
A novel hardware-software co-design for
automatic white balance

Chin-Hsing Chen, Sun-Yen Tan, and Wen-Tzeng Huang

Abstract—As electronic techniques is continuous improved

rapidly cameras or video camcorders used for image retrieval
technology and development become digitalized. The color of the
photographs would look very different due to differences in light
projection illumination when we take a picture. Human eyes are able
to automatically adjust the color when the illuminations of the light
source vary. However, the most frequently used image sensor, charge
coupled device, CCD device can not correct the color as human eyes.
This paper presents a hardware-software co-design method based on
Lam’s automatic white balance algorithm, which combines both Gray
World Assumption and Perfect Reflector Assumption algorithms. The
execution steps of Lam’s algorithm were divided into three stages. The
hardware-software co-design and analysis for each stage was realized.
Three factors including processing time, Slices and DSP48s of
hardware resources were used to formulate the objective function,
which was employed to evaluate the system performance and
hardware resource cost. Experimental results shows suitable partitions
of hardware-software co-designs were achieved. An embedded
processor, MicroBlaze developed by Xilinx and a floating point
processor were used to deal with the software part of the algorithm.
The hardware part of the algorithm was implemented using an
IP-based method. It is able to reduce the memory and CPU resources
of PC as well as to have the properties of easy modification and
function expansion by using such system on programmable chip
architecture.

Keywords—Automatic white balance, embedded processor,
hardware-software co-design, system on a programmable chip.

I. INTRODUCTION

RAY World Assumption (GWA) [13] and Perfect
Reflector Assumption (PRA) [14] are two common

methods used to realize automatic white balance algorithms.
GWA can offer a better effect for photographs with rich color
environment and background due to its characteristics.
However, processed images may have an undesirable shift in
the entire color range when the acquired images are with a
predominant color. On the contrary, the images with a
predominant color can be processed without a cast as people

can see if PRA is applied. However, PRA may not correctly
deal with the automatic white balance of images with
multicolor. The processed images may have an undesirable
shift in the entire color range. In 2005, Lam proposed an
automatic white balance algorithm which combines both GWA
and PRA. The algorithm can deal with automatic white balance
of images with both multicolor and a predominant color
correctly [1].

Manuscript received March 4, 2007; Revised received August 13, 2007.
Chin-Hsing Chen is with the Department of Management Information

Systems, Central Taiwan University of Science and Technology, Taichung,
Taiwan (e-mail: chchen@ctust.edu.tw).

Sun-Yen Tan is with the Electronic Engineering Department,
National Taipei University of Technology, Taipei, Taiwan (phone:
886-2-27712171; fax: 886-2-27317120; e-mail: sytan@ntut.edu.tw).

The paper is organized as follows: In Section II, we review
the automatic white balance algorithms. Then, in Section III,
we describe our implementing methods for Lam’s algorithm,
including hardware-software partitioning and the evaluation of
the cost functions. In Section IV, experimental results are
presented to show the implementations and a brief comparison
is discussed. Finally, a conclusion is given in Section V.

Three approaches may be used to construct image retrieval
platforms dealing with white balance algorithms. The first
approach contains storing acquired images into memory and
executing specific software program in computer hardware
resources to process the images. Operating systems and
application programs as well as some memory and CPU
resources are required when this method is applied. The second
approach contains some additional image processing ASICs on
the image retrieval platforms. Such ASICs can be applied to
deal with images processes. However, the image processing
functions is limited by their specifications. The third approach
is to construct image retrieval platforms using SoPC. This
method usually contains field-programmable gate array (FPGA)
chips and embedded processors with Intellectual Property (IP)
based hardware designs. This design methodology may not
consume large amount of memory and CPU resources of PC as
well as to have the properties of easy modification and function
expansion, which can not be achieved if pure hardware
architectures are used. Some ICs may be replaced by such
SoPC architecture to contain their functions and reduce the
difficulty of the PCB designs [2].

In this research, the Xilinx’s ML402-Virtex-SX35
development board was used. The embedded processor is using
MicroBlaze Soft Core developed by Xilinx. A floating point
implementation was used to deal with the software part of
Lam’s algorithm. The hardware part of Lam’s algorithm was
implemented using an IP-based design.

