
INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 159

Abstract— The paper presents a method for solving the general

Multi-Attribute Decision Making problems, by distributed and
parallel computing, with the OPTCHOICE software. One presents
the scheduling and load balancing algorithm for concurrent solving
of problems sets on a given number of parallel computers. An
analysis on the construction of such a problem is made; in this way, a
decomposition tree having the decision-makers on the first level, the
states of nature on the second level, and the attributes of the problem
on the third level is emphasized. Corroborated with the analysis of
the problem’s data, the above results conduct at the conviction that a
parallel algorithm for solving the general problem, starting from a
particular problem, is possible. At each tree’s level one can state
independent particular sub-problems that are solved in parallel, the
sub-problems at a superior level waiting for the solutions of the sub-
problems at the current level. Finally, the classical TOPSIS method is
presented running in the parallel and multi-level context.

Keywords— Parallel Computing, Load Balancing Algorithms,
WEB Enabled Optimization, Pervasive Software, Multi-Attribute
Decision Making.

I. INTRODUCTION

owadays, the Internet is undergoing a fast development of
services. Web enabled optimization is a new trend in

treating Operations Research (OR) problems over the Internet
[1], [2], [3], [4], [5]. Part of this new trend, the OPTCHOICE
software is one of the first Internet-based programs designed to
describe Multi-Attribute Decision Making (MADM) [6] [7]
mathematical models, define Optimal Choice Problems
(OCPs) [8] on them, and solve these problems in informatics
performance conditions [9]. One can say that any formulation

Manuscript received March 7, 2006: Revised version received March 31,
2007. This work was financed in part by the Romanian Research and
Education Ministry – see the 463/5.01.2000 contract. Ones bring many
thanks to the Petrobrazi Informatics Department, especially to Mr. Dorian
Cucuteanu, the department head. He allowed us to work there with a big
team, composed by researchers but also by students from Politehnica
University and Economic Studies Academy, leading us among the inherent
difficulties in stating and solving the real plant's SCM problems. Many thanks
also to the Supply Department staff for understanding our scientific goal and
for the help in gathering the data necessary for conducting eloquent
experiments.

C. Resteanu is with the National Institute for Research and Development
in Informatics, 8-10 Averescu Avenue, 011455, Bucharest 1, Romania, phone
+40-21-3160736/ext 162, fax +40-21-3160539, e-mail resteanu@ici.ro

M. Andreica is with the Economic Studies Academy, 6 Romana Square,
010572, Bucharest 1, Romania, phone +40-21-6193758, fax +40-21-
2116099, e-mail marinandreica@yahoo.com

of a problem that involves choosing an object from a discrete
objects set, according to an algorithmic procedure, leads
naturally to a MADM model. This is one of the reasons this
area’s software has always been keeping pace with the
progress registered in informatics. This section presents the
OPTCHOICE software, which may be characterized as a
pervasive optimization service. Recall that an Internet service
is pervasive if it is available to any client, free of charge,
anywhere, anytime and without delay [10].

The MADM mathematical models used by OPTCHOICE
are general, in conformity with the decision science practices.
In these models, the main entities are represented by decision
makers, states of nature, objects, and attributes, whereas the
link entities are represented by objects’ characteristics,
importance of main entities and a set of production rules for
unstructured information acquisition and processing. The
attributes are also general, being of cardinal, ordinal, Boolean,
fuzzy or random variable type. It is common to impose the
additional condition that the attributes are mutually
independent variables. These mathematical models benefit
from knowledge-based computing [11] to avoid their
inconsistencies (syntactically and semantically incorrect /
incredible / incomplete model definition). Defining an OCP in
OPTCHOICE involves establishing its maximal range in
rapport with the model description and specifying the solving
methods to be used. The goal of an OCP is to select an object
such that the attributes under consideration to be satisfied in an
optimal way. This problem can have a high level of complexity
even when only a few attributes are considered. For a large
number of attributes, the complexity of the problem increases
significantly. This is a consequence of the fact that, in most
real-life situations, the attributes are conflicting, in the sense
that one object can rank high with respect to one of the
attributes but low with respect to another attribute.

