
 

 

  
Abstract— In this paper, development of a Galerkin finite 

volume three-dimensional seepage solver on mesh of tetrahedral is 
described. The numerical analyzer is utilized for solving the seepage 
in porous media and uplift under gravity dams with upstream cut off 
wall. The results of numerical solver in terms of uplift pressure in 
natural foundation of a gravity dam with upstream cut off wall are 
compared with analytical solutions obtained by application of 
conformal mapping technique for a constant unit ratio of foundation 
depth over half of dam base ( 1=bT ). The accuracy of the results 
computed uplift pressure for homogeneous and isotropic condition 
present acceptable agreements with the analytical solutions for 
various ratios of cut off wall depth over half of dam base (s/b). 
Having assessed the accuracy of the model, it is applied to evaluate 
the quality of the results of the common empirical relations for uplift 
pressure estimation. In order to present the ability of the verified 
model to cop with real world problems, it is applied to solve seepage 
through a natural porous foundation of a gravity dam with three 
incline layers with different coefficients of permeability.  
 

Keywords— Galerkin Finite Volume Method, Seepage and 
Uplift, Multilayer Dam Foundation 

I. INTRODUCTION 
HE problem of seepage flow underneath of gravity 

dams can be formulated in terms of a non-linear partial 
differential equation. The equation describes a constant 
density fluid flow in a heterogeneous and isotropic porous 
media [1].  

Although empirical formulations are suggested for simple 
cases, due to the inherently complex boundary conditions and 
intricate physical geometries in any practical problem, an 
analytical solution is not possible for complicated dam 
foundations [2].  

Many researchers have worked on seepage problem 
analysis and solving its governing equations. These works 
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differ by the technique used to solve the problem. 
Jie et al. (2004) presented a finite difference method (FDM) 

based on boundary-fitted coordinate (BFC) transformation. 
The curvilinear grid system, with computational boundary 
being coincident with the physical boundary, is numerically 
obtained by solving the Poisson equation. Seepage analysis 
can then be done by FDM in a uniform transformed 
orthogonal coordinate system [3]. Serafim et al. (1985) 
proposed a finite difference method to study three-
dimensional seepage in anisotropic heterogeneous foundations 
especially for earth dams [4]. 

Kiousis (2002) presented a least-squares implementation of 
the finite-element method to evaluate stream functions in the 
solution of field problems. The method is programmatically 
similar to the solution of the Laplace equation, and is based on 
the development of a stream field that is orthogonal to an 
already calculated potential field [5]. Griffiths and Fenton 
(1997) brought together random field generation and finite 
element techniques to model steady seepage through a three-
dimensional soil domain in which the permeability is random 
distributed in space [6]. Griffiths and Fenton (1998) also 
combined random field theory and finite element techniques 
with Monte-Carlo simulations to study the statistics of exit 
gradient predictions as a function of soil permeability variance 
and spatial correlation [7]. Boufadel et al. (1999) investigated 
steady seepage from two-dimensional domains using a 
dimensionless formulation for variably saturated media [8]. 

Li et al. (2003) presented an Element-free method (EFM) 
for seepage analysis with a free surface based on the moving 
least square method which needs only the information at 
nodes. It avoids troublesome modifications of the mesh as in 
the finite element method [9]. 

Plizzari (1998) studied uplift pressure effects in cracked 
concrete gravity dams. A parametric study on the influence of 
uplift pressure on stress intensity factors and crack-
propagation angle is performed 10]. Dewey et al. (1994) 
reviewed and compared the procedures for including uplift 
pressures in the hand-calculation methods. They proposed 
three separate models for including uplift pressures in a finite 
element analysis [11]. 

This paper presents a Galerkin finite volume method for 
modeling water flow in a saturated homogeneous porous 
media with complex boundary systems. The solution domain 
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is discretized with tetrahedral cells and each Control Volume 
(CV) is constructed around the tetrahedral vertices. Using this 
strategy the partial differential of fluid volume conservation 
equations are discretized into a system of differential/algebraic 
equations. These equations are then resolved in time. These 
methods are suitable for intricate physical geometries and 
flow through three dimensional saturated porous media with 
constant volume. Simulation results for the case of 
homogeneous and isotropic porous media underneath of a 
gravity dam with upstream cut off is presented and compared 
with analytical solutions obtained by application of conformal 
mapping technique for a constant unit ratio of foundation 
depth over half of dam base ( 1=bT ). The accuracy of the 
results computed uplift pressure are assessed by comparison 
of computed results for various ratios of cut off wall depth 
over half of dam base length (s/b) with the analytical solutions 
obtained using conformal mapping technique by 
Pavlovsky,1956 [12]. 

Then, the verified model is applied to evaluate the quality 
of the results of the common empirical relations for uplift 
pressure estimation and their errors are investigated. 

Finally, the ability of the developed Galerkin finite volume 
solver to cop with real world heterogeneous problems is 
demonstrated by its application to solve seepage through a 
natural porous foundation of a gravity dam with three 
isotropic incline layers. In order to provide better 
understanding from the solution results color coded surfaces 
of the computed pressure head, velocity vectors and flow net 
are presented and the computed uplift pressure underneath of 
the dam is compared with the results of common empirical 
relations.  