G

Wen-Tzeng Huang is with the Electronic Engineering Department, National
Taipei University of Technology, Taipei, Taiwan (e-mail:
wthuang@ntut.edu.tw).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 223

II. PROCEDURE FOR PAPER SUBMISSION

Within this paper , , and are used to denote the
red, green, and blue values after image processing as well as

, , and are used to denote the red, green, and blue

values before image processing, respectively.

RI
^

GI
^

BI
^

RI GI BI

A. GRAY WORLD ASSUMPTION

Currently GWA algorithm is one of the most frequently used
automatic white balance algorithms. The algorithm is based on
the assumption, “all photographs acquired by cameras are
colorful images.”. In other words, the occurrence probabilities
of red, green, and blue pixels of a picture are the same. The gray
level of a color is composed from the averages of red, green,
and blue colors. For real situations the shooting pictures are
usually with colorful enough. It matches the assumption of
GWA. Therefore, it is necessary to adjust each average of red,
green, and blue colors to be the same when we use GWA
algorithm. An image consists of brightness and chromaticity
information. Human eyes are more strongly sensitive to the
brightness than to the chromaticity of an image.

),(),(
^

yxIKyxI RRR (1)

),(),(
^

yxIKyxI BBB (2)

mn

yxI

mn

yxI

R

G
K

m

i

n

j

R

m

i

n

j

G

avg

avg
R

0 0

0 0

),(

),(

 (3)

Equations (1) and (3) show the main computations of the red
channel [3]. The similar computation is shown in (2). It can be
used to obtain the blue value for the blue channel [3]. The
advantage of the GWA algorithm is to have a better recovery of
the original appearance of the scene when the input images are
colorful. However, processed images may have an undesirable
shift in the entire color range when the acquired images are
with a predominant color.

B. Perfect Reflector Assumption

PRA is another famous algorithm to deal with automatic
white balance. Let us discuss the relationship between lights
and object colors first. Objects may not show colors themselves.
However, their colors can be shown through different
wavelengths of the radiations from the illumination in
absorption, reflection, or transmission. We could not see any
object colors if there is no radiation from the illumination. On
the other hand, the object color is white if all the radiations are
reflected. Therefore, white color objects or regions are called as
perfect reflectors. The PRA theory assumes that perfect
reflectors can be used as the reference value of a white color in
dealing with an acquired image. The red, green, and blue for a

white color object inside any color temperature image could be
the maximum values. To achieve automatic white balance of
images the perfect reflector may be used as a reference to
correct other colors.

),(*),(
^

yxIKyxI RMaxRR (4)

),(*),(
^

yxIKyxI BMaxBB (5)

)},({

)},({

,

,

yxIMax

yxIMax
K

R
yx

G
yx

MaxR (6)

Equations (4) and (6) show the main computations of the red
channel. The similar computation shown in (5) can be used to
obtain the blue value for the blue channel [3]. The advantage of
PRA algorithm is to have a better recovery of the original
appearance of the scene when the input images are with a
predominant color. However, processed images may have an
undesirable shift in the entire color range when the acquired
images are with multicolor.

C. 2005 Lam’s algorithm

Both PRA and GWA algorithms still have the disadvantages
as mentioned above. Lam proposed an automatic white balance
method which combines above two algorithms in 2005. In this
paper the method is called as Lam algorithm. Lam presented
two equations, as shown in (7) and (8), to deal with automatic
white balances. The main computations for the coefficients of
the red channel are shown in (9) to (12). The similar
computation is shown in (8). It can be used to obtain the blue
coefficients for the blue channel [1].

),(),(),(2
^

yxIvyxIuyxI RRRRR (7)

),(),(),(2
^

yxIvyxIuyxI BBBBB (8)

M

x

N

y
G

M

x

N

y
R yxIyxI

1 11 1

^

),(),((9)

)},({)},({
,,

yxIMaxyxIMax G
yx

R
yx

 (10)

M

x

M

x

M

x

N

y
G

N

y
RR

N

y
RR yxIyxIvyxIu

1 1 1 111

2),(),(),(

(11)

)},({)},({)},({
,,

2

,
yxIMaxyxIMaxvyxIMaxu G

yx
R

yx
RR

yx
R

(12)

Equations contain the processing of the squares of pixels.
Therefore, the processed images have the property of
enhancing the contrast of images. As with PRA and GWA, the
values of the green channel are kept unchanged. Only the
values of the red and blue channels are adjusted. Lam’s

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 224

algorithm has the advantages of both GWA and PRA. When
input images with multicolor the processed images can have the
effect as well as the GWA method. When input images with a
predominant color the processed images can not have the effect
as well as the PRA method. But it removes the saturation
condition during the GWA algorithm processing. Therefore,
Lam’s algorithm is better than GWA and PRA to be a suitable
method used for dealing with automatic white balances of any
different images.

