

Generators ; 3 4 5 6 7 8 9 10
MRT for Alg 1 16.3580 14.5800 13.5790 5.2340 5.9220 3.1560 5.5320 5.1710
MRT for Alg 2 16.3140 14.3740 13.2650 5.1410 5.7670 3.0470 5.4200 5.0790
ART for Alg 1 1.2381 0.9071 0.7167 0.3954 0.5231 0.2343 0.2497 0.2343
ART for Alg 2 1.2228 0.8918 0.7126 0.3877 0.5135 0.2275 0.2457 0.2315
Max T 11 23 22 20 24 22 24 25
Average T 4.290 5.750 6.945 6.305 7.725 5.970 6.040 5.895

• For generators with values up to 200:

Generators 3 4 5 6 7 8 9 10
MRT for Alg 1 183.286 116.424 107.250 73.407 57.735 162.221 35.420 50.720
MRT for Alg 2 184.296 116.139 107.283 72.641 57.216 162.093 35.704 50.061
ART for Alg 1 15.808 13.261 9.892 7.004 4.923 6.405 2.772 2.460
ART for Alg 2 15.804 13.116 9.843 6.921 4.865 6.316 2.736 2.421
Max T 11 24 34 38 37 45 33 41
Average T 4.930 9.710 11.105 12.540 11.860 12.595 10.695 9.960

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007                                                              108



• For generators with values up to 300:

Generators ; 3 4 5 6 7 8 9 10
MRT for Alg 1 1139.221 561.259 456.063 346.933 798.463 321.449 100.201 275.079
MRT for Alg 2 1153.356 563.537 459.562 346.766 653.346 351.020 99.637 274.061
ART for Alg 1 65.575 43.807 35.525 27.618 31.366 17.984 10.404 12.120
ART for Alg 2 63.842 43.675 35.420 27.601 30.389 17.795 10.270 12.005
Max T 11 36 40 42 55 51 42 55
Average T 5.540 10.790 14.750 14.970 17.370 16.620 15.430 14.850

2.3 Conclusion

The experimental data show us two different things.
The first one is that Algorithm 2 is in practice
faster then Algorithm 1,(comparing the correspond-
ing ART). The second is that, surprisingly, it is only
slightly faster, indeed the difference between the cor-
responding ART is quite small (approximately around
0.5%). The worst case scenario complexity, of the two
algorithms, are not comparable in general. This hap-
pens because there are no known relations between de
frobenius number and the multiplicity of a semigroup.
But for the particular semigroups, presented in section
2.1 remark 8, this relation is known and hence we are
able to compare them.

3 The intersection of two numeri-
cal semigroups with embedding di-
mension two and the same multi-
plicity

In this section we study a special case of the intersection of irre-
ducible numerical semigroups. Note that ifS has embedding di-
mension two, thenS is irreducible (i.e,S is symmetric or pseudo-
symmetric)) [5]), hence we have the following o result:

Lemma 9 Let S= 〈s1,s2〉 be a numerical semigroup. Then
Ap(S,s1) = {0,s2,2s2, . . . ,(s1−1)s2}.

With the next result, we can obtain a algorithm for comput-
ing the intersection of two numerical semigroups with embedding
dimension two and the same multiplicity.

Proposition 10 Let S1 = 〈s1,s2〉 and S2 = 〈s1,s3〉 then S1 ∩
S2 = 〈s1,a1, . . .as1−1〉, with ai = max{w1(i),w2(i)} and w1(i) ∈
Ap(S1,s1), w2(i) ∈ Ap(S2,s1).

Proof.
It is sufficiency to prove that
Ap(S1∩S2,s1) = {0,max{w1(1),w2(1)}, · · ·max{w1(s1−

1),w2(s1−1)},
because〈Ap(S1∩S2,s1)∪{s1}〉= S1∩S2.
We assume thatwi1(i) ≡ wi2(i) ≡ i mod s1 with wi1 ∈

S1 and wi2 ∈ S2, then max {w1(i),w2(i)} ∈ S1 ∩ S2 and
max {w1(i),w2(i)} − s1 /∈ S1 ∩ S2. Because ifw2 ∈ S2 is the
maximum, asw1 = s1k+ i ∈ S1 with k ∈ N, thenw2 ∈ S1. On
other hand ifw2 − s1 /∈ S2 then w2 − s1 /∈ S1 ∩S2. Therefore
max{w1(i),w2(i)} ∈ Ap(S1∩S2,s1).

