
  
Abstract— This paper presents some theoretical and numerical 

problems that arise in the analysis of coupled electromagnetic-
thermal problems in electromagnetic devices.  

The principal objective of the paper is to describe some 
computational aspects for coupled electromagnetic and thermal fields 
in the context of the finite element method, with emphasis on the 
reduction of the computing resources. We present coupled models for 
magnetic field and thermal field. The mathematical model for 
magnetic field is based on time-harmonic Maxwell equations in 
vector magnetic potential formulation for axisymmetric fields. The 
model for the heat transfer is the heat conduction equation.  

We propose simplified numerical models for coupled fields in 
electromagnetic devices with target examples on the induction 
heating devices and high-voltage and large power cables. Domain 
decomposition is presented in the context of the coupled fields. The 
analysis domain is divided into two overlapping subdomains for the 
two coupled-fields considering physical significance of the pseudo-
boundary of the two subdomains.  

 
Keywords— Coupled fields, Finite-element method.  

I. INTRODUCTION 
he phenomena in the technical devices are not isolated but 
they were analysed independently because of some 

justified motivations. Ones of them are:  
• limited computational power of the conventional 

computers 
• the complexity of the coupled problems 
• the lack of a strong co-operation between the 

engineers and mathematicians  
There are two standpoints, which are not in contradiction, 

but they are linked. The former is the mathematician's 
standpoint that tries to prove that the problem has a solution 
and preferably a unique solution. The latter is the engineer's 
standpoint that wants the solution, and in practical cases an 
approximate solution. An engineer is concerned with large-
scale physical achievement. We must not forget that each 
category is judged by different measures for their activities: a 
mathematician is judged for his publications in his area, and 
an engineer is judged by his physical achievements.  

It is true that mathematics is with a step before the 
engineering, that is, sometimes, there are many years or 
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decades between the mathematical researches and the 
application in the engineering. One of the motivations is 
limited technology for implementation of the mathematics 
results in practice. Now the time intervals are reduced. Are we 
clever? In my opinion, the answer is NO. We have more 
knowledge, we have a fast access to the information and we 
cooperate or we must cooperate in different disciplines. We 
dream more and have the tools to transform the dreams in 
reality. 

Research engineers, that are devoted themselves to 
scientific research into engineering problems, use mathematics 
extensively. Mathematics enables the engineer to express his 
technical knowledge in clear and concise mathematical terms 
and arrange the components of his knowledge in logical order. 
Engineering is a science so that an engineer without 
mathematics is a gardener without his special tools. 

A. Motivations for advanced algorithms 
It is well known that the nature is complex in its behaviour 

and the abstract models do not capture accurately the laws of 
the nature. We work with abstract models. These models 
describe the phenomena from nature and the technical devices. 
But it is a great mistake to think that we have perfect models 
of the natural phenomena. More, many numerical algorithms 
are not discovered so that, although we limit our discussion to 
our actual achievements in this area, we must dream and to 
seek permanently new and modern approaches for the actual 
problems in science, technics and life. 

Analytical solutions for the electrical engineering problems 
are limited to some simple applications and ignore some 
physical phenomena. For complex problems the accurate 
models are necessary and the numerical solutions are efficient 
approaches for an optimal design and operation.  

With the advent of modern digital computers, many 
numerical models were developed and they become widely 
used in the scientific computing. We use the old algorithms 
and transform them for the new architectures but we must 
invent new algorithms having in our mind the computational 
power of the new computers. 

The efficient design of the electromagnetic devices has 
resulted in more stringent specifications and a demand for 
optimal operation, which is very important in high-
performance electrical power systems. More exacting 
specifications have demanded during the design stage the 
development of accurate methods of predicting the 
performance characteristics of these devices. Some of the 
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performance indicators of concern in the design of the power 
devices are the electromagnetic forces, iron losses, the eddy-
currents effects and the heat transfer between the component 
parts. Prediction of the flux densities and current densities can 
be used to compute forces and local heating, both of which are 
of a serious concern to the designer of the devices of high 
performance.  

