
 

 

  
Abstract—Decomposition of multi-exponential and related 

signals is generalized as a filtering problem on a logarithmic time or 
frequency scale and finite impulse response (FIR) filters operating 
with logarithmically sampled data are proposed to use for its 
implementation. The filter types and algorithms are found for various 
time-domain and frequency-domain mono-components. It is 
established that the ill-posedness of the multi-component 
decomposition manifests as high sampling-rate dependent noise 
amplification coefficients. A regularization method is proposed based 
on noise transformation control by choosing an optimum sampling 
rate. Algorithm design is suggested integrating together the signal 
acquisition, the regularization and the discrete-time filter 
implementation. As an example, the decomposition of a frequency-
domain multi-component signal is considered by a designed discrete-
time filter. 
 

Keywords—Decomposition, Distribution of time constants, Ill-
posedness, Multi-component signals, Regularization.  

I. INTRODUCTION 
any areas of science and technology, such as material 
science, mechanics, biology, nuclear and electrical 

engineering, etc. face the problem of analysing various 
monotonic or locally monotonic signals. The multi-component 
signals with the real decaying exponentials are probably the 
most studied case, although the similar problems arise also for 
many other monotonic mono-components, such as integrals, 
derivatives, real and imaginary parts of the Fourier transforms 
of the real exponentials, etc. 

Although the problem of analysis of monotonic signals is 
not novel, let remember the works [1]–[6] became already the 
classical ones, the problem remains a challenging task for data 
processing. The principal reasons are the exceedingly non-
orthogonal behaviour of the monotonic signals no constituting 
an orthogonal base, and the fundamental ill-posedness in the 
sense that small perturbations in input signal can yield 
unrealistic high perturbations in the results of decomposition. 

Motivation of this work was to employ new possibilities 
coming from the novel data processing technologies and to 
develop accurate, robust and computationally efficient 
algorithms for analysing multi-component monotonic signals. 
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II. MONOTONIC MULTI-COMPONENT SIGNALS 
Multi-exponential decays may be described by the 

following model 

∫
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,)/exp()()( τττ dtGtx  (1) 

where G(τ) is a function of distribution of time constants 
(DTC) or spectrum of time constants. For the discrete (line) 
spectrum, G(τ) takes the form 
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where δ(τ) is the Dirac delta function. 
In some fields, e.g. in relaxation studies [7]–[9], model (1) 

is modified in the form 

∫
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where new, so-called logarithmic DTC function 
τττ )()( GF = , is introduced. 

To generalize model (2) for other monotonic and locally 
monotonic signals, we modify it into the form 

∫
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/),()()( ττττ duKFux , (3) 

where variable u is time or frequency, and kernel K(u,τ) 
represents a family of the time-domain and frequency-domain 
mono-components being of great importance in various fields 
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Kernel (4a) is the basic real decaying exponential, whereas 
(4b) and (4c) represents its derivative and integral, 
respectively. In its turn, kernels (4d) and (4e) embodies the 
real and imaginary parts of the Fourier transform of kernel 
(4b). A pair of kernels (4f) and (4e) describes the frequency 
response of the system inverse to that characterized by a pair 
of kernels (4d) and (4e). 
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III. FILTERING APPROACH FOR DECOMPOSITION 

A.  Background  
Since kernels (4a) – (4f) depend on the ratio or product of 

arguments u and τ, multi-component signal (3) may be 
converted in the form of the Mellin convolution type 
transform 

∫
∞

==
0

/)/()(*)( ττττ dukFkFux
M

, (5) 

where 
M

*  denotes the Mellin convolution and k(u/τ) represents 
kernels (4a) – (4f) modified in the form needed for converting 
(3) into (5). 

