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Abstract—As electronic techniques is continuous improved 

rapidly cameras or video camcorders used for image retrieval 
technology and development become digitalized. The color of the 
photographs would look very different due to differences in light 
projection illumination when we take a picture. Human eyes are able 
to automatically adjust the color when the illuminations of the light 
source vary. However, the most frequently used image sensor, charge 
coupled device, CCD device can not correct the color as human eyes. 
This paper presents a hardware-software co-design method based on 
Lam’s automatic white balance algorithm, which combines both Gray 
World Assumption and Perfect Reflector Assumption algorithms. The 
execution steps of Lam’s algorithm were divided into three stages. The 
hardware-software co-design and analysis for each stage was realized. 
Three factors including processing time, Slices and DSP48s of 
hardware resources were used to formulate the objective function, 
which was employed to evaluate the system performance and 
hardware resource cost. Experimental results shows suitable partitions 
of hardware-software co-designs were achieved. An embedded 
processor, MicroBlaze developed by Xilinx and a floating point 
processor were used to deal with the software part of the algorithm. 
The hardware part of the algorithm was implemented using an 
IP-based method. It is able to reduce the memory and CPU resources 
of PC as well as to have the properties of easy modification and 
function expansion by using such system on programmable chip 
architecture. 
 

Keywords—Automatic white balance, embedded processor, 
hardware-software co-design, system on a programmable chip. 

I. INTRODUCTION 

RAY World Assumption (GWA) [13] and Perfect 
Reflector Assumption (PRA) [14] are two common 

methods used to realize automatic white balance algorithms. 
GWA can offer a better effect for photographs with rich color 
environment and background due to its characteristics. 
However, processed images may have an undesirable shift in 
the entire color range when the acquired images are with a 
predominant color. On the contrary, the images with a 
predominant color can be processed without a cast as people 

can see if PRA is applied. However, PRA may not correctly 
deal with the automatic white balance of images with 
multicolor. The processed images may have an undesirable 
shift in the entire color range. In 2005, Lam proposed an 
automatic white balance algorithm which combines both GWA 
and PRA. The algorithm can deal with automatic white balance 
of images with both multicolor and a predominant color 
correctly [1]. 
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The paper is organized as follows: In Section II, we review 
the automatic white balance algorithms. Then, in Section III, 
we describe our implementing methods for Lam’s algorithm, 
including hardware-software partitioning and the evaluation of 
the cost functions. In Section IV, experimental results are 
presented to show the implementations and a brief comparison 
is discussed. Finally, a conclusion is given in Section V. 

Three approaches may be used to construct image retrieval 
platforms dealing with white balance algorithms. The first 
approach contains storing acquired images into memory and 
executing specific software program in computer hardware 
resources to process the images. Operating systems and 
application programs as well as some memory and CPU 
resources are required when this method is applied. The second 
approach contains some additional image processing ASICs on 
the image retrieval platforms. Such ASICs can be applied to 
deal with images processes. However, the image processing 
functions is limited by their specifications. The third approach 
is to construct image retrieval platforms using SoPC. This 
method usually contains field-programmable gate array (FPGA) 
chips and embedded processors with Intellectual Property (IP) 
based hardware designs. This design methodology may not 
consume large amount of memory and CPU resources of PC as 
well as to have the properties of easy modification and function 
expansion, which can not be achieved if pure hardware 
architectures are used. Some ICs may be replaced by such 
SoPC architecture to contain their functions and reduce the 
difficulty of the PCB designs [2]. 

In this research, the Xilinx’s ML402-Virtex-SX35 
development board was used. The embedded processor is using 
MicroBlaze Soft Core developed by Xilinx. A floating point 
implementation was used to deal with the software part of 
Lam’s algorithm. The hardware part of Lam’s algorithm was 
implemented using an IP-based design.  

G 

Wen-Tzeng Huang is with the Electronic Engineering Department,  National 
Taipei University of Technology, Taipei, Taiwan (e-mail: 
wthuang@ntut.edu.tw).  