B. Motivations for coupled fields 
Many areas of electrical engineering require the solution of 

problem in which the electromagnetic field equations are 
coupled to other partial differential equations, such as those 
describing thermal field, fluid flow or stress behaviour. These 
phenomena are described by equations that are coupled [1]. 
The coupling between the fields is a natural phenomenon and 
only in a simplified approach the field analysis can be treated 
as independent problem.  

 In several cases, it is possible a decoupling and a cascade 
solution of the coupled equations. Another attractive and 
efficient approach of solving coupled differential equations is 
to consider the set as a single system. In this way a single 
linear algebraic system for the whole set of differential 
equations is obtained after discretization, and is solved to a 
single step. If one or more equations are non-linear, non-linear 
iterations of the whole system are required. 

The equations of the electromagnetic fields and heat 
dissipation in electrical engineering are coupled because the 
most of the material properties are temperature dependent and 
the heat sources represent the effects of the electromagnetic 
field [3]. 

The thermal effects of the electromagnetic field are both 
desirable and undesirable phenomena. Thus, in conducting 
parts of some electromagnetic devices (coils of the large-
power transformers, current bars, cables conductors, 
conductors of the electric machines etc) the heating is an 
undesirable phenomenon. The heat is generated by ohmic 
losses of the driving currents and eddy currents induced in 
conducting materials. But in induction heating devices for 
welding the heating is a desirable phenomenon. The thermal 
effect of the electromagnetic field is the treatment base for 
many electric materials in industry [5]. 

II. MODELLING OF THE ELECTROMAGNETIC FIELD 
A complete physical description of electromagnetic field is 

given by Maxwell’s equations in terms of five field vectors: 
the magnetic field H, the magnetic flux density B, the electric 
field E, the electric field density D, and the current density J. 
In low-frequency formulations, the quantities satisfy 
Maxwell’s equations [1]: 

JH =×∇           (1) 

t

B
E

∂

∂
−=×∇          (2) 

0=Bdiv           (3) 

cDdiv ρ=          (4) 

with ρc the charge density. For simplicity we gave up to the 
bold notations for vectors 

The second set of relationships, called the constitutive 
relations, is for linear materials: 

EJEDHB σεμ === ;;   
where σ – the electric conductivity and μ the magnetic 

permeability. 
The B-H relationship is often required to represent non-

linear materials. The current density J in Eq. (1) must 
represent both currents impressed from external sources and 
the internally generated eddy currents.  

The formulation with vector and scalar potentials has the 
mathematical advantage that boundary conditions are more 
often easily formed in potentials than in the fields themselves. 
The magnetic vector potential is a vector A such that the flux 
density B is derivable from it by the operation curl or the 
operator ( ×∇ ). 

The complexity of the mathematical model for 
electromagnetic field was one of the main reasons to find and 
develop new computation methods. All methods can be 
included in one of the following classes [1]: 

• Manipulation of the equations so that some 
unknowns are eliminated 

• Definition of some potential functions from where 
the field unknowns can be obtained by simple 
processing 

• Finding of some assumptions that simplifies the 
computation for practical problems 

The potential formulations seem attractive because of their 
computational advantages. One of these consists in the fact the 
boundary conditions are easily framed in the potentials than in 
the field themselves. 

A. The eddy-current problems 
The time-varying magnetic field within a conducting 

material causes circulating currents to flow within the 
material. These currents called eddy-currents can be unwanted 
or desirable phenomena. Thus, the eddy-currents in electrical 
machines give rise to unwanted power dissipation. On the 
other hand the induction heating is a wanted phenomenon in 
industry of the metal treatment.  

Industrial equipment in which the eddy currents are 
essentially can be included in one of the following classes: 

• long structures, in which the electric field and the 
current density posses only one component 

• complex structures in which we use models 3D 
In the long structures, the currents are generated by an 

electric field applied at the terminals of the conductor or by a 
time-varying magnetic field linking the loop formed by the 
conductors. These structures belong to electric transmission 
network or the distribution networks (bus bars, large-power 
cables etc). In these problems the applied voltage of the bar or 
cable is known and we seek to compute the current density 
distribution within the conductor in order to determine some 
electromagnetic quantities of interest (the electrodynamic 
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forces, mutual inductances, local heating etc). 
The complex structures arise difficulties in simulation and 

computation of their characteristics although these structures 
possess construction simplicity. One of these structures is the 
device for electric heating by electromagnetic induction. In 
these types of the applications, it is necessary to compute 
accurately the eddy currents. If the eddy-currents distribution 
is non-uniform, the resulting high-temperature gradients may 
crack the workpiece. 