Fig. 2 The hardware model for obtaining the red channel

parameters (stage 1)

III. HARDWARE-SOFTWARE CO-DESIGN

The execution steps of Lam’s algorithm were divided into
three stages. The first stage is the pre-processing of the Lam’s
algorithm. It is to obtain the required parameters of the
computations for Lam’s algorithm. The second stage is to
obtain the solutions of the equations of Lam’s algorithm. There
two common methods to be applied to obtain the solutions. One
is by Gauss Elimination. Another is by Cramer’s Rule. The
third stage is to deal with the automatic white balance
computations for each pixel. The hardware-software co-design
and analysis for each stage was realized and evaluated. The
partitions of these three stages are shown in Fig. 1. When the
computations of the parameters for the first stage were
implemented using hardware each pixel needs 5 adders, 2
multipliers and 3 comparators.

The hardware implementation of the red channel of the

data-path model is shown in Fig. 2. The same hardware was
also used for the blue channel. The similar hardware was used
for the green channel. There was no summation of multipliers
inside this similar hardware.

The computation of the second stage is to obtain the

solutions of the linear equations with two unknown. Four
methods were discussed in this paper. They are Guass
Elimination Software, Guass Elimination Hardware, Cramer’s
Rule Software, and Cramer’s Rule Hardware. Floating point
computations are required for the second and the third stages.
Therefore, the term computation is for the floating point
computation. The employed computation blocks were floating
point operators [7].

When Guass Elimination Software was applied 6 dividers, 6
multipliers, and 6 sub-tractors were required for a frame. The
hardware implementation of the red channel of the data-path
model is shown in Fig. 3. The same hardware was also used for
the blue channel. When Cramer’s Rule Software was applied
12 multipliers, 6 sub-tractors, and 4 dividers were required for a
frame. The hardware implementation of the red channel of the
data-path model is shown in Fig. 4. The same hardware was
also used for the blue channel.

)},({)},,({,),(,),(

)},({),,(

)},({)},,({,),(,),(

,

2

,
1 11 1

2

1 1
,

,

2

,
1 11 1

2

yxIMaxyxIMaxyxIyxI

yxIMaxyxI

yxIMaxyxIMaxyxIyxI

B
yx

B
yx

M

x

N

y

B

M

x

N

y

B

M

x

N

y

G
yx

G

R
yx

R
yx

M

x

N

y

R

M

x

N

y

R

M

x

M

x

M

x

N

y

G

N

y

RR

N

y

RR yxIyxIvyxIu
1 1 1 111

2),(),(),(

M

x

M

x

M

x

N

y

G

N

y

BB

N

y

BB yxIyxIvyxIu
1 1 1 111

2),(),(),(

)},({)},({)},({
,,

2

,
yxIMaxyxIMaxvyxIMaxu G

yx
B

yx
BB

yx
B

),(),(),(2
^

yxIvyxIuyxI RRRRR

),(),(),(2
^

yxIvyxIuyxI BBBBB

)},({)},({)},({
,,

2

,
yxIMaxyxIMaxvyxIMaxu G

yx
R

yx
RR

yx
R

Fig. 3 The hardware implementation of Guass

Elimination for the red channel parameters and

 (stage 2)

Ru

Rv

Fig. 1 Three stages of Lam’s algorithm

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 225

The computations of the parameters for the third stage is
write back the pixel data when the software implementation
were applied. 3 multipliers and 1 adder were required for a
pixel. The hardware implementation of the red channel of the
data-path model is shown in Fig. 5. The same hardware was
also used for the blue channel.

A. Sixteen hardware-software partitions

There sixteen partitions were used to implement SOPC to
deal with the Lam’s algorithm. Three factors including
processing times, usages of Slices and DSP48 of hardware
resources were used to formulate a cost function, which was
employed to evaluate the system performance and hardware
resource cost. Each Slice contains a set of D-FlipFlop and 4-bit
programmable logic. Table I shows these sixteen
hardware-software partitions.