There are essentially two classes of OCP solving methods:
first, methods that produce explicit object evaluations (by
using a set of such methods, one associate to each object an
evaluation vector) and second, methods that produce object
characteristics (these analysis methods associate to each object
a matrix of discriminators). OPTCHOICE implements ten
methods from the first class, namely the maximax, maximin,
non-dominance, linear utility function, scores, diameters,
Onicescu, Pareto, TOPSIS, TODIM methods, in conjunction
with several normalization methods, and six methods from the
second class, namely methods of dominance analysis. Since

Distributed and Parallel Computing
in MADM Domain

 Using the OPTCHOICE Software

Cornel Resteanu and Marin Andreica

N

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 160

each evaluation method reflects a different point of view about
optimality, it is clear that applying different methods to the
same set of data will often lead to different solutions. In this
way, an additional type of inconsistency can occur, i.e.
multiple solutions, which may lead to a decisional dilemma.
An inferential procedure implemented in OPTCHOICE
addresses this drawback; it proposes a global solution by
processing the results stored in the evaluation vector and in the
matrices of discriminators.

In order to understand how OPTCHOICE works, one starts
with its hardware and software platform presentation. Like all
advanced software working on the Internet, OPTCHOICE has
two functional blocks. The first block, installed on a powerful
MySQL, MAIL and WEB server, is written in PHP and
CLIPS, and addresses registration in the system and models
building as human jobs. The second block, installed on a
variable number, from 4 to 10, of Symmetric Multi-Processors
(SMP), is written in C++ and OpenMP [12], and addresses
generating and solving problems as automatic jobs. Both
blocks function under WINDOWS 2003. Installed on the

server, an automation program, whose role is to exclude the
human intervention in the computing and communication
processes, links these two blocks.

After the procedure of logging into the system is complete,
one can proceed to build MADM models. The log-in
procedure is not overly restrictive as, by design, its role is not
to discourage using OPTCHOICE. Building and validating
MADM models involve tens of users working simultaneously
with OPTCHOICE on the Internet. This type of parallelism,
which is named concurrency on server, is not discussed in this
paper. However, one mentions that the maximum number of
users who can work concurrently on server is 100. This is a
limitation generated by the type of server.

If 100 OPTCHOICE users are dealing over the Internet, at
the same time, with problems involving 10 decision-makers, 5
states of nature, 250 objects and 50 attributes, which are
considered medium-size problems by most people, it is
obvious that, without an efficient technical platform and an
effective parallel computing technique, the main characteristic
of OPTCHOICE, namely pervasiveness, is compromised.

Capture 1. The OPTCHOICE software for MADM modeling and solving optimal choice problems

II. LOAD BALANCING ALGORITHM FOR THE SET OF OCPS

LAUNCHED FROM THE INTERNET

Subsequent to the installation of the software modules on
the computing equipment, the MADM database’s modules on
the MySQL, WEB and MAIL server, and the optimization
modules on the multi-processors hosting the OCPs solving, the

automation program must be lunched. This program, named
BF1-BF2_Scheduler, is designed to read the identification
coordinates of the problems to be solved, launch the solving
processes, manage the executions optimally and track the
completions of the executions. From the point of view of the
connection with the first computing system, the scheduler only
acts on the entity WAITING_LINE, which contains only the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 161

codes of the problems and the status of the associated solving
processes; from the point of view of the second computing
system, the scheduler only uses its internal memory for
processes launching.

Basically, the program executes an infinite cycle which
consists of sequential steps, iterated always from the first step.
If idle for an established time, the scheduler becomes dormant
until a waking event is received from the first computer. Such
an event occurs when the coordinate of a new problem appears
in the waiting queue. The parameters of the scheduler, namely
the elapsed time since the last ending of a solving procedure,
after which the scheduler goes dormant, and the maximum time
allocated to a solving procedure are handled by the system
administrator who fixes them in the memory.