The problems are different in the two different types of 
applications but for any given application the presence of the 
saturable iron sheets introduce saturation phenomena and the 
problem becomes non-linear. 

For each class we can apply general mathematical methods 
but it is more efficient to develop a particular algorithm for 
each kind of classes. 

The effects of the eddy currents are: 
• The time-varying magnetic flux density is 

nonuniform within the conductor. The alternating 
magnetic flux is concentrated toward the outside 
surface of the material (phenomenon known as the 
skin effect). 

• Power losses are increased in the material 
Eddy current computation appears in two types of 

problems: 
• Stationary problems where the structures are fixed 

and source currents are time varying 
• Motion problems where the field source is a coil in 

moving 
Many practical engineering problems involve geometric 

shape and size invariant in one direction. Let z denote the 
Cartesian co-ordinate direction in which the structure is 
invariant in size and shape. This is the case of a plane-
parallel field or translational field problem, where A has one 
component, namely Az. It is independent of the z co-ordinate 
and the Coulomb Gauge is automatically imposed and V is 
independent of x and y.  In such a case both the magnetic 
vector potential and the source current JS reduce to a single 
component oriented entirely in the axial direction and vary 
only with the co-ordinates x and y.  

Consequently, the component Az (for simplicity we give up 
the subscript z) satisfies the diffusion equation in fixed [4]: 

sJ
t

A
A −=

∂

∂
−∇∇ σν )(     (5) 

or in Cartesian co-ordinates: 
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The boundary conditions are set-up for the single 
component A and can be Dirichlet's and/or Neumann’s 
condition. The interface conditions between two materials 
with different properties are: 

n
A2

ν2=
n
A1

ν1   ;A2=A1
∂

∂

∂
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B. Modelling of time-dependent fields 
The time dependent electromagnetic field problems are 

usually solved using differential models of diffusion type. 
Many practical problems of great interest in electromagnetics 
involve time-harmonic fields and this case will be considered 
in this work. 

In general, computer software for time-varying problem can 
be classified into two classes [7]: 

• time-domain programs 
• frequency-domain programs 

Time-domain programs generate a solution for a specified 
time interval at different time moments. Frequency-domain 
programs solve a problem at one or more fixed frequencies. 

The first class has some disadvantages. One of these 
consists in the large amount of data that must be stored to 
recover the field behaviour. Although the second class has an 
essential advantage (a compact and a cheap program in terms 
of the computer resources), the area of problems that can be 
solved is limited. It is applicable only to linear problems (all 
phenomena are sinusoidal). 

The usual mathematical model for time dependent 
electromagnetic field problems is with Maxwell’s equations in 
their normal differential form. For low frequency the 
displacement current term in Maxwell’s equations can be 
neglected. At a surface of a conducting material the normal 
component of current density Jn can be assumed to be zero. 

In problems with two dimensions, there are two limiting 
cases: 

• A formulation with H field 
• A formulation with magnetic vector potential 

Both cases are PDEs of the diffusion type. The latter case is 
of greater practical interest because can be solved by 
numerical methods. 

In general the time dependent problems after a spatial 
discretization can lead to a lumped-parameter model. For 
example, Maxwell’s equations in differential form for low 
frequency in 2-D case, after spatial discretization, lead to a 
system of ordinary differential equations by the form [3]:  

{ } 0{b}A[R]
t

A
[S] =++

∂

∂

⎭
⎬
⎫

⎩
⎨
⎧    (7) 

where [R] and [S] are matrices and b is the vector of the 
free terms. 

To simplify the computation, one approach is to separate 
the spatial domain of the problem in conducting and non-
conducting parts, such that A1 is the solution vector in 
conducting regions and A2 is the solution vector in the non-
conducting regions. By reordering the matrices, the system of 
equations is divided in two systems [3]:  

01
1

212111 =+
∂

∂
++

⎭
⎬
⎫

⎩
⎨
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}{b
t

A
[S]}]{A[R}]{A[R  (8) 

02222121 =++ }{b}]{A[R}]{A[R       (9) 

The system (9) is formed of algebraic equations; the system 
(8) is formed of differential equations. These systems are 
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solved by an iterative procedure. 