B. Software operations using floating-point operation units

The employed algorithm contains floating point operations.
Micro-Blaze embedded processor 4.0 version [8] can support
additional floating point operation units. Additions,
subtractions, multiplications, and divisions of the floating point
operations can speed-up from 15 to 266 times [9]. In this paper,

MicroBlaze embedded processor 4.0 version with floating
point operation units were used for the software
implementation.

TABLE I
SIXTEEN HARDWARE-SOFTWARE PARTITIONS

 Stage1 Stage2 Stage3

Case1 SW Gauss Elimination SW SW

Case2 SW Gauss Elimination SW HW

Case3 SW Gauss Elimination HW SW

Case4 SW Gauss Elimination HW HW

Case5 SW Cramer’s Rule SW SW

Case6 SW Cramer’s Rule SW HW

Case7 SW Cramer’s Rule HW SW

Case8 SW Cramer’s Rule HW HW

Case9 HW Gauss Elimination SW SW

Case10 HW Gauss Elimination SW HW

Case11 HW Gauss Elimination HW SW

Case12 HW Gauss Elimination HW HW

Case13 HW Cramer’s Rule SW SW

Case14 HW Cramer’s Rule SW HW

Case15 HW Cramer’s Rule HW SW

Case16 HW Cramer’s Rule HW HW

Fig. 4 The hardware implementation of Cramer’s Rule for the

red channel parameters and (stage 2) Ru Rv

Fig. 5 The data-path model of writing back

the pixel data

C. Hardware operations using floating point operators

The software for realizing the design and synthesis of the
partitioned hardware is using Xilinx Integrated Software
Environment 7.1 iSP2. The floating point operators used for the
second and the third stages are constructed using Floating Point
Operator v1.0 [7] generated by Xilinx CoreGenerator. The
width of the buses, data bit definitions, and operator types of
the floating point operations can be defined using adjusting the
setup of CoreGenerator. In this paper the format of the floating
point operations was set as single precision of IEEE-754
standard. One bit is used as the sign bit. 8 bits are used as the
exponent. 23 bits are used as the mantissa.

D. Defining an objective function

An objective function [4] which was used to evaluate the
system is shown in Eq (13). Two factors were considered in our
systems. They are processing times and usages of hardware
resources. To evaluate the usages of hardware resources the
usages of hardware resources are further divided into the
usages of Slices and the usages of DSP48 slices (DSP48s). To
realize the objective function and calculate it for various
conditions of the partitions time, slices and DSP48s denote the
maximum values of the sixteen partitions, respectively. Let
timereal , slicesreal, and DSP48sreal denote the actual value for
each partition, respectively.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 226

After computing the sixteen evaluation values can be
obtained from the Objective Function. If the evaluation value is
closed to 1 it means that the system can have the expected
performance with a faster execution time, a smaller amount of
Slices, and a smaller amount of DSP48s. The parameters,

 , , and of (13) are used to achieve a balance of the

execution efficiency and the hardware resources. They
represent the specified weights of the execution time, the usage
of Slices, and the usage of DSP48s. In this research, we set

2

1
 ,

4

1
 , and

4

1
 .

The applications of the automatic white balance algorithms
of digital images are very wide, such as digital cameras, image
capturing cards, smart cameras, etc. For different performance
requirements the three parameters of the objective function can
be modified to meet the desired constraints.

Objective Function

*

*

48 48
*

48

real

real

real

time time

time

slices slices

slices

DSP s DSP s

DSP s

 (13)

To enable readers understanding the objective function, an

example is used to explain it. First the weight ratio of the
processing time and hardware resources were set to be 1:1 (see
Eq (14)). It was not only for obtaining execution efficiency but
also for reducing hardware resources. Then the sum of the
weights were set to be 1 (see Eq (15)). Similarly, it is to achieve
that the weights of Slices and DSP48s of the hardware are the

same. That is,
4

1
 and

4

1
 .

1:1)(: (14)

Let 1

2

1
)(,

2

1

(15)

Alternatively, we define a cost function to show the
increasing percentage ratio of the execution efficiency and the
cost. It is shown in (16).

real

real real

Cost Function

execution efficiency increment%
=

hardware resource increment%
time-time

time=
slices-slices 1 DSP48s-DSP48s 1

1-(* + *)
slices 2 DSP48s 2

 (16)

In the cost function the numerator denotes the efficiency

improvement variation of the execution time. The denominator
denotes the cost increment caused by the usage increment of the
hardware resources (Slices and DSP48 slices). The greater ratio
values mean that the design has shorter execution time and
lower cost.