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 223



II. PROCEDURE FOR PAPER SUBMISSION 

Within this paper , , and  are used to denote the 
red, green, and blue values after image processing as well as 

, , and  are used to denote the red, green, and blue 

values before image processing, respectively. 
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A. GRAY WORLD ASSUMPTION 

Currently GWA algorithm is one of the most frequently used 
automatic white balance algorithms. The algorithm is based on 
the assumption, “all photographs acquired by cameras are 
colorful images.”. In other words, the occurrence probabilities 
of red, green, and blue pixels of a picture are the same. The gray 
level of a color is composed from the averages of red, green, 
and blue colors. For real situations the shooting pictures are 
usually with colorful enough. It matches the assumption of 
GWA. Therefore, it is necessary to adjust each average of red, 
green, and blue colors to be the same when we use GWA 
algorithm. An image consists of brightness and chromaticity 
information. Human eyes are more strongly sensitive to the 
brightness than to the chromaticity of an image.  
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Equations (1) and (3) show the main computations of the red 
channel [3]. The similar computation is shown in (2). It can be 
used to obtain the blue value for the blue channel [3]. The 
advantage of the GWA algorithm is to have a better recovery of 
the original appearance of the scene when the input images are 
colorful. However, processed images may have an undesirable 
shift in the entire color range when the acquired images are 
with a predominant color. 

B. Perfect Reflector Assumption 

PRA is another famous algorithm to deal with automatic 
white balance. Let us discuss the relationship between lights 
and object colors first. Objects may not show colors themselves. 
However, their colors can be shown through different 
wavelengths of the radiations from the illumination in 
absorption, reflection, or transmission. We could not see any 
object colors if there is no radiation from the illumination. On 
the other hand, the object color is white if all the radiations are 
reflected. Therefore, white color objects or regions are called as 
perfect reflectors. The PRA theory assumes that perfect 
reflectors can be used as the reference value of a white color in 
dealing with an acquired image. The red, green, and blue for a 

white color object inside any color temperature image could be 
the maximum values. To achieve automatic white balance of 
images the perfect reflector may be used as a reference to 
correct other colors. 
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Equations (4) and (6) show the main computations of the red 
channel. The similar computation shown in (5) can be used to 
obtain the blue value for the blue channel [3]. The advantage of 
PRA algorithm is to have a better recovery of the original 
appearance of the scene when the input images are with a 
predominant color. However, processed images may have an 
undesirable shift in the entire color range when the acquired 
images are with multicolor. 

C. 2005 Lam’s algorithm 

Both PRA and GWA algorithms still have the disadvantages 
as mentioned above. Lam proposed an automatic white balance 
method which combines above two algorithms in 2005. In this 
paper the method is called as Lam algorithm. Lam presented 
two equations, as shown in (7) and (8), to deal with automatic 
white balances. The main computations for the coefficients of 
the red channel are shown in (9) to (12). The similar 
computation is shown in (8). It can be used to obtain the blue 
coefficients for the blue channel [1]. 
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Equations contain the processing of the squares of pixels. 
Therefore, the processed images have the property of 
enhancing the contrast of images. As with PRA and GWA, the 
values of the green channel are kept unchanged. Only the 
values of the red and blue channels are adjusted. Lam’s 
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algorithm has the advantages of both GWA and PRA. When 
input images with multicolor the processed images can have the 
effect as well as the GWA method. When input images with a 
predominant color the processed images can not have the effect 
as well as the PRA method. But it removes the saturation 
condition during the GWA algorithm processing. Therefore, 
Lam’s algorithm is better than GWA and PRA to be a suitable 
method used for dealing with automatic white balances of any 
different images. 

 
Fig. 2 The hardware model for obtaining the red channel 

parameters (stage 1) 

III. HARDWARE-SOFTWARE CO-DESIGN 

The execution steps of Lam’s algorithm were divided into 
three stages. The first stage is the pre-processing of the Lam’s 
algorithm. It is to obtain the required parameters of the 
computations for Lam’s algorithm. The second stage is to 
obtain the solutions of the equations of Lam’s algorithm. There 
two common methods to be applied to obtain the solutions. One 
is by Gauss Elimination. Another is by Cramer’s Rule. The 
third stage is to deal with the automatic white balance 
computations for each pixel. The hardware-software co-design 
and analysis for each stage was realized and evaluated. The 
partitions of these three stages are shown in Fig. 1. When the 
computations of the parameters for the first stage were 
implemented using hardware each pixel needs 5 adders, 2 
multipliers and 3 comparators. 