III. MATHEMATICAL MODELLING OF THE THERMAL FIELD 
The thermal field is described by the heat conduction 

equation [5]: 

qTTkTT(c
t

=∇⋅−∇+⋅
∂

∂
])([]))([ γ     (10) 

where:  T (x,t) is the temperature in the spatial point x at the 
time t; point k is the tensor of thermal conductivity; γ is mass 
density; c is the specific heat that depends on T; q is the 
density of the heat sources that depends on T. In the coupled 
problems we use the formula: 

2)( JTq ⋅= ρ                   (11) 
with ρ the electrical resistivity of the material. Equation 

(10) is solved with boundary and initial conditions. The 
boundary conditions can be of different types: Dirichlet 
condition for a prescribed temperature on the boundary, 
convection condition, radiation condition and mixed condition 
[2]. 

For many eddy-current problems the magnetic flux 
penetration into a conductor without internal sources of the 
magnetic field is confined mainly to surface layer. This is the 
skin effect. The skin depth δ depends on the material 
properties μ, ω and σ so that for the small depths all of the 
effects of the magnetic field are confined to a surface layer.  

In steady-state low-frequency eddy current problems in 
magnetic materials, the mathematical model is the diffusion 
equation (6). 

The skin effect can be exploited in two directions: 
• To reduce the space domain in analysis with a fine 

mesh close to conductor surfaces 
• To reduce the material volume since a significant 

proportion of the conductor is virtually unused  
The penetration depth is given by the formula: 

ωσμ
δ

2
=          (12) 

For example, in a semi-infinite slab of conductor with an 
externally applied uniform alternating field, parallel to the 
slab, the amplitude of flux decays exponentially. In other 
words for problems with the skin depth very small all the 
effect of the field is confined to a surface layer. In a numerical 
model based on finite element method (FEM) this effect can 
be exploited by the use of a special boundary condition, 
known as the surface impedance condition. In this way we 
don’t waste run-time of a program based on FEM. 

Designer engineers use the formula (12) considering the 
permeability and the conductivity as numbers. In reality the 
two physical parameters change during heating. The changes 
in the value of δ affect the loss in the material and depend on 
the process (conduction or induction). For example, if the 
conductivity decreases by x, the depth increases by √x, that is 
the current penetrates deeper into the metal.  If the magnetic 
material heats, its resistivity (the inverse of the conductivity) 

rises but its relative permeability remains substantially 
constant up to the Curie point. In this point it drops suddenly 
to unit. 

Another simplifying assumption for the designer engineers 
is based on that all heat enters at the surface of the conductor. 
In reality, this is only true if the frequency of the magnetic 
field source is very high and the depth of heating is small 
compared with the geometrical dimensions of the conductor.  

For an accurate computation of the penetration depth of the 
magnetic field we must consider two practical conditions: 

• The heat is distributed in the conducting part 
• There is an important heat lost by radiation at the 

conductor surface 
Radiation can be regarded as a simple surface loss 

subtracting from the surface power input.  The Stefan-
Boltzmann law gives the radiation loss. If the body is 
radiating to a surface at absolute temperature T∞ Kelvin, the 
radiation loss is defined by: 

)44(
0 ∞−= TTcrrP ε  

where εr  is the emissivity coefficient of the surface 
(dimensionless) and T is the absolute surface temperature in 
Kelvin (K). The constant c0 is 5.67.10-8 W/m2K4.  For low 
temperatures the radiation loss is negligible but in the 
induction-heating device it must be considered. 

Consequently, it is convenient to use coupled models and 
accurate methods for computation of the heat penetration in 
the conductors, especially in the induction heating. 

IV. ITERATIVE ALGORITHMS FOR COUPLED PROBLEM 
A complete mathematical model for coupled fields involves 

Maxwell’s equations and the heat conduction equation. 
Combining these equations yields a coupled system of non-
linear equations. In a discrete form the unknowns are the 
nodal values of the temperature T and the magnetic vector 
potential A. 