The monotonic multi-component signals extend typically over 
long intervals of time or broad ranges of frequency [7]–[9], 
which is a reason for considering them on a logarithmic scale 

,/log 0
* uuu q=  (6) 

where u0 is an arbitrary normalization constant. For 
logarithmic arguments (6), to remember that *

0
uquu = , multi-

component signal (5) alters into the appropriate Fourier 
convolution type transform ( 10 =u ) 

)(*)()( *** u
F

uu qkqFqx = .  
Consequently, DTC may be formally determined by the 

appropriate deconvolution 

)(*)()( *1** u
F

uu qkqxqF −= , (7) 

where )( *1 uqk −  is inverse kernel existing in the sense of a 
generalized function. 

In the frequency domain, deconvolution (7) may be 
described as 

)(/)()( μμμ jKjXjFT = , (8) 
where FT(jμ), X(jμ) and K(jμ) represent the Fourier transforms 
of functions )( *uqF , )( *uqx  and )( *uqk  with logarithmically 
transformed arguments. At the same time, FT(jμ), X(jμ) and 
K(jμ) may be expressed as the Mellin transforms of functions 
F(u), x(u) and k(u) on linear scale. Here, parameter μ named 
further the ‘Mellin frequency’ can be interpreted as the 
frequency of a signal (function), whose independent variable 
(time or frequency) is logarithmically transformed.  

Spectral representation (8) is a basis of the methods [1]–[4] 
implementing the decomposition according to the following 
general scheme 

)]}(DFT[/)](IDFT{DFT[)( ** uu qkqxF =τ , (9) 
where DFT and IDFT denote direct and inverse discrete 
Fourier transform, respectively. Similarly, spectral 
representation (8) is used also in the method [5], [6] 
implementing the decomposition by the direct and inverse 
discrete Mellin transforms ((DMT) and (IDMT)) 

)]}(DMT[/)](IDMT{DMT[)( ukuxF =τ . (10) 
On the other hand, deconvolution (7) represents a linear 

shift-invariant system [10] or an ideal decomposition filter on 
a logarithmic scale having impulse response )( *1 uqk − . The 

analytic expressions of )( *1 uqk −  for kernels (4a) – (4f) are not 
known, however one may derive the appropriate frequency 
responses as the reciprocal of spectral function K(jμ), e.g. as 
the reciprocal of the Mellin transform of kernel k(u) 

∫
∞

−−=−=
0

1)(/1]);([/1)( duuukjukMjH jμμμ . (11) 

Our idea is to implement deconvolution (7) in direct way by 
a finite impulse response (FIR) filter operating with equally 
spaced samples on a logarithmic scale 

∑
∞
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where h[n] is impulse response, which, of course, must be 
limited to the finite length in practice. 

To take into consideration that equally spaced samples on a 
logarithmic scale creates the logarithmic sampling [11] with 
exponentially (according to the geometric progression) spaced 
data on linear scale 

...2,1,0, = m    ,qu = u m
m ±±0 ,  

algorithm (12) modifies into the following general form [11]-
[13]: 

( )∑
∞
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Here, progression ratio q specifies the sampling in the sense 
that lnq plays a role of sampling period on a logarithmic scale. 

Direct implementation of the decomposition by discrete-
time filters has some advantages. First, its realization with 
hardware or software is much simpler, especially to take into 
consideration that the filter lengths are typically short (usually 
shorter than 10) due to the logarithmic sampling. Second, due 
to special algorithm design combined with the regularization 
[14] the direct implementation can potentially give the higher 
accuracy because does not require to perform the Fourier or 
Mellin transforms of the noisy and limited signals contributing 
the basic errors in approaches (9) and (10).  

Conventional discrete-time filters (with the uniform 
sampling) [10] are used primarily for removing unwanted 
parts of a signal, such as random noise, or extracting useful 
parts of a signal, such as the components lying within a certain 
frequency range. Here, the discrete-time filters (with the 
logarithmic sampling) are proposed to use for performing 
functional transformation of signals to carry out 
decomposition (3). This new application requires the design 
and application philosophy [11]-[13], which differs from that 
of conventional discrete-time filters. 