Step 0: The dormant scheduler wakes up if a waking event is
received from the server;
Step 1: Determine the first problem to be solved (with
Status=0) in the waiting queue;
Step 2: Delete from the waiting queue all the duplications of
this problem to prevent multiple executions on the same data
set of the problem;
Step 3: Launch the execution of the problem determined at
Step 1 on the multi-processor with the easiest load (mod
Status=1);
Step 4: Delete from the waiting queue all the problems whose
executions have been successfully completed (Status=2, status
modified at the end of each problem solving process by the
hosting multi-processor);
Step 5: For each problem in execution (with Status=1),
measure the elapsed time since launching its execution and if
this time exceeds the maximum admissible value, create
conditions for stopping, check the running troubles, and re-
launch its execution;
Step 6: Measure the time elapsed since the last operation
executed to the benefit of the OPTCHOICE system and if it
exceeds the maximum admissible value, then command the
scheduler to return to Step 1 and, if no problems are identified,
go in dormant state.

This algorithm solves the problem of uniform computing
distribution over the set of multi-processors hosting the OCPs
solving but do not any time reduction on a multi-processor
level. For this purpose it is necessary to exploit the parallelism
facility of each multi-processor. In the folowing will be shown
how this thing is possible.

III. MADM GENERAL MODELS BUILDING AND THE
OPTCHOICE RELATIONAL DATABASE

It is well known that every parallel computing has at its base
an analysis on data structures and an analysis on algorithms’
structure. In this section the analysis on data will be done.

A. MADM General Models Building

Building a MADM model in a given domain requires
establishing the decisional context in which the optimal object

*o will be selected from a set O = {][io | i,1i } of objects.

As a first step in the process of building a model, the manager
of the corresponding domain establishes the set of decision

makers D = { []d l | 1l , l }, i.e. the persons who will have

responsibilities in the process of building and validating the
model, as well as in generating and solving OCPs. Typically,
the decision makers discuss and aggree on what their absolute

weights W_D={ _ []w d l | l,1l } will be, with
1

_ [] 1
l

w d l

l

.

However, if a consensus is not reached, then all the decision
makers provide their own vectors of weights and
OPTCHOICE will calculate automatically the absolute weight
of each decision maker.

The first task of the decision makers is to establish,
independent of each other, the set of states of nature S =

{][ks | k,1k }. A state of nature is defined as the totality of

conditions defined on the given domain which determine, for
the objects taken into consideration, certain values of
attributes. It is clear that when a new state of nature is entered
into the system by a decision maker, the other decision makers
learn about it and contribute to its good definition. The
absolute weights of the states of nature, W_S =

{ _ []w s k | 1,kk }, with
1

_ [] 1
k

w s k

k

, are determined

through a process similar to the process of determining the
absolute weights of the decision makers, i.e. either directly, by
consensus, or by using OPTCHOICE.

The second task of the decision makers is to identify the set
of attributes A = {][ja | j,1j }. The attributes are
characteristics of the objects in terms of which they are
evaluated in order to determine the optimal object. This set is
obtained as the union of the subsets of attributes specified by
each decision maker. The absolute weights of the attributes,

W_A = { _ []w a j | 1, jj }, with
1

_ [] 1
j

w a j

j

, are

determined according to the recipe already described for
decision makers and states of nature.
For each attribute, one gives its interval of variation (lo_a[j],
up_a[j]) and the optimization sense i.e. min or max.
Eventually, the decision makers must enter the components
lo_a [j] lkijc up_a [j] of the matrices lkOA , for each

element of the cartesian product D x S. The generic element

lkijc represents the value of the atribute j of the object i

corresponding to the state of nature k and determined by the
decision maker l. The four-dimensional array obtained in this
way is reduced to lxk two-dimensional arrays (matrices) for a
couple of reasons: first, most people are familiar with matrix
manipulations, and second, the methods of solving problems
generated by reduced to one decision maker and one state of
nature MADM models are based on two-dimensional model.
Initially, these matrices have a hybrid character, being divided,
intuitively speaking, into two areas: the well-defined area, in
which every attribute has well-defined values for every object,
for every state of nature, and in the opinion of every decision
maker, and the ill-defined area, in which the values of certain
attributes in relation to certain objects, in certain states of
nature, are either unknown or they cannot be determined by
some of the decision makers, possibly by most of them. One