For electromagnetic field we consider the A-formulation, 
that is we define the magnetic vector potential A by B = curl 
A. More, the domain is the same for temperature and the 
electromagnetic field although in practice the interest is for 
different field domains.  

The non-linear equations for T and A are straightforwardly 
obtained by a Galerkin's finite element method. For the 2D 
steady-state problems we do the approximations at the element 
level [6]: 

∑
=

=
r

j jTyxjNyxT
1

),(),(  

∑
=

=
r

j jAyxjNyxA
1

),(),(  

where the interpolation functions Nj are basis functions in 
the mesh over Ω and r is the number of nodes of an element.  

The usual procedure for the FEM applications leads to a 
system of 2p equations where p is the total number of the 
unknowns in each field problem.  These non-linear equations 
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can be solved by two different basic strategies [1]: 
• Solving the equations for Ti and Ai simultaneously 
• Solving the equations for the two fields in sequence 

with an outer iteration, technique known as operator-
splitting technique (for example Newton-Raphson 
procedure) 

In the area of the first strategy, Gauss-Seidel and Jacobi 
methods are well known. We present these methods in brief 
[1]. For this, let us define the two discrete equations derived 
from the electromagnetic field model and the thermal field 
model in the form: 

0),...,1,,...,1( =pTTpAAAf  

0),...,1,,...,1( =pTTpAATf  

where the subscript denotes the original problem (A – for 
the magnetic field in the magnetic vector potential 
formulation; T – for the thermal field). 

The Gauss-Seidel algorithm for coupled fields has the 
following pseudo-code [1]: 

For m: =1, 2, … until convergence DO 
Solve  

0))1(,...,)1(
1;)(,...,)(

1( =−− m
pTmTm

pAmAAf  

with respect to A1
(m), … Ap

(m) 
Solve 

0))(,...,)(
1;)(,...,)(

1( =m
pTmTm

pAmATf  

with respect to T1
(m) , … Tp

(m) 

 
In other words, the system is solved firstly with respect to 

A, using the values of T from the previous iteration. 
Afterwards, the equation derived from the thermal field model 
is solved using the computed values of A from the current 
iteration. The equations fA=0 or/and fT=0 are non-linear and 
must be solved by an iterative procedure (for example 
Newton-Raphson method). 

The algorithm Jacobi-type is similar to Gauss-Seidel 
method, except that at the iteration number m when we must 
solve the model for T, the values for A are from the previous 
iteration, which is A(m-1). The algorithm has the following 
pseudo-code: 

For m: =1, 2, … until convergence DO 
Solve  

011
11 =−− ))(m

p,...,T)(m;T(m)
p,...,A(m)(AAf  

with respect to A1
(m), … Ap

(m) 
Solve 

0))(,...,)(
1;)1(,...,)1(

1( =−− m
pTmTm

pAmATf  

with respect to T1
(m) , … Tp

(m) 

 
The domain decomposition could be determined from 

mathematical properties of the problem (real boundaries or 
interfaces between subdomains), or from the geometry of the 
problem (pseudo-boundaries). For elliptic partial differential 
equations, there exists a mathematical approach based on the 

ideas given earlier in 1890 by Schwarz [8]. In Schwarz 
procedure there is an inherent parallelism with a data 
communication time for the passage of pseudo-boundary data 
between processors.  

There is no general rule for the domain or/and operator 
decomposition. It is defined in a somewhat random fashion. 
The problems and questions that appear in the decomposition 
technique are: 

• do domain decomposition or the operator 
decomposition 

• Which approach is the best: disjoint or overlapping 
sub-domains? 

• What kinds of boundary conditions are set up on the 
pseudo-boundaries of the sub-domains 

• What kind of domain decomposition is useful for a 
particular problem: static or dynamic decomposition? 

A.  Decomposition techniques 
The desire of the scientific community for faster processing 

on lager amounts of data has driven the computing field to a 
number of new approaches in this area [8]. The main trend in 
the last decades has been toward advanced computers that can 
execute operations simultaneously, called parallel computers. 
For these new architectures, new algorithms must be 
developed and the domain decomposition techniques are 
powerful iterative methods that are promising for parallel 
computation. Ideal numerical models are those that can be 
divided into independent tasks, each of which can be executed 
independently on a processor. Obviously, it is impossible to 
define totally independent tasks because the tasks are so inter-
coupled that it is not known how to break them apart. 
However, algorithmic skeletons were developed in this 
direction that enables the problem to be decomposed among 
different processors. The mathematical relationship between 
the computed sub-domain solutions and the global solution is 
difficult to be defined in a general approach. 