IV. EXPERIMENTAL RESULTS

A typical system architecture was used to implement the
system for this research [5]. MicroBlaze is a Soft Core
processor developed by Xilinx. The DDR SDRAM Controller
is an external memory controller. The On Chip Peripheral
(OPB) is a peripheral bus. The IP Interface is a bus interface.
The CameraLink Deserial is an input interface for digital
cameras. The Region of Interesting (ROI) denotes the some
region processing circuits. The Auto White Balance Stage1
HW and Stage3 HW denote the designed circuits for the
partition for Case14.

The flow for fetching images is shown in Fig. 6. The first
step is that the SVS282 camera sent out Bayer arrangement
CCD sensed images [10] to the Low Voltage Differential
Signal (LVDS) pin [11] of the ML402 development board by
CameraLink interface. The second step is that the
Virtex4-SX35 FPGA image chip executes the function of the
Region of Interesting (ROI) and stores the fetched images into
the Double Data Rate Synchronous Dynamic Random Access
Memory (DDR SDRAM) of the development board to finish
the image fetching processing. The third step is to execute the
automatic white balance algorithms. Due to the automatic white
balance processed images are still CFA color patterns [12]. For
the verification and the convenience of observations, the fourth
step is to execute the pixel generation of the differences of
adjacent pixels using MicroBlaze. Various software-hardware
partitioning implementations were downloaded into FPGA by
the Joint Test Action Group (JTAG) interface and estimated
experimental results are shown in this section. To verify the
experimental results the images were transmitted to the
computer via the Universal Asynchronous
Receiver/Transmitter (UART) interface. Then a Visual Basic
application program was used to receive the automatic white
balance processed images at the computer end. They were
stored into the files using Bitmap (BMP) format. The whole
experimental environment is shown as Fig. 7.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 227

In the experiments the execution time was counted for the
320 x 240 resolution images. The experimental statistics of
execution times, Slices, and DSP48s are shown in Figures 8, 9
and 10 respectively. The evaluation values of objective
function and the cost function are shown in Table II and Fig.
11.

Fig. 6 The flow of fetching images

0

10
20

30

40
50

60

70

80

90

C
as

e1

C
as

e2

C
as

e3

C
as

e4

C
as

e5

C
as

e6

C
as

e7

C
as

e8

C
as

e9

C
as

e1
0

C
as

e1
1

C
as

e1
2

C
as

e1
3

C
as

e1
4

C
as

e1
5

Case1--All SWTotal DSP48 Blocks

C
as

e1
6

Fig. 10 Comparisons of hardware resource DSP48 usages of 16
different partitions and the pure software implementation case

(Case1)

CameraLink
interface

JTAG interface

UART interface

Sigma 17-35mm
Lens

SCV282 Camera

Fig. 7 The system connections and the whole experimental

i f f hi i

 As shown evaluation of the objective function, Case6 and
Case2 both were rank one. Case10 and Case14 both were rank
two. Both Case2 and Case6 implemented the computations of
the first stage using the software. They also implemented the
computations of the second stage using the software. They
implemented the computations of the third stage using the
hardware. However, they used different methods for the
solutions in the second stage. Their performance is able to deal
with a 640 k pixels picture per second. It is equal to have an 800
x 800 resolution. The difference of the evaluations between the
best case and Case10 and Case14 is only 0.0021. Their
performance is able to deal with a 2.5 M pixels picture per
second. It is equal to have a 1580 x 1580 resolution. The
difference between Case10 and Case14 is using different
methods for the solutions in the second stage. Case14 is 0.49
μs faster than Case10 under the same amount of hardware
resource usages. For the requirements of several M pixels
digital picture resolutions we decided to take Case14 which is
able to deal with a 2.5 M pixels picture per second as well as
have a balance between performance and hardware resources.
The system architecture is shown in Fig. 12.