 
 
The hardware implementation of the red channel of the 

data-path model is shown in Fig. 2. The same hardware was 
also used for the blue channel. The similar hardware was used 
for the green channel. There was no summation of multipliers 
inside this similar hardware. 
 

 
The computation of the second stage is to obtain the 

solutions of the linear equations with two unknown. Four 
methods were discussed in this paper. They are Guass 
Elimination Software, Guass Elimination Hardware, Cramer’s 
Rule Software, and Cramer’s Rule Hardware. Floating point 
computations are required for the second and the third stages. 
Therefore, the term computation is for the floating point 
computation. The employed computation blocks were floating 
point operators [7]. 

When Guass Elimination Software was applied 6 dividers, 6 
multipliers, and 6 sub-tractors were required for a frame. The 
hardware implementation of the red channel of the data-path 
model is shown in Fig. 3. The same hardware was also used for 
the blue channel. When Cramer’s Rule Software was applied 
12 multipliers, 6 sub-tractors, and 4 dividers were required for a 
frame. The hardware implementation of the red channel of the 
data-path model is shown in Fig. 4. The same hardware was 
also used for the blue channel. 
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Fig. 3 The hardware implementation of Guass   

Elimination for the red channel parameters and 

 (stage 2) 

Ru

Rv

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Three stages of Lam’s algorithm 
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The computations of the parameters for the third stage is 
write back the pixel data when the software implementation 
were applied. 3 multipliers and 1 adder were required for a 
pixel. The hardware implementation of the red channel of the 
data-path model is shown in Fig. 5. The same hardware was 
also used for the blue channel. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

A. Sixteen hardware-software partitions 

There sixteen partitions were used to implement SOPC to 
deal with the Lam’s algorithm. Three factors including 
processing times, usages of Slices and DSP48 of hardware 
resources were used to formulate a cost function, which was 
employed to evaluate the system performance and hardware 
resource cost. Each Slice contains a set of D-FlipFlop and 4-bit 
programmable logic. Table I shows these sixteen 
hardware-software partitions. 

B. Software operations using floating-point operation units 

The employed algorithm contains floating point operations. 
Micro-Blaze embedded processor 4.0 version [8] can support 
additional floating point operation units. Additions, 
subtractions, multiplications, and divisions of the floating point 
operations can speed-up from 15 to 266 times [9]. In this paper, 

MicroBlaze embedded processor 4.0 version with floating 
point operation units were used for the software 
implementation. 

TABLE I 
SIXTEEN HARDWARE-SOFTWARE PARTITIONS 

 Stage1 Stage2 Stage3

Case1 SW Gauss Elimination SW SW 

Case2 SW Gauss Elimination SW HW 

Case3 SW Gauss Elimination HW SW 

Case4 SW Gauss Elimination HW HW 

Case5 SW Cramer’s Rule SW SW 

Case6 SW Cramer’s Rule SW HW 

Case7 SW Cramer’s Rule HW SW 

Case8 SW Cramer’s Rule HW HW 

Case9 HW Gauss Elimination SW SW 

Case10 HW Gauss Elimination SW HW 

Case11 HW Gauss Elimination HW SW 

Case12 HW Gauss Elimination HW HW 

Case13 HW Cramer’s Rule SW SW 

Case14 HW Cramer’s Rule SW HW 

Case15 HW Cramer’s Rule HW SW 

Case16 HW Cramer’s Rule HW HW 

 

Fig. 4 The hardware implementation of Cramer’s Rule for the 

red channel parameters  and  (stage 2) Ru Rv

 
Fig. 5 The data-path model of writing back 

the pixel data 

 

C. Hardware operations using floating point operators  

The software for realizing the design and synthesis of the 
partitioned hardware is using Xilinx Integrated Software 
Environment 7.1 iSP2. The floating point operators used for the 
second and the third stages are constructed using Floating Point 
Operator v1.0 [7] generated by Xilinx CoreGenerator. The 
width of the buses, data bit definitions, and operator types of 
the floating point operations can be defined using adjusting the 
setup of CoreGenerator. In this paper the format of the floating 
point operations was set as single precision of IEEE-754 
standard. One bit is used as the sign bit. 8 bits are used as the 
exponent. 23 bits are used as the mantissa. 