B. Algorithms of Decomposition Filters 
Equation (3) with kernels (4a) and (4c) represents exactly 

the Mellin convolution type transform (5), for which 
algorithm (13a) can be directly applied to. For kernel (4b), 
general algorithm (13a) modifies into the form [11], [13] 
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whereas for kernels (4d) – (4f), i.e. for the frequency-domain 
data, it modifies into the form 
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Usually the considered here filters are used with the equal 
number of coefficients about the origin of the impulse 
response. Then, for odd number of filter coefficients N, 
general algorithm (13a) takes the form 

( )∑
−
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−=
2/)1(

2/)1(
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N

Nn

nmm quxnhquF , (13d) 

where the origin of the impulse response coincides with zero 
sample h[0]. For even number of filter coefficients, the origin 
may be located in the middle between the samples h[–1] and 
h[0], then algorithm (13a) modifies into the form 
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C. Types of Decomposition Filters 
For six kernels (4a) – (4f), reciprocals (11) give the three 

following ideal frequency responses 

⎪
⎩

⎪
⎨

⎧
±

−Γ−
=

(c)(4c)for )2ch(
)b()f4(and)d4(for)j2sh(

(a)(4c)-(4a)for )(/1
)(

πμ
πμ

μ
μ

j
jH  (14)  

 
where (14a) relates to the time-domain data, (14b) – to the real 
parts, and (14c) – to the imaginary parts of the frequency-
domain data, respectively. Consequently, only three 
independent sets of coefficients h[n] are necessary for 
implementing decomposition (3) for six kernels (4a) – (4f). 
These filters have similar – very steep growing magnitude 
responses (Fig. 1) indicating their inverse nature. 

Frequency response (14a) of the ideal decomposition filter 
for the time-domain data is a complex function. From the 
symmetry property of the Fourier transform [10], it follows 
that the appropriate impulse response has no symmetry, or, in 
the language of filters, the decomposition filters for the time-
domain data belong to so-called non-linear phase systems. 

In contrast, frequency response (14b) is a pure imaginary 
function, whereas response (14c) is a real function. This 
indicates that the decomposition filters for the frequency-
domain data are linear phase systems. 

In Fig. 2(a, b), schematic approximation of ideal frequency 
response (14b) is shown by the appropriate frequency 
responses of a discrete-time filter 

( ) ∑ −=
n

j qnjnheH )lnexp(][ μμ  (15) 

with odd and even number of coefficients.  
 

 
Fig. 1. Magnitude responses of the three ideal decomposition filters. 
Vertical lines and upper X-axis show the bandwidths corresponding 
to different progression ratios q 
 
 

 
Fig. 2. Schematic approximation of frequency response (14b) with an 
odd (a) and an even (b) number of coefficients, and examples of the 
appropriate discrete impulse responses (c) and (d) 

 
In the case of an odd number of coefficients, a 

decomposition filter represents a type III linear phase system 
[10] having the frequency response, which crosses zero at the 
ends of bandwidth qln/πμ ±=  and at zero frequency (Fig. 
2(a)). It has an anti-symmetric impulse response 

][][ nhnh −−=  with 0]0[ =h  (Fig. 2(c)). In the case of an even 
number of coefficients, a decomposition filter represents a 
type IV linear phase system having the frequency response 
crossing zero at zero frequency and having non-zero values at 
the ends of the bandwidth qln/πμ ±=  (Fig. 2(b)) with an 
anti-symmetric impulse response ]1[][ −−−= nhnh  (Fig. 2(d)). 

In Fig. 3, the similar plots are shown for the decomposition 
filters with ideal frequency response (14c) for the imaginary 
parts. In this case, a filter with an odd number of coefficients 
represents a type I linear phase system with a symmetric 
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impulse response ][][ nhnh −=  (Fig. 3(c)), whereas a filter 
with an even number of coefficients represents a type II linear 
phase system with a symmetric impulse response 

]1[][ −−−= nhnh  (Fig. 3(d)). 
 