0

200000

400000

600000

800000

1000000

C
as

e1

C
as

e2

C
as

e3

C
as

e4

C
as

e5

C
as

e6

C
as

e7

C
as

e8

C
as

e9

C
as

e1
0

C
as

e1
1

C
as

e1
2

C
as

e1
3

C
as

e1
4

C
as

e1
5

C
as

e1
6

Execution time (us) Case1--All SW

Fig. 8 Execution time comparisons of 16 different partitions and
the pure software implementation case (Case1)

0
500

1000
1500
2000
2500
3000

C
as

e1

C
as

e2

C
as

e3

C
as

e4

C
as

e5

C
as

e6

C
as

e7

C
as

e8

C
as

e9

C
as

e1
0

C
as

e1
1

C
as

e1
2

C
as

e1
3

C
as

e1
4

C
as

e1
5

C
as

e1
6

Case1--All SW Total Slices

Fig. 9 Comparisons of hardware resource Slices usages of
16 different partitions and the pure software

implementation case (Case1)

As shown in Table III the execution time of Case14 is
30000.747 μs. It is 26 times faster than the pure software case
(782701.244 μs). A floating point unit (FPU) is about 678
Slices. As shown in Table IV the hardware resources of several
cases are equal to 4 times of a FPU.

 For parallel processing the second stage data the hardware
implementation of the stage required 1266 Slices if Gauss
elimination method is applied. Alternatively, it required 1474
Slices if Cramer’s rule is applied. The Slice usage of both
hardware is over 2 times of a FPU. The hardware execution
time of Gauss elimination method was about 9.26 μs . The
hardware execution time of Cramer’s rule was about 6.5 μs .

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 228

From the evaluations of the objective function the sequence
of the optimal solutions is Case2 = Case6 > Case14 = Case10 >
Case12 > Case4 > Case16 > Case8 > Case1 = Case5 > Case9 =
Case13 > Case3 > Case11 > Case7 > Case15. From the
evaluations of the cost function the sequence of the optimal
solutions is Case2 = Case6 > Case14 = Case10 > Case12 >
Case4 > Case16 > Case8 > Case9 = Case13 > Case11 > Case15
> Case1 = Case5 > Case3 = Case7.

 TABLE II

OBJECTIVE FUNCTION AND COST FUNCTION

 Stage
1

Stage
2

Stage
3

Objective
Function

Cost
Function

Case1 SW Gauss Elimination SW SW 0.4267 0.0001
Case2 SW Gauss Elimination SW HW 0.7384 2.3018
Case3 SW Gauss Elimination HW SW 0.2169 0
Case4 SW Gauss Elimination HW HW 0.5286 1.0728
Case5 SW Cramer’s Rule SW SW 0.4267 0.0001
Case6 SW Cramer’s Rule SW HW 0.7384 2.3018
Case7 SW Cramer’s Rule HW SW 0.1266 0
Case8 SW Cramer’s Rule HW HW 0.4384 0.8724
Case9 HW Gauss Elimination SW SW 0.4248 0.4405
Case10 HW Gauss Elimination SW HW 0.7365 1.9679
Case11 HW Gauss Elimination HW SW 0.2149 0.1720
Case12 HW Gauss Elimination HW HW 0.5999 1.2624
Case13 HW Cramer’s Rule SW SW 0.4248 0.4405
Case14 HW Cramer’s Rule SW HW 0.7365 1.9679
Case15 HW Cramer’s Rule HW SW 0.1247 0.1363
Case16 HW Cramer’s Rule HW HW 0.5097 1.0206

View these two evaluations the sequences are very similar.
The difference is that the cost function evaluations of Case1,
Case5, Case3, and Case7 are close to the worst case. Due to the
execution efficiency increment percentage approach to 0 they
are at the last four places in the sequence. On the other hand,
due to the objective function is with the linear accumulation
property and these four cases consumed less hardware resource
they are not at the last four places in the objective function
evaluation sequence. Due to the objective function is with the
linear accumulation property it is able to show the system
performance at the execution efficiency increment and the
hardware economy. The optimal solution of the objective
function evaluation is also with the optimal ratio of efficiency
and cost.

For the experiment Philips PL18114 table lamp and

PL-L827 fluorescent tube were used. As shown in Fig. 13
Color boards, dolls, thermos mugs were put inside the images
to view the situations of processed images by Lam’s automatic
white balance algorithm.