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 162

can speak of a well-defined area and an ill-defined area
because, as seen above, it is up to the human factor to provide
the matrix entries. Incompleteness is an error easy to detect in
the model. But the human factor is also at the base of other
types of errors, more insidious, regarding incorrectness and
incredibleness. Syntactic or semantic errors appear
infrequently, due to strong validation procedures incorporated
in OPTCHOICE. The productions set P (expressed in the
general format IF cond1 cond2 … condm THEN act1,
act2, ..., actn), created by independent experts and working on
model data, is used to remove any kind of inconsistency.

B. MADM General Models’ Database

The projection of the MADM model, generator of OCPs, on
data structures organized and managed with an SGBD is called
an OPTCHOICE database. Relational databases are the most
frequently used type of databases in mathematical modeling
and in this case are the only recommended databases.

The OPTCHOICE database contains the main entities and
the link entities. While the main entities describe specific
objects of the model (for example: decision makers, states of
nature, objects, attributes, problems etc.), the link entities
describe relations between two real objects (for example:
states of nature – objects, objects – attributes, problems –
decision makers etc.). It is to notice that the database contains
not only fields corresponding to the MADM models but also
fields that correspond to the OPTCHOICE problems to be
generated on the base of existing data.

The following is a description of the entities from the
OPTCHOICE database; in each relation, the boldface terms
are primary keys and the italic terms are external keys.

The main entities are: MODELS_CATEGORIES
(Model_category, Name, Description, Opening_date,
Last_update), MODELS (Model, Model_category, Name,
Opening_date, Last_update), PROBLEMS (Problem, Model,
Name, Opening_date, Last_update, Last_solving),
NORMALIZATIONS (Normalization, Name), METHODS
(Method, Name), DECISION_MAKERS (Decision_maker,
Model, Name, Affiliation, Function, Weight),
STATES_OF_NATURE (State_of_nature, Model, Name,
Description, Weight), ATTRIBUTES (Attribute, Model,
Name, Measurement_unit, Weight, Sense, Lower_limit,
Upper_limit), FUZZY_SCALES (Name, Attribute,
Left_abscissa, Top_abscissa, Right_abscissa), OBJECTS
(Object, Model, Name, Description).

Link entities are: DECISION_MAKERS - STATES_OF_
NATURE - ATTRIBUTES - OBJECTS (Decision_maker,
State_of_nature, Attribute, Object, Value), PROBLEMS –
NORMALIZATIONS (Problem, Normalization),
PROBLEMS – METHODS (Problem, Method), PROBLEMS
- DECISION_MAKERS (Problem, Decision_maker),
PROBLEMS - STATES_OF_NATURE (Problem, State_of_
nature), PROBLEMS - ATTRIBUTES (Problem, Attribute),
PROBLEMS - OBJECTS (Problem, Object), PROBLEMS -
NORMALIZATIONS - METHODS – OBJECTS (Problem,
Normalization, Method, Object, Evaluation).

An entity without any link to another main entity in the
database is WAITING_LINE (Problem, Status), whose role is
to dynamically show the problems that must be launched in
execution. The entities for OPTCHOICE administration will

be not presented here, because this subject is beyond the scope
of this paper.

The ensemble of the database entities and relations is
contained in the following relational diagram:

Diagram 1. Structure of the OPTCHOICE database

It is obvious that an analysis on OPTCHOICE database
brings the first ideas about the feasibility of a parallel
algorithm that must be conceived later. More precisely, the
hierarchical structure, observed in the above diagram, make
possible to separate data with the same structure and
significance as entries for independent repeating processes.
This is a valuable hint for continuing the analysis.