 

D. Defining an objective function  

An objective function [4] which was used to evaluate the 
system is shown in Eq (13). Two factors were considered in our 
systems. They are processing times and usages of hardware 
resources. To evaluate the usages of hardware resources the 
usages of hardware resources are further divided into the 
usages of Slices and the usages of DSP48 slices (DSP48s). To 
realize the objective function and calculate it for various 
conditions of the partitions time, slices and DSP48s denote the 
maximum values of the sixteen partitions, respectively. Let 
timereal , slicesreal, and DSP48sreal denote the actual value for 
each partition, respectively. 
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After computing the sixteen evaluation values can be 
obtained from the Objective Function. If the evaluation value is 
closed to 1 it means that the system can have the expected 
performance with a faster execution time, a smaller amount of 
Slices, and a smaller amount of DSP48s. The parameters, 

 ,  , and   of (13) are used to achieve a balance of the 

execution efficiency and the hardware resources. They 
represent the specified weights of the execution time, the usage 
of Slices, and the usage of DSP48s. In this research, we set 

2

1
 ,

4

1
 , and 

4

1
 . 

The applications of the automatic white balance algorithms 
of digital images are very wide, such as digital cameras, image 
capturing cards, smart cameras, etc. For different performance 
requirements the three parameters of the objective function can 
be modified to meet the desired constraints. 
 

Objective Function

*

*

48 48
*

48

real

real

real

time time

time

slices slices
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DSP s DSP s
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                  (13) 

 
To enable readers understanding the objective function, an 

example is used to explain it. First the weight ratio of the 
processing time and hardware resources were set to be 1:1 ( see 
Eq (14)). It was not only for obtaining execution efficiency but 
also for reducing hardware resources. Then the sum of the 
weights were set to be 1 (see Eq (15)). Similarly, it is to achieve 
that the weights of Slices and DSP48s of the hardware are the 

same. That is, 
4

1
  and 

4

1
 . 

 

1:1)(:                                          (14)  
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Alternatively, we define a cost function to show the 
increasing percentage ratio of the execution efficiency and the 
cost. It is shown in (16). 

                                                                                                  

real

real real

Cost Function

execution efficiency increment%
=

hardware resource increment%
time-time

time=
slices-slices 1 DSP48s-DSP48s 1

1-( * + * )
slices 2 DSP48s 2

 (16) 

 
 

 
In the cost function the numerator denotes the efficiency 

improvement variation of the execution time. The denominator 
denotes the cost increment caused by the usage increment of the 
hardware resources (Slices and DSP48 slices). The greater ratio 
values mean that the design has shorter execution time and 
lower cost. 

 

IV. EXPERIMENTAL RESULTS 

A typical system architecture was used to implement the 
system for this research [5]. MicroBlaze is a Soft Core 
processor developed by Xilinx. The DDR SDRAM Controller 
is an external memory controller. The On Chip Peripheral 
(OPB) is a peripheral bus. The IP Interface is a bus interface. 
The CameraLink Deserial is an input interface for digital 
cameras. The Region of Interesting (ROI) denotes the some 
region processing circuits. The Auto White Balance Stage1 
HW and Stage3 HW denote the designed circuits for the 
partition for Case14. 