In the area of the coupled fields we define two levels of 
decomposition, that is, we define a hierarchy of the 
decompositions:  

• One at the level of the problem 
• The other at the level of the field 

In other words, we decompose the coupled problem in two 
sub-problems: an electromagnetic problem and a thermal 
problem, each of them with disjoint or overlapping spatial 
domains. This is the first level of decomposition. At the next 
level, we decompose each field domain in two or more 
subdomains. The decomposition is guided both by the 
different physical properties of the materials, and the 
difference of the mathematical models. At this level of 
decomposition the Steklov-Poincaré operator can be 
associated with field problem. This operator reduces the 
solution of the coupled subdomains to the solution of an 
equation involving only the interface values. One efficient and 
practical solution of elliptical partial differential equations is 
the dual Schur complement method [8]. 
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V. SOME INDUSTRIAL APPLICATIONS 
In any electromagnetic device there are power losses that 

are transformed in heating so that the modelling of device 
involves coupled mathematical models. In electrical 
engineering the coupled electromagnetic and thermal fields 
represent both desirable phenomena and undesirable 
phenomena. Two examples illustrate this assertion: induction 
heating and the high-voltage (HV) electrical cables.  

Induction heating describes the thermal conductivity 
problem in which the heat is generated by eddy currents 
induced in conducting materials, by a varying magnetic field. 
Induction heating is an efficient procedure for bulk-heating 
metals to a set temperature. The heating is generated by the 
eddy-currents induced from a separate source of alternating 
current.  

 
Fig. 1 – Axial section 

 
Figure 1 shows a long cylindrical workpiece excited by a 

close-coupled axial coil. The device has a cylindrical 
symmetry so that the problem can be reduced to a 2D-problem 
in the plane Orz. An axial section is presented in the figure 2 
with 1- the workpiece, 2 – the air and 3 – the coil. The coil is 
assimilated with a massive conductor. In this case we cannot 
ignore the eddy currents in the coil. 

In Fig.2 an axial section is presented. The coil is assimilated 
with a massive conductor. In this case we cannot ignore the 
eddy currents in the coil. We consider a low-frequency current 
in the coil so that the penetration depth is large. In this case 
we can decompose the whole domain of the field problem into 
overlapped subdomains for the two coupled-fields.   

 
Fig. 2 –Analysis domain 

 
The domain for the magnetic field can be reduced to a 

quarter of the device bounded by a boundary at a finite 
distance from the device. For the thermal field we consider the 
workpiece as the analysis domain. The penetration depth of 
the magnetic field in the workpiece imposes the overlapping 
domains for the two fields [8]. The numerical model is 
considered in a cylindrical co-ordinates with the vertical axis 
Or and the horizontal axis Oz. 

The mathematical model for the electromagnetic field using 
A-formulation is a 2D-scalar model in (r-z) plane: 
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For the harmonic-time case, mathematical model is: 
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Another example that we present is a high-voltage cable 
with three phase conductors and a neutral conductor [9]. The 
HV cables are important components of the energetic system 
for distribution of the electric energy.  Fig. 3 shows the cross-
section of the system. This high-voltage tetra-core cable has 
three triangle sectors with phase conductors and round neutral 
conductor in the lesser area of the cross-section above. All the 
conductors are made of copper. Each conductor is insulated 
and the cable as a whole has a three-layered insulation. The 
cable insulation consists of inner and outer insulators and a 
protective braiding (steel tape). The sharp corners of the phase 
conductors are chamfered to reduce the field crown. The 
corners of the conductors are rounded. Empty space between 
conductors is filled with some insulator (air, oil etc.) 
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Fig. 3– A cross-section of the cable 

VI.  NUMERICAL RESULTS 
We shall present the results of the numerical simulation for 

the cable.  This system can be analysed for different operating 
regimes. When the cables are in load, the conductor currents 
can generate local heating that destroys the insulation and 
finally, the whole system. Consequently, the temperature 
distribution is of great importance for the designer. Fig. 4 
shows the temperature map of the system. 