 
 
Fig. 3. Schematic approximation of frequency response (14c) with 
odd (a) and even (b) number of coefficients, and examples of the 
appropriate discrete impulse responses (c) and (d) 

 

IV. NOISE BEHAVIOR AND ILL-POSEDNESS 
For linear systems, random input signals or noise with a 

Gaussian probability distribution produces output signals that 
also have a Gaussian probability distribution [10]. Thus, the 
noise behavior of a decomposition filter as a linear system (on 
the logarithmic domain) may be described by noise coefficient 
S transforming input noise variance 2

xσ  into the output noise 

variance 2
yσ  

22
xy Sσσ =   

being equal to sum of the square filter coefficients 

][
1

nh = S 2
N

n
∑

=

. (16) 

The Parseval theorem [10] allows determining noise 
coefficient S also through frequency response 

∫
−

=
q

q

dHqS
ln/

ln/

2(.))2/(ln
π

π

μπ , (17) 

where ideal frequency responses (14a) – (14c) give inherent to 
the specific decomposition problem theoretical noise 
coefficients theorS , whereas frequency response (15) of a 
discrete-time decomposition filter provides actual 
experimental noise coefficient (16) for the given progression 
ratio q. 

As it follows from (17), increasing the sampling rate 
(decreasing q) extends bandwidth [-π/lnq, π/lnq] of a filter 
(see Fig. 1), and, consequently, the appropriate area under the 
magnitude response quoting the value of the noise coefficient. 
Due to the increasing frequency responses, the theoretical 

noise coefficient increases with decreasing progression ratio q 
and tends to ∞, when q approaches 1 (see curve theorS  in Fig. 
4). Thus, the ill-posedness of the decomposition manifests as 
the large noise amplification coefficient coming from the large 
area under magnitude response, which, in its turn, results from 
the wide bandwidth. The useful conclusions may be made 
from the above that the ill-posedness:  

(i) may be related and quantitatively characterized by the 
noise coefficients,  

(ii) may be controlled or the decomposition may be 
regularized by choosing sampling rate, which through 
establishing the bandwidth of a filter regulates its 
noise transformation coefficient. 

V. ALGORITHM DESIGN 
Algorithm design of a decomposition filter is a complex 

problem [14], which to the contrary the conventional two-step 
discrete-time signal processing approach [10] including 
completely separate (i) signal acquisition step, where the 
signal is sampled uniformly above its Nyquist rate, and (ii) 
discrete-time algorithm implementation step, shall actually 
integrate together three steps: (i) signal acquisition, (ii) 
regularization and (iii) discrete-time filter design. As a result, 
filter coefficients shall be obtained for an optimum 
combination of progression ratio q and number of filter 
coefficients N ensuring the needed noise immunity. It should 
be noted that in practice the available time or frequency 
ranges of input functions limit the available combinations of q 
and N.  

To link q and N with the available input data, a parameter – 
dynamic range of time or frequency of input signal portion 
used for computing an output sample (further ‘input window 
range’) 

1/ −
−+ == N

x quud  (18) 
is introduced, which determines the combinations of q and N 
allowable for the filter design. 

 

 
Fig. 4. Theoretical and experimental noise coefficients of the 
decomposition filters having even number of coefficients for various 
input window ranges dx. Vertical arrows show the values of q 
corresponding to an acceptable noise coefficient Sacc=10 
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The proposed algorithm design method [14] is based on 

designing trial filters for the combinations of q and N allowed 
by (18) starting with one operating at explicitly large q (low 
noise coefficient) by subsequent iterative decrease of q and 
the appropriate increase of N, while the previously fixed 
acceptably low noise coefficient Sacc is achieved. 

For the given specification q and N, a filter is designed by 
the identification method [11] where a pair of theoretical 
functions interrelated with each other by theoretical 
deconvolution (7) is used as input and output signals in the 
filter design. An advantage of the identification method is that 
it effectively disposes of various secondary effects such as 
data truncation, rounding-off, etc. and allows designing filters 
of various types (e.g. with linear and non-linear phase).  

VI. EXAMPLE OF A DECOMPOSITION FILTER 
Let assume that a filter with an even number of coefficients 

having noise coefficient 10<S  and employing input window 
range 500≤xd  must be designed for decomposing the 
frequency-domain multi-component signal with mono-
components (4d). 