IV. PARALLEL COMPUTING FOR AN OCP

When generating OCPs, the input is a consistent MADM
model in the database together with a set of instancing
parameters, and the output consists of a set of scalars, vectors
and arrays structured in a way that facilitates solving the
problem by parallel computing. For a problem, the input
parameters add to its name the decision makers, the states of
nature, the attributes, the objects and the solving methods
involved. OCPs that involve multiple decision makers and
multiple states of nature represent natural extensions of single
decision maker / single state of nature problems. While in the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 163

past different approaches for these extensions have been
considered, in this paper the problems are approached unitarily
in all their instances: with multiple decision makers and
multiple states of nature, with multiples decision makers and a
single state of nature, with a single decision maker and
multiple states of nature, and with a single decision maker and
a single state of nature. When some problems are concurrently
generated, their solving is automatically triggered. After
solving, the solutions are stored in the OPTCHOICE database
and so, they are available to the users. It is necessary that, for
each problem, the time between the moment when a solving
process is launched and the moment of the query for
displaying the solution exceeds the solving time. Therefore,
the waiting for solution is excluded.

A. Parallel algorithm’s description

 As shown before, a repetitive multi-level structure in the
MADM models facilitates parallel computing. The decisional
framework for evaluating objects is defined hierarchically,
decision makers – states of nature – attributes, which naturally
yields the possibility of defining a method of decomposition
[13], [14].

Solving a general OCP with multiple decision makers and
multiple states of nature involves the construction of a special
routed tree. The root of this tree, the 0 level, is represented by
the well-defined model with an instance, i.e. the generated
problem; at level 1 in this tree are the decision makers d1,
d2,…, dl; at level 2 are the states of nature s1, s2,…, sk; finally,
the at terminal level, level 3, are the attributes a1, a2,…, aj.
Note the main property of this routed tree is that, for a fixed
level, every node situated on this level has the same children as
number and significance. This claim is supported by the fact
that if at the begining each decision maker from the set D
establishes, independent of the other decision makers, the sets
of states of nature and attributes that he/she finds relevant for
modeling, eventually all decision makers aggree on the same
set of states of nature S and the same set of attributes A, each
decision maker being expected to assign values to all the
attributes and in all the states of nature considered in this tree.
An element at the leafs’ level of the tree, denoted in the figure

by Cilkj (where i,1i , l,1l , k,1k , j,1j), in which
the last three subscripts follow the hierarchy defined in the

tree, has the following significance: Cilkj is the value of the
attribute a[j] of the object o[i], in the state of nature s[k], given
by the decision maker d[l]. In addition,

_ [1], _ [2], ..., _ [],w d w d w d l - the weights of decision ma-

kers, _ [1], _ [2], ...,w s w s _ []w s k - the weights of states of na-

ture and [1] [2] []_ , _ , ..., _w a w a w a j - the weights of attri-
butes are arranged on the tree levels according to the
established hierarchy.

Note that if, for instance, d[1] and s[1] are fixed, then one
obtains a problem which is solved by using only the entities O

= { []o i | i,1i } and A = { []a j | j,1j }, and the set of

attributes weights W_A = { _ []w a j | j,1j }, i.e. a classical

single decision maker and single state of nature OCP. This
problem represents a part of the array depicted in Figure 1.

Just as this problem was built, if one considers the cartesian
product of the sets of decision makers and states of nature,
then one can construct lxk two-dimensional problems of size
(ixj) which can be solved separately but in parallel (see again
Figure 1), reducing this level of the graph. Solving these
problems yields solutions which are stored into the array

{ Cilk } (where i,1i , l,1l , k,1k), in which the last two
subscripts are according to the established hierarchy. This
array is transferred to the reduced tree at the states of nature
level, which, in this way, becomes the new terminal level.
Similar to the previous level, one also takes into consideration
the weights of the states of nature W_S = { _ []w s k |

1,k k }(see Figure 2).
In order to preserve the methodological coherence, as done

at the previous step, one continues by solving in parallel l two-
dimensional problems of size (ixk) and the tree is reduced
again by one level. The solutions, which are stored in the array

{ Cil } (where i,1i , l,1l), are transferred to the reduced
tree at the decision makers level along with the decision

makers weights W_D = { _ []w d l | 1,l l }(see Figure 3). In
this way, one last two-dimensional problem of size (ixl) needs

to be solved. Solving this problem produces a solution { Ci }

(where i,1i) (see Figure 4, and the corresponding final
values called merits).