We illustrate this procedure with an example:

Example: Suppose thatS1 = 〈5,7〉 andS2 = 〈5,9〉 we com-
pute the Ap(S1,5) and Ap(S2,5) and

(i) 1 2 3 4
Ap(S1,5) 21 7 28 14
Ap(S2,5) 36 27 18 9

Therefore, we have that

S1∩S2 = 〈Ap(S1∩S2,s1)∪{5}〉= 〈5,14,28,27,36〉=

{0,5,10,14,15,19,20,24,25,27,28,29,30,32,33,34,35,36,−→}.

Now, we compare the classical intersection algorithm of nu-
merical semigroups with embedding dimension two and the same
multiplicity and new algorithm presented above:

The classical intersection algorithm (CIA):

INPUT: A pair of semigroupsS1 = 〈n0,n1〉 andS2 = 〈n0,n2〉

1. Compute the setS′1 = {0,s1,s2, . . . ,sp,−→}.

2. Compute the setS′2 = {0, r1, r2, . . . , rq,−→}.

3. ReturnS′ = S′1∩S′2.

OUTPUT: A list S′ of the elements of the intersection semi-
group.

The improved intersection algorithm (IIA):

INPUT: A pair of semigroupsS1 = 〈n0,n1〉 andS2 = 〈n0,n2〉

1. Compute the setAp(S1,n0) = {0,n1,2n1, . . . ,(n0−1)n1}.

2. Compute the setAp(S2,n0) = {0,n2,2n2, . . . ,(n0−1)n2}.

3. Reorder the setsAp(S1,n0) and Ap(S2,n0) modulo n0
and setAp(S1,n0) = {0,s1,s2, . . . ,sn0−1} andAp(S2,n0) =
{0, r1, r2, . . . , rn0−1}.

4. ComputeR= {max(si , r i), i = 1, . . . ,n0−1}∪{n0}.

5. SetS′ = 〈R〉
6. ReturnS′ = {0,s′1,s

′
2, . . . ,s

′
t ,−→}.

OUTPUT: A list S′ of the elements of the intersection semi-
group.

Remark: Proposition 10 assure us that in the end of this
algorithm we obtain the desired result.

3.1 The Complexity

Given a semigroupS= 〈s1,s2〉, the complexity of generating the
set of elements inS which are smaller thang(S) is O(g(S)).
The complexities of these algorithms are linear functions of
max{g(S1),g(S2)}. In the case of the algorithm CIA we have
complexity O(2max{g(S1),g(S2)}). The case of the algorithm
IIA we need a little more work to compute this. So the complex-
ity of computing the setsAp(Si ,s1) is O(s1). To reorder each of
these sets we have complexityO(s1). Finally we have to write
the elements in the intersection semigroup. So we have that the
complexity of the algorithm IIA isO(4s1 + max{g(S1),g(S2)}).
Remark 8 give us an explicit formula forg(Si), i = 1,2.
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3.2 Experimental results

To compare, from the practical point of view, the two algorithms
we preformed in the following way: We generated 100 random
pairs (S1,S2) of semigroups of the formS1 = 〈s1,s2〉 andS2 =
〈s1,s3〉. We start by choosing a randoms1 smaller than 20,50 and
100 and than we choose randomlys2 ands3 bigger thans1 and
smaller than 150,200 and 300. The results obtained are contained
in the following table:

Range of Generators MRT for CIA MRT for IIA ART for CIA ART for IIA
(20,150) 2.297 1.187 0.36911 0.19963
(20,200) 1.937 1.047 0.48024 0.25993
(20,300) 6.594 3.515 1.07048 0.57141
(50,150) 11.515 6.344 2.44154 1.36268
(50,200) 25.375 12.437 3.78908 2.06749
(50,300) 48.422 25.953 7.22870 3.91006
(100,150) 49.640 27.783 13.65713 7.60992
(100,200) 95.720 54.705 22.65495 12.56754
(100,300) 246.391 134.329 33.29890 18.17655

We can check that as the theoretical worst case
complexity it is actually an average behaviour. The al-
gorithm CIA takes an average of 1.83 more time than
IIA.
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generated commutative monoids”.Nova Science Publish-
ers, New York, 1999.

[8] J. C. ROSALES, P. A. GARCÍA -SÁNCHEZ, J. I. GARCIA-
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