In Fig.4, the theoretical and experimental noise coefficients 
are shown as a function of progression ratio q for various 
input window ranges dx. Here, the plots are obtained by 
testing the filters designed by the identification method [11]. 
From Fig. 4, it follows that progression ratio must be within 
interval 9.39.2 −=q  to ensure noise coefficient 10≈accS . 
We choose q = 3.3. Then 6=N  according to (18) gives dx = 
391 ( 500≤xd ). By the identification method, the following 
coefficients have been obtained [15]: 

}033296.0,129207.0,05880.1
,05880.1,129207.0,033296.0{]6[

−
−−=h

.  

 

  
Fig. 5. Recovered DTCs from the noiseless input signals: unity line 
spectrum at τ = 1 (curve 1); two unity line spectra at τ1 = 0.42 and τ2 
= 2.37 (curve 2) and at τ1 = 0.1 and τ2 = 10 (curve 3) 

 
In Fig. 5, examples of discrete DTCs are shown recovered 

from the noiseless input data by the designed filter. The 

recovered DTCs are calculated by algorithm (13c) modified 
according to (13e) into the form  

)/3.3(][)(
2

3

5.0∑
−=

−−=
n

nxnhF ττ   

with making substitution mqu0=τ . Notice that the designed 
filter gives DTCs without non-physical oscillations. However, 
it should be noted that such smoothed spectra are achieved at 
the expense of decreased resolution; the filter allows 
separating two spectral lines only, if 2.0/1 <+ ii ττ  or 

5/1 >+ ii ττ . In general, the proposed decomposition filters are 
more preferable for recovering continuous DTC [15]. 

 

 
Fig. 6. Recovered DTC for two unity line spectra at τ1 = 0.42 and  
τ2 = 2.37 from the noiseless input signal (fat solid curve) and the 
noisy input signal (thin solid curve), and noisy DTC smoothed 10 
times by (19) (dotted curve) 

 
According to (16) the designed filter has noise coefficient  

S = 2.28, which means that the noise variance for recovered 
DTC is amplified 2.28 times or the standard deviation and, 
consequently, the amplitude of DTC noise is amplified 

51.128.2 =  times to compare with that of the input signal. 
In Fig. 6, the simulation results are shown for two unity line 

spectra at 42.01 =τ  and 37.22 =τ  recovered from the 
noiseless input signal and from the noisy input signal 
corrupted by additive random noise 

)(05.0)()( mnuxux mexactmnoisy ⋅+= ,  

where n(m) is the pseudorandom sequence within interval  
[-1,1] with zero mean having the Gaussian probability 
distribution. The simulation results confirm the above 
mentioned noise amplification, the recovered DTC indeed 
represents DTC obtained from the noiseless input signal with 
additive random noise )(076.0)(05.0 mnmnS ⋅≈⋅⋅ . 
However, DTC smoothing, e.g. by simple 5-point averaging 

∑
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2
)(

5
1)(

n
nmm FF ττ  (19)  

allows one to obtain result, which is in rather good agreement 
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with DTC obtained from the noiseless input data. 

VII. CONCLUSIONS 
FIR filters operating with data equally spaced on a 

logarithmic scale (geometrically spaced on linear scale) are 
proposed to use for decomposition of multi-exponential and 
related signals, such as integrals, derivatives, real and 
imaginary parts of the Fourier transforms of the real 
exponentials. The filter algorithms are derived for various 
time-domain and frequency-domain mono-components. It is 
shown that the non-linear phase filters have to be used for the 
time-domain signals, whereas the linear phase filters shall be 
used for frequency-domain ones. A novel regularization 
strategy is developed based on filter bandwidth control by 
choosing the appropriate sampling rate, which allows ensuring 
the required noise immunity of the algorithms. Algorithm 
design is suggested integrating together the signal acquisition, 
the regularization and the discrete-time filter implementation. 
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