This decomposition method is very prodigious because it
naturaly generates all the benefits of treating OCPs by parallel
computing. Using the same data structures and dimensions
and, for a fixed solving method, the same algoritm in all the
nodes and on all the levels, are elements that improve the time
perfomance in parallel computing because the parallel
processes take aproximately the same amount of time and, as a
consequence, the waiting time between processes is
insignificant. On one level, the generating of sub-problems and
their launching in execution are made from left to right.

Remarks:
1. At each level of solving sub-problems, one needs to take
into account the weights of the main entities (attributes, states
of nature, and decision makers); if these weights are not
present in the problem data, they are set equal with each other;

2. The intervals of variation and the optimization sense
(minimum or maximum) of the attributes are normalized so
that each attribute variation interval becomes [0, 1] and each
optimization sense becomes maximum. This ensures that the
problems are in the same class at each level of solving;

3. Following the dimension reduction given by attributes,
there are two alternative approaches to continue solving the
initial problem: a first possibility is to aggregate the results
corresponding to each state of nature taken individually, for all
the decision makers; a second possibility is to aggregate the
results for all the states of nature, for each individual decision
maker. Since the approach is based on the principle of solving
the initial problem from bottom to top and from left to right (as
it is usual in graph theory which in this case is in resonance
with decision theory), the later alternative is preferred, so that

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 164

Figure 1. Attributes’ Level Processing

Figure 2. States of Nature’s Level Processing

Figure 3. Decision Makers’ Level Processing

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 165

Figure 4. Problem’s Optimal Solution

the solving method is concordant with the problem
decomposition idea;
4. If one of the levels, namely levels 1 or 2, is reduced to a
single node, the procedure is the same, the two-dimensional
algorithm being capable of approaching any data
configuration;
5. With the above comments, the algorithm is coherent and can
be used in two different instances, both decisionally correct:
a) from bottom to top, where the same MADM solving method
is used on each level,
b) different MADM solving methods are used on different
levels, if the decision makers find this appropriate.

Solving a single OCP problem involves a sequence of three
distinct operations. The first operation is to generate the
problem in the memory of the computer chosen for hosting the
solving processes, starting from the coordinates of the problem
from the waiting queue and from the data stored in the
database. The data configuration of the problem in the internal
memory of the solver's host differs significantly from the data
configuration in the database. This difference is normal, as the
data are organized in the external memory in a way that allows
optimal data storing / retrieving, while in the internal memory
the data are organized in a way that facilitates executions of
algorithms and computations.

In addition, in this case the model's data are transformed
into the problem's data by applying one normalization method.
The methods of normalization are mathematical methods that
perform an initial processing of the model's data. This
operation has no significance for the user, but it is required by
most solving methods of the OCPs. A function, usually linear,
is used for each attribute such that the least favorable value of

the attribute _ []lo a j maps to the normalized value 0,

whereas the optimal value of the attribute _ []up a j maps to
the normalized value 1. In this way, all the attributes are
transformed to have a maximal optimization sense.

The internal memory of the OCPs solver's host computer
will contain, at this stage, the data necessary and sufficient for
solving the problem according to its definition:

- WProblem,
- MM, WMethod(MM), WMWeight(MM),
- DD, WDecident(DD), WDWeight(DD),
- SS, WState(SS), WSWeight(SS),
- AA, WAttribute(AA), WAWeight(AA),
- OO, WObject(OO), WEval(OO, MM),
- WValue(DD, SS, AA, OO).
- Problem code,
- For the decisional context: # of entities, entities, weight
of entities,
- For the decisional variables: # of objects, objects,
objects’ evaluation,
- For the characteristics’ array: normalized values.

The second operation is to solve the problem by using the
method selected from the set of available solving methods. It is
well known that the multi-processor is of the SMP-type and so,
the method work on the data block described above. Assigning
to PP, the cardinal of the processors’ set, for each level in the
described routed tree, one can solve in parallel PP two-
dimensional problems. Repeating the procedure for all levels,
the problem is solved for a given method. In order to illustrate
what a processor does for a certain solving method, a well-
known method, in the format of a procedure / function /
subroutine / future thread, written in a pseudo-code, is
presented next. Its simplicity assures a minimum running time.