TABLE III

TOTAL EXECUTION TIME

 Stage
1

Stage
2

Stage
3

Total execution
Time (μs)

Case1 SW Gauss Elimination SW SW 782701.244
Case2 SW Gauss Elimination SW HW 122701.244
Case3 SW Gauss Elimination HW SW 782709.260
Case4 SW Gauss Elimination HW HW 122709.250
Case5 SW Cramer’s Rule SW SW 782700.747
Case6 SW Cramer’s Rule SW HW 122700.747
Case7 SW Cramer’s Rule HW SW 782706.500
Case8 SW Cramer’s Rule HW HW 122706.500
Case9 HW Gauss Elimination SW SW 690001.244
Case10 HW Gauss Elimination SW HW 30001.244
Case11 HW Gauss Elimination HW SW 690009.260
Case12 HW Gauss Elimination HW HW 30009.250
Case13 HW Cramer’s Rule SW SW 690000.747
Case14 HW Cramer’s Rule SW HW 30000.747
Case15 HW Cramer’s Rule HW SW 690006.500
Case16 HW Cramer’s Rule HW HW 30006.500

TABLE IV

TOTAL USAGES OF HARDWARE RESOURCES (SLICES)

 Stage
1

Stage
2

Stage
3

Total
Slices

Case1 SW Gauss Elimination SW SW 678

Case2 SW Gauss Elimination SW HW 1103

Case3 SW Gauss Elimination HW SW 1944

Case4 SW Gauss Elimination HW HW 2369

Case5 SW Cramer’s Rule SW SW 678

Case6 SW Cramer’s Rule SW HW 1103

Case7 SW Cramer’s Rule HW SW 2152

Case8 SW Cramer’s Rule HW HW 2577

Case9 HW Gauss Elimination SW SW 1288

Case10 HW Gauss Elimination SW HW 1713

Case11 HW Gauss Elimination HW SW 2554

Case12 HW Gauss Elimination HW HW 2301

Case13 HW Cramer’s Rule SW SW 1288

Case14 HW Cramer’s Rule SW HW 1713

Case15 HW Cramer’s Rule HW SW 2762

Case16 HW Cramer’s Rule HW HW 2509

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

C
as

e1

C
as

e2

C
as

e3

C
as

e4

C
as

e5

C
as

e6

C
as

e7

C
as

e8

C
as

e9

C
as

e1
0

C
as

e1
1

C
as

e1
2

C
as

e1
3

C
as

e1
4

C
as

e1
5

C
as

e1
6

Objective Function Case1--All SW

Fig. 11 Evaluations

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 229

Color temperature 2700° K was used for the experiment. Fig.
13 (A) shows a standard color board. Fig. 13 (B) shows the
original fetched images. Fig. 13 (C) shows the images which
were processed by the automatic white balance SoPC. It is
clearly shown that the color board images in Fig. 13 (C) are
close to the color board shown in Fig 13 (A). Compare colors of
gray scales at the fourth rows of color boards shown in Fig. 13
(A), (B), and (C). The color of gray scale at the fourth row of
the color board shown in Fig. 13 (B) biased to yellow. This is a
feature of images with low color temperature.

After we computed the cost function of (13) using the actual
execution times and the usages of Slices and DSP48s for the
sixteen partitions. The evaluation values of sixteen cases were
obtained. They are shown in Table V and Fig. 11.

V. CONCLUSION

In this paper, a hardware-software co-design methodology
was used to implement automatic white balance functions,
which is based on FPGA chips and a SoPC architecture. The
hardware design using an IP-based method with an embedded
processor is able to reduce the memory and CPU resources of
PC as well as to have the properties of easy modification and
function expansion.

The chosen automatic white balance algorithm which
combines and is based on the gray world assumption and the
perfect reflector assumption theories to achieve the automatic
white balance correction for acquired images. It causes that the
color temperature of images is the same as human eyes. By the
automatic white balance algorithm it is able to automatically
adjust the internal image color. It is able to show the correct
color as human eyes when the illumination of the light source
vary.

We used the hardware-software co-design methodology to
implement the automatic white balance algorithm on a SoPC.
An objective function was used to evaluate sixteen
hardware-software partition cases and to achieve a balance
between execution performance and hardware resources. The
performance of the partitioned result was 26 times faster than
the pure software implementations. It is able to deal with a 2.5
M pixels picture per second. The amount of the additional
hardware resources is 4 times of a FPU. The system
architecture has the properties of easy modification and
function expansion. It shows the advantage of the SoPC design.
As FPGA process techniques is continuous improved, the
system may have a better performance if energy consumptions
can be further considered together.