 
Fig. 4 – The map of the temperature 

 
Each cable-core has its own insulation but there are two 

layers of insulation: inner cable insulation and outer cable 
insulation more thick than the internal insulation. Also, there 
is a protective steel braiding. 

The load of the conductors are currents of amplitude equal 
to 250 A at the frequency of 50 Hz.  

In post-processing stage of the FEM program, a lot of 
physical quantities can be obtained [8]. They are of great 
importance for the electrical engineers in the evaluation of the 
device performance. These derived quantities are presented in 
user’s manual of any software CAD [9]. The voltage 

amplitude is 7000 V. 
The non-uniformity of the temperature is due to the non-

uniformity of the current density in system. In figure 5 the 
map of the total current density is shown.  In computation of 
the total current in the cable, the skin effect and proximity 
effect of the cable cores were considered. 

 
Fig. 5 – The map of the current density 

 
Another important field in the operating regime of an 

electromagnetic device is the mechanical field. Stress analysis 
problem is the utmost one that imports the temperature field 
from the heat transfer problem and the magnetic forces from 
the magnetic problem. The conducting medium is subjected to 
both temperature change and Lorenz force. Due to this 
magnetic and thermal loading the cable shape can be 
deformed. The electrodynamic force is a vector normal to the 
magnetic induction B  and the electrical current I according to 
the formula F = I  X  B.  

In a stress analysis problem the displacement, strain and 
stress are of great importance. The physical quantities for 
stress analysis are: 

• Displacement vector δ 
• Strain vector ε and its principal values 
• Stress vector σ and its principal values 
• Some relevant criteria (Tresca criterion, Drucker-

Prager criterion, Mohr-Coulomb criterion, Von 
Mises stress) 

The mathematical models for stress analysis the elasticity 
theory is used. The equilibrium equations for axisymmetric 
problems are: 
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where σr , σz  τrz are the stress components, and fr, fz  are 
components of the volume force vector [9]. 

Temperature strain is determined by the coefficients of 
thermal expansion and temperature difference between 
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strained and strainless states. Components of the thermal 
strain for axisymmetric problem and orthotropic material are 
defined by the following equation [9]: 
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where αz , αr , αθ  are the coefficients of thermal expansion 
along the corresponding axes for orthotropic material, and ΔT 
is the temperature difference between strained and strainless 
states. 

For linear elasticity, the stresses are related to the strains by 
the constitutive law (Hooke's law): 

})0{}]({[}{ εεσ −= D      

where [D] is a matrix of elastic constants (Young's 
modulus, Poisson's ratio, shear modulus), and {ε0} is the 
column vector for the initial thermal strain. 

The interactions of the three fields increase the problem 
complexity and finally, the algorithm complexity.  The 
algorithm complexity can be reduced considering some 
physical properties of the materials. It can be used a 
predefined temperature profile of a material for updating the 
magnetic field at specified temperatures. For example, at 
Curie temperature the material properties change dramatically 
[4]. After this critical point the magnetic field equation must 
be updated.  

VII. CONCLUSIONS 
The problem of coupled fields in electrical engineering is a 

complex problem in terms of computing resources. In practice 
the coupled fields are treated independently in some 
simplified assumptions. The accuracy of the numerical 
computation is poor. With the new architectures, a 
multidisciplinary research is possible. Some iterative 
procedures were presented with emphasis on the coupled 
problems. 

Domain decomposition offers an efficient approach for 
large-scale problems or complex geometrical configurations. 

This method in the context of the finite element programs 
leads to a substantial reduction of the computing resources as 
the time of the processor. In our target examples, especially in 
induction heating devices, we can do a dynamic domain 
decomposition. It is obviously that the  penetration depth of 
the magnetic field in the workpiece, δ,  depends on the 
frequency and electrical conductivity. Practically the depth 
depends on temperature so that the depth differes from a time 
step to other.  

In coupled problems a hierarchy of decomposition can be 
defined with a substantial reduction of the computation 
complexity. 

The finite element method was used for the numerical 
result.  The program Quickfield [9] was used in our target 
examples. 
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