The flow for fetching images is shown in Fig. 6. The first 
step is that the SVS282 camera sent out Bayer arrangement 
CCD sensed images [10] to the Low Voltage Differential 
Signal (LVDS) pin [11] of the ML402 development board by 
CameraLink interface. The second step is that the 
Virtex4-SX35 FPGA image chip executes the function of the 
Region of Interesting (ROI) and stores the fetched images into 
the Double Data Rate Synchronous Dynamic Random Access 
Memory (DDR SDRAM) of the development board to finish 
the image fetching processing. The third step is to execute the 
automatic white balance algorithms. Due to the automatic white 
balance processed images are still CFA color patterns [12]. For 
the verification and the convenience of observations, the fourth 
step is to execute the pixel generation of the differences of 
adjacent pixels using MicroBlaze. Various software-hardware 
partitioning implementations were downloaded into FPGA by 
the Joint Test Action Group (JTAG) interface and estimated 
experimental results are shown in this section. To verify the 
experimental results the images were transmitted to the 
computer via the Universal Asynchronous 
Receiver/Transmitter (UART) interface. Then a Visual Basic 
application program was used to receive the automatic white 
balance processed images at the computer end. They were 
stored into the files using Bitmap (BMP) format. The whole 
experimental environment is shown as Fig. 7. 
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In the experiments the execution time was counted for the 
320 x 240 resolution images. The experimental statistics of 
execution times, Slices, and DSP48s are shown in Figures 8, 9 
and 10 respectively. The evaluation values of objective 
function and the cost function are shown in Table II and Fig. 
11. 

 
 

Fig. 6 The flow of fetching images 
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Fig. 10 Comparisons of hardware resource DSP48 usages of 16 
different partitions and the pure software implementation case 

(Case1) 

CameraLink 
interface

JTAG interface

UART interface

Sigma 17-35mm
Lens

SCV282 Camera

 
Fig. 7 The system connections and the whole experimental 
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    As shown evaluation of the objective function, Case6 and 
Case2 both were rank one. Case10 and Case14 both were rank 
two. Both Case2 and Case6 implemented the computations of 
the first stage using the software. They also implemented the 
computations of the second stage using the software. They 
implemented the computations of the third stage using the 
hardware. However, they used different methods for the 
solutions in the second stage. Their performance is able to deal 
with a 640 k pixels picture per second. It is equal to have an 800 
x 800 resolution. The difference of the evaluations between the 
best case and Case10 and Case14 is only 0.0021. Their 
performance is able to deal with a 2.5 M pixels picture per 
second. It is equal to have a 1580 x 1580 resolution. The 
difference between Case10 and Case14 is using different 
methods for the solutions in the second stage. Case14 is 0.49 
μs faster than Case10 under the same amount of hardware 
resource usages. For the requirements of several M pixels 
digital picture resolutions we decided to take Case14 which is 
able to deal with a 2.5 M pixels picture per second as well as 
have a balance between performance and hardware resources. 
The system architecture is shown in Fig. 12. 
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Fig. 8 Execution time comparisons of 16 different partitions and 
the pure software implementation case (Case1) 
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Fig. 9 Comparisons of hardware resource Slices usages of 
16 different partitions and the pure software 

implementation case (Case1) 

As shown in Table III the execution time of Case14 is 
30000.747 μs. It is 26 times faster than the pure software case 
(782701.244 μs). A floating point unit (FPU) is about 678 
Slices. As shown in Table IV the hardware resources of several 
cases are equal to 4 times of a FPU. 

 For parallel processing the second stage data the hardware 
implementation of the stage required 1266 Slices if Gauss 
elimination method is applied. Alternatively, it required 1474 
Slices if Cramer’s rule is applied. The Slice usage of both 
hardware is over 2 times of a FPU. The hardware execution 
time of Gauss elimination method was about 9.26 μs . The 
hardware execution time of Cramer’s rule was about 6.5 μs . 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 228



 

 
 

From the evaluations of the objective function the sequence 
of the optimal solutions is Case2 = Case6 > Case14 = Case10 > 
Case12 > Case4 > Case16 > Case8 > Case1 = Case5 > Case9 = 
Case13 > Case3 > Case11 > Case7 > Case15. From the 
evaluations of the cost function the sequence of the optimal 
solutions is Case2 = Case6 > Case14 = Case10 > Case12 > 
Case4 > Case16 > Case8 > Case9 = Case13 > Case11 > Case15 
> Case1 = Case5 > Case3 = Case7. 
 