B. Example Using TOPSIS Method
Since, by normalization, the optimization sense is maximal

for all the attributes, the ideal point is the vector of dimension
CC with all the components equal to 1. The least preferable
point is the vector of dimension CC that has all the
components equal to 0. For each object O, with O=1,OO, the
geometric distances to these two points are calculated by
taking the square roots of the sums (over C) of the squared
differences (1-WNValue(C,O))**2 and (0-WNValue(C,O))**2,
respectively. These distances, weighted by WNWeight(C), are
used to construct directly a merit of each object, which is
stored in the vector WNValue(0, OO).

PROCEDURE_BF2_TOPSIS (CC, OO,
 WNValue(CC, OO),
 WNWeight(CC))
BEGIN PROCEDURE
INTEGER C, O
REAL WDistancePlus, WDistanceMinus, WNValue(CC, OO),
WNWeight(CC)
DO FOR O=1,OO
WDistancePlus=0
WDistanceMinus=0
DO C=1,CC
 WDistancePlus= WDistancePlus +
 + WNWeight(C)*(1-WNValue(C, O))**2
 WDistanceMinus= WDistanceMinus +
 + WNWeight(C)*WNValue(C, O)**2
ENDDO
WNValue(0,O)= WDistanceMinus / (WDistanceMinus +
WDistancePlus)
ENDDO
ENDPROCEDURE
The parallel algorithm
PROCEDURE_BF2_PARALLEL_SOLVING_OF_ AN_OCP
(WProblem,
 DD, WDecident(DD), WDWeight(DD),
 SS, WState(SS), WSWeight(SS),

 AA, WAttribute(AA), WAWeight(AA),
 OO, WObject(OO), WEval(OO),
 WValue(DD, SS, AA, OO),
 CC, OO, NValue(CC, OO),
 WNWeight(CC))
BEGIN PROCEDURE

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 1, 2007 166

INTEGER DD, SS, AA, CC, OO, PP,
WDecident(DD),

 WState(SS),
 WAttribute(AA),

 WObject(OO)
REAL WValue(DD, SS, AA, OO)

 WDWeight(DD),
 WSWeight(SS),
 WAWeight(AA),
 WEval(OO),

READ FROM OPTCHOICE DATABASE:
WProblem,
DD, WDecident(DD), WDWeight(DD),
 SS, WState(SS), WSWeight(SS),
AA, WAttribute(AA), WAWeight(AA),
OO, WObject(OO), WEval(OO),
WValue(DD, SS, AA, OO),
CC, OO, NValue(CC, OO),
WNWeight(CC)
* Level 3
BUILD
WNValue(AA, OO) FROM WNValue(DD, SS, AA, OO)
DO IN PP - PARALLEL FOR A=1,DD*SS
 PROCEDURE_BF2_TOPSIS(AA, OO,
 WNValue(AA, OO),
 WAWeight(AA))
 WAIT FOR LAST PROCESS
ENDDO
* Level 2
BUILD WNValue(SS, OO) FROM WNValue(AA, OO)
DO IN PP - PARALLEL FOR D=1,DD
 PROCEDURE_BF2_TOPSIS(SS, OO,
 WNValue(SS, OO),
 WAWeight(SS))
 WAIT FOR LAST PROCESS
ENDDO
* Level 1
BUILD WNValue(DD, OO) FROM WNValue(SS, OO)
DO PROCEDURE_BF2_TOPSIS(DD, OO,
 WNValue(DD, OO),
 WAWeight(DD))
ENDDO
* Solution extraction and database loading
BUILD WNValue(OO) FROM WNValue(DD, OO)
UPDATE OPTCHOICE DATABASE WITH WNValue(OO,
TOPSIS) ASSOCIATED TO WProblem
ENDPROCEDURE

For a single OCP it is recommended to run more then one
solving method. Sometimes the solutions can be different. This
conducts to a decisional dilemma. OPTCHOICE must have a
procedure for finding the global optimum as the final step in
solving the OCP. Using the optimal solutions given by the
mathematical methods used, which are stored in the matrix
WEval(OO, MM), the weighted average of the columns of this
matrix is calculated, with the weights stored in the vector of
method weights, and the amended result (by the information
from the matrix of discriminators) is stored in the column
vector WEval(OO, 0) as the global optimum.