Fig. 12 The system architecture

TABLE V

THE COST FUNCTION EVALUATIONS

 Stage
1

Stage
2

Stage
3 Evaluations

Case1 SW Gauss Elimination SW SW 0.4264

Case2 SW Gauss Elimination SW HW 0.7486

Case3 SW Gauss Elimination HW SW 0.2143

Case4 SW Gauss Elimination HW HW 0.5365

Case5 SW Cramer’s Rule SW SW 0.4264

Case6 SW Cramer’s Rule SW HW 0.7486

Case7 SW Cramer’s Rule HW SW 0.1223

Case8 SW Cramer’s Rule HW HW 0.4445

Case9 HW Gauss Elimination SW SW 0.4243

Fig. 13 2700° K illuminant experiments. (A) Color board,
(B) original images, and (C) automatic balance processed

images

Case10 HW Gauss Elimination SW HW 0.7465

Case11 HW Gauss Elimination HW SW 0.2122

Case12 HW Gauss Elimination HW HW 0.5957

Case13 HW Cramer’s Rule SW SW 0.4243

Case14 HW Cramer’s Rule SW HW 0.7465

Case15 HW Cramer’s Rule HW SW 0.1202

Case16 HW Cramer’s Rule HW HW 0.5037

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 230

REFERENCES
[1] E. Y. Lam, “Combining Gray World and Retinex Theory for Automatic

White Balance in Digital Photography,” Proceedings of the Ninth
International Symposium on Consumer Electronics, June 2005, pp.
134-139.

[2] W. Wolf, “A Decade of Hardware/Software Codesign,” Computer, vol.
36, Issue 4, April 2003, pp.38-43.

[3] F. Gasparini and R. Schettini, “Color correction for digital photographs,”
Proceedings of the 12th International Conference on Image Analysis and
Processing, 2003, pp. 646-651.

[4] Y. Zou, Z. Zhuang and H. Chen, “HW-SW Partitioning Based on Genetic
Algorithm,” Congress on Evolutionary Computation, vol. 1, June 2004,
pp. 628-633.

[5] S. Kawamura, “Capturing images with digital still cameras,” IEEE Micro,
vol. 18, Issue 6, Nov.-Dec. 1998, pp.14-19.

[6] Chan-Pang Kuok, “The Design of a Dectection System of Copper Foil
Defects on Printed Circuit Boards under System-on-chip Structure ,”
Master Thesis, Department of Electrical Engineering, National Cheng
Kung University, Taiwan, Jun. 2004.

[7] Xilinx, Inc., “Xilinx Logicore Floating-Point Operator v1.0,” April 2005.
[8] Xilinx, Inc., “MicroBlaze Processor Reference Guide,” Ver.5.2 May 9,

2005.
[9] An Enhanced 32-Bit Processor Core for FPGA Integration,

http://ramp.eecs.berkeley.edu/Publications/MBforRAMP2.ppt
[10] SVS-VISTEK CAMERAS Inc., “Digital Progressive Area Scan Camera

SVCam User`s Manual Monochrome / Color Version LVDS-Version /
Camera Link Version with 10/12 Bit Digitization,” Ver. 1.6, May 2003.

[11] Automated Imaging Association, “Camera Link Specifications of the
Camera Link Interface Standard for Digital Cameras and Frame
Grabbers,” Ver.1.1, Jan. 2004.

[12] T. Chen, “A Study of Spatial Color Interpolation Algorithms for
Single-Detector Digital Cameras,” Information System Laboratory
Department of Electrical Engineering Stanford University,
http://www-ise.stanford.edu/~tingchen/.

[13] M. Fedor, “Approaches to color balancing,” PSYCH221/EE362course
project, Department of Psychology, Stanford University, U.S.A., 1998.

[14] J. Chiang and F. Al-Turkait, “Color balancing experiments with the
HP-photo smart-C30 digital camera,” PSYCH221/EE362 course project,
Department of Psychology, Stanford University, U.S.A., 1999.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 231

	I. INTRODUCTION
	II. Procedure for Paper Submission
	A. Gray World Assumption
	B. Perfect Reflector Assumption
	C. 2005 Lam’s algorithm

	Hardware-software co-design
	A. Sixteen hardware-software partitions
	B. Software operations using floating-point operation units
	C. Hardware operations using floating point operators
	D. Defining an objective function

	IV. Experimental Results
	V. Conclusion