 

 TABLE II 

OBJECTIVE FUNCTION AND COST FUNCTION 

  Stage 
1 

Stage 
2 

Stage 
3 

Objective 
Function 

Cost 
Function

Case1 SW Gauss Elimination SW SW 0.4267 0.0001 
Case2 SW Gauss Elimination SW HW 0.7384 2.3018 
Case3 SW Gauss Elimination HW SW 0.2169 0 
Case4 SW Gauss Elimination HW HW 0.5286 1.0728 
Case5 SW Cramer’s Rule SW SW 0.4267 0.0001 
Case6 SW Cramer’s Rule SW HW 0.7384 2.3018 
Case7 SW Cramer’s Rule HW SW 0.1266 0 
Case8 SW Cramer’s Rule HW HW 0.4384 0.8724 
Case9 HW Gauss Elimination SW SW 0.4248 0.4405 
Case10 HW Gauss Elimination SW HW 0.7365 1.9679 
Case11 HW Gauss Elimination HW SW 0.2149 0.1720 
Case12 HW Gauss Elimination HW HW 0.5999 1.2624 
Case13 HW Cramer’s Rule SW SW 0.4248 0.4405 
Case14 HW Cramer’s Rule SW HW 0.7365 1.9679 
Case15 HW Cramer’s Rule HW SW 0.1247 0.1363 
Case16 HW Cramer’s Rule HW HW 0.5097 1.0206 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

View these two evaluations the sequences are very similar. 
The difference is that the cost function evaluations of Case1, 
Case5, Case3, and Case7 are close to the worst case. Due to the 
execution efficiency increment percentage approach to 0 they 
are at the last four places in the sequence. On the other hand, 
due to the objective function is with the linear accumulation 
property and these four cases consumed less hardware resource 
they are not at the last four places in the objective function 
evaluation sequence. Due to the objective function is with the 
linear accumulation property it is able to show the system 
performance at the execution efficiency increment and the 
hardware economy. The optimal solution of the objective 
function evaluation is also with the optimal ratio of efficiency 
and cost. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For the experiment Philips PL18114 table lamp and 

PL-L827 fluorescent tube were used. As shown in Fig. 13 
Color boards, dolls, thermos mugs were put inside the images 
to view the situations of processed images by Lam’s automatic 
white balance algorithm. 

TABLE III 

TOTAL EXECUTION TIME 

  Stage 
1 

Stage 
2 

Stage 
3 

Total execution 
Time (μs) 

Case1 SW Gauss Elimination SW SW 782701.244
Case2 SW Gauss Elimination SW HW 122701.244
Case3 SW Gauss Elimination HW SW 782709.260
Case4 SW Gauss Elimination HW HW 122709.250
Case5 SW Cramer’s Rule SW SW 782700.747
Case6 SW Cramer’s Rule SW HW 122700.747
Case7 SW Cramer’s Rule HW SW 782706.500
Case8 SW Cramer’s Rule HW HW 122706.500
Case9 HW Gauss Elimination SW SW 690001.244
Case10 HW Gauss Elimination SW HW 30001.244
Case11 HW Gauss Elimination HW SW 690009.260
Case12 HW Gauss Elimination HW HW  30009.250
Case13 HW Cramer’s Rule SW SW 690000.747
Case14 HW Cramer’s Rule SW HW  30000.747
Case15 HW Cramer’s Rule HW SW 690006.500
Case16 HW Cramer’s Rule HW HW  30006.500

TABLE IV 

TOTAL USAGES OF HARDWARE RESOURCES (SLICES)