After multi-solving the OCP, the optimal solutions are
stored in the database. Starting with the data in the multi-
processor memory, one accesses the server's database, and its
entities PROBLEMS – NORMALIZATIONS – METHODS -
OBJECTS and WAITING_LINE are updated. Throughout the
solving process of a problem, the user must be warned that the
solving process is being executed, specifying the elapsed time.

V. CONCLUSION

The natural hierarchical structure of a general MADM
model allows solving OCPs, defined on this model, by parallel
computing. Conceptually, the mathematical MADM model is
represented as a tree in which the levels correspond to main
entities (decision makers, states of nature, and attributes). The
solving method implemented in OPTCHOICE divides the
problem into sub-problems at each level of the tree. When all
the sub-problems at a terminal level of the tree are solved, the
terminal level collapses, and the resulted solutions are fed as
data to other sub-problems at the next level, which becomes
the new terminal level. While OPTCHOICE is flexible enough
to allow applying different solving methods at different levels,
it is recommended to apply the same solving method
systematically, at all levels.

The OPTCHOICE software belongs to a couple of
integrated instruments for promoting the enhanced using of the
MADM domain. Beside this pervasive service for MADM
modeling and OCPs generating and solving, a MADM e-
course is under construction. One of the modules of this e-
course is a tutorial on OPTCHOICE. Therefore, the designers
intend to offer the opportunity to help users to become familiar
with the software before using it for real-life problems.

The OPTCHOICE’s design and programming consists of 7
analysts and programmers. The work started in 2006 and its
completion is scheduled for 2008. The partial results are
encouraging, the simulations made for an incomplete set of
MADM solving methods, in a static context, showing good
results.

REFERENCES

[1] http://www-neos.mcs.anl.gov/

[2] http://www.sce.carleton.ca/faculty/chinneck /StudentOR /html

[3] http://home.ubalt.edu/ntsbarsh/zero/scientific Cal.htm #rmenu

[4] http://plato.la.asu.edu/guide.html

[5] Cohen M.-d., Kelly, C.B., Medaglia, A.L.: Decision Support Systems with
Web-Enabled software. Interfaces 31(2), (2001), pp. 109-129.

[6] Hwang, C-L., Yoon, K.: Multiple Attribute Decision Making. Springer-
Verlag, Berlin Heidelberg New York (1981).

[7] Hwang, C-L., Lin, M.J.: Group Decision Making under Multiple Criteria.
Springer-Verlag, Berlin Heidelberg New York (1997).

[8] Resteanu, C., Filip, F.G., Ionescu, C., Somodi, M.: On Optimal Choice
Problem Solving. In Sage, A.P., Zheng,W., (eds.): Proceedings of SMC
’96 Congress (Beijing, October 14-17). IEEE Publishing House,
Piscataway NJ (1996), pp. 1864–1869.

[9] Dongarra J., Madsen, K., Wasniewski, J. (Eds): Applied Parallel
Computing: State of the Art in Scientific Computing. Lecture Notes in
Computer Science, Springer; 1 edition (April 11, 2006)

[10] http://www.wordreference.com/definition /pervasive

[11] Giarratano, J.C., Riley, G.D.: Expert Systems: Principles and
Programming. 3rd edition. PWS Publishing Company, Boston, (1999).

[12] Quinn, M.: Parallel Programming in C with MPI and OpenMP. McGraw-
Hill Science / Engineering/Math; 1 edition (2003).

[13] Jordan, H.F., Alaghband, G., Jordan, H.F.: Fundamentals of Parallel
Processing. Prentice Hall (2002).

[14] Grama, A., Karpis, G., Kumar, V., Gupta, A.:
Introduction to Parallel Computing: Design and Analysis of
Parallel Algorithms. Addison Wesley (2003).