  Stage 
1 

Stage 
2 

Stage 
3 

Total 
Slices

Case1 SW Gauss Elimination SW SW  678

Case2 SW Gauss Elimination SW HW 1103

Case3 SW Gauss Elimination HW SW 1944

Case4 SW Gauss Elimination HW HW 2369

Case5 SW Cramer’s Rule SW SW  678

Case6 SW Cramer’s Rule SW HW 1103

Case7 SW Cramer’s Rule HW SW 2152

Case8 SW Cramer’s Rule HW HW 2577

Case9 HW Gauss Elimination SW SW 1288

Case10 HW Gauss Elimination SW HW 1713

Case11 HW Gauss Elimination HW SW 2554

Case12 HW Gauss Elimination HW HW 2301

Case13 HW Cramer’s Rule SW SW 1288

Case14 HW Cramer’s Rule SW HW 1713

Case15 HW Cramer’s Rule HW SW 2762

Case16 HW Cramer’s Rule HW HW 2509
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Color temperature 2700° K was used for the experiment. Fig. 
13 (A) shows a standard color board. Fig. 13 (B) shows the 
original fetched images. Fig. 13 (C) shows the images which 
were processed by the automatic white balance SoPC. It is 
clearly shown that the color board images in Fig. 13 (C) are 
close to the color board shown in Fig 13 (A). Compare colors of 
gray scales at the fourth rows of color boards shown in Fig. 13 
(A), (B), and (C). The color of gray scale at the fourth row of 
the color board shown in Fig. 13 (B) biased to yellow. This is a 
feature of images with low color temperature. 

After we computed the cost function of (13) using the actual 
execution times and the usages of Slices and DSP48s for the 
sixteen partitions. The evaluation values of sixteen cases were 
obtained. They are shown in Table V and Fig. 11. 
 
 

V. CONCLUSION 

In this paper, a hardware-software co-design methodology 
was used to implement automatic white balance functions, 
which is based on FPGA chips and a SoPC architecture. The 
hardware design using an IP-based method with an embedded 
processor is able to reduce the memory and CPU resources of 
PC as well as to have the properties of easy modification and 
function expansion. 

The chosen automatic white balance algorithm which 
combines and is based on the gray world assumption and the 
perfect reflector assumption theories to achieve the automatic 
white balance correction for acquired images. It causes that the 
color temperature of images is the same as human eyes. By the 
automatic white balance algorithm it is able to automatically 
adjust the internal image color. It is able to show the correct 
color as human eyes when the illumination of the light source 
vary. 

We used the hardware-software co-design methodology to 
implement the automatic white balance algorithm on a SoPC. 
An objective function was used to evaluate sixteen 
hardware-software partition cases and to achieve a balance 
between execution performance and hardware resources. The 
performance of the partitioned result was 26 times faster than 
the pure software implementations. It is able to deal with a 2.5 
M pixels picture per second. The amount of the additional 
hardware resources is 4 times of a FPU. The system 
architecture has the properties of easy modification and 
function expansion. It shows the advantage of the SoPC design. 
As FPGA process techniques is continuous improved, the 
system may have a better performance if energy consumptions 
can be further considered together. 

 

 
Fig. 12 The system architecture 

TABLE V 

THE COST FUNCTION EVALUATIONS 

  Stage 
1 

Stage 
2 

Stage
3 Evaluations

Case1 SW Gauss Elimination SW SW 0.4264 

Case2 SW Gauss Elimination SW HW 0.7486 

Case3 SW Gauss Elimination HW SW 0.2143 

Case4 SW Gauss Elimination HW HW 0.5365 

Case5 SW Cramer’s Rule SW SW 0.4264 

Case6 SW Cramer’s Rule SW HW 0.7486 

Case7 SW Cramer’s Rule HW SW 0.1223 

Case8 SW Cramer’s Rule HW HW 0.4445 

Case9 HW Gauss Elimination SW SW 0.4243 

 
Fig. 13  2700° K illuminant experiments. (A) Color board, 
(B) original images, and (C) automatic balance processed 

images 

Case10 HW Gauss Elimination SW HW 0.7465 

Case11 HW Gauss Elimination HW SW 0.2122 

Case12 HW Gauss Elimination HW HW 0.5957 

Case13 HW Cramer’s Rule SW SW 0.4243 

Case14 HW Cramer’s Rule SW HW 0.7465 

Case15 HW Cramer’s Rule HW SW 0.1202 

Case16 HW Cramer’s Rule HW HW 0.5037 
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