II. MODELING ALGORITHM 

A. Mathematical Model 
The problem of seawater seepage is governed by a partial 

differential equation for the ground water flow that describes 
the head distribution in the heterogeneous zone of interest 
underneath of a gravity dam. The general form of flow 
equation for a confined saturated heterogeneous and 
anisotropic porous media can be written as [1]:  
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Where, h  is the reference hydraulic head referred to as the 
freshwater head, ik  is a component of the hydraulic 

conductivity tensor, sS  is the specific storage and t  is time. 
If head gradient flux in direction i (secondary variable) is 

defined as, 
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and hence, the equation takes the form: 
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The boundary conditions for this equation may be stated as 

follows [1]:  
- Dirichlet boundary condition:  

);,();,( tzxhtzxh dbb =   in  dB                                    (4) 
- Neumann boundary condition:  

);,(. tzxVnV bbni =   in  nB                                           (5) 

where in   is the outward unit vector normal to the 

boundary, ),( bb zx  is a spatial coordinate on the boundary, 

dh  and nV  are the Dirichlet functional value and Neumann 
flux, respectively. 

It should be noted that, for a homogeneous and isotropic 
porous media the following relations are valid.  
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While, for a homogeneous and anisotropic porous media 
the following relations are valid.  
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Furthermore, for a heterogeneous and anisotropic porous 
media the following relations are valid.  
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B. Numerical Model 
During the last twenty years there has been a strong focus 

upon the utilization of the Finite Volume methods for solving 
fluid flow and heat transfer problems or, as it is more 
generally known, problems in Computational Fluid Dynamics 
(CFD). This success is mostly due to the conservative nature 
of the scheme and the fact that the terms appearing in the 
resulting algebraic equations have a specific physical 
interpretation. In fact, the straightforward formulation and low 
computational cost compared with other methods have made 
Finite Volume Method the preferred choice for most CFD 
practitioners [13].  

Over the last ten years, several Finite Volume methods 
based on Unstructured Mesh (FVUM) have in many ways 
overcome the structured nature of the original CV method. In 
general, the FVUM methods can be categorized into two 
approaches, namely, vertex-centered or cell-centered. The 
classification of the approach is based on the relationship 
between the CV and the finite element like unstructured mesh. 
The approach described here is the vertex-centered, which 
uses linear shape function of tetrahedral elements as the 
interpolation function within the CVs formed by gathering all 
the elements sharing a nodal point. This approach is very 
similar to the Galerkin Finite Element Method with linear 
elements [14,15].   
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In a finite element mesh, the sub-regions are called 
elements, with the vertices of the elements being the nodal 
locations. For the vertex-centered approach only the basic 
three dimensional elements, tetrahedrons with four nodes are 
considered [16].  

Therefore, each node in the solution domain is associated 
with one CV. Consequently, each CV consists of some 
tetrahedral elements, as illustrated in Fig.1 . The CV can be 
assembled in a straightforward and efficient manner at the 
element level. The flow across each control surface must be 
determined by an integral.  

 
Fig.1: sub-domain Ω  associated with node n  

of the computational field 
 

The FVUM discretization process is initiated by utilizing 
the integrated form of the equation (1). By application of the 
Variational Method, after multiplying the residual of the 
above equation by the test function φ  and integrating over a 
sub-domain Ω , we have: 
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The terms containing spatial derivatives can be integrated 
by part over the sub-domain Ω and then equation (5) may be 
written as: 
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Using gauss divergence theorem the equation takes the 
form: 

( )

( . ) 0

1 , 2 , 3

d
s i i

i

hS d k h n d F d
t x

i

∂ ∂φφ φ
∂ ∂Ω Γ Ω

Ω + Γ − Ω =

=

∫ ∫ ∫       (11) 

where Γ  is the boundary of domain Ω .  
Following the concept of weighted residual methods, by 

considering the test function equal to the weighting function, 
the dependent variable inside the domain Ω  can be 
approximated by application of a linear combination, such as 

∑ =
= nodesN

1k kkhh ϕ  [17].  

According to the Galerkin method, the weighting function 
φ  can be chosen equal to the interpolation function ϕ. In 

finite element methods this function is systematically 
computed for desired element type and called the shape 
function. For a tetrahedral type element (with four nodes), the 
linear shape functions, kϕ , take the value of unity at desired 
node n, and zero at other neighboring nodes k of each 
triangular element ( nk ≠ ) [17]. 

Extending the concept to a sub-domain to the CV formed 
by the elements meeting node n (Fig.1), the interpolation 
function nϕ  takes the value of unity at the center node n of 
CV Ω  and zero at other neighboring nodes m (at the 
boundary of the CV Γ ). Noteworthy that, this is an essential 
property of weight function, ϕ, which should satisfy 
homogeneous boundary condition on T at boundary of sub-
domain [12]. That is why the integration of the linear 
combination ∑ =

= nodesN

1k kkhh ϕ  (as approximation) over 

elements of sub-domain Ω  takes the value of nh  (the value of 
the dependent variable in central node n). By this property of 
the shape function ϕ  ( 0=nϕ  on boundary Γ of the sub-
domain Ω ), the boundary integral term in equation (9) takes 
zero value for a CV which the values of T assumed known at 
boundary nodes.  

After omitting zero term, the equation (9) takes the 
following form: 
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In order to drive the algebraic formulation, every single 
term of the above equation first is manipulated for each 
element then the integration over the CV is performed. The 
resulting formulation is valid for the central node of the CV. 

For the terms with no derivatives of the shape function ϕ , 
an exact integration formula is used as, 

4/)3dcba()!d!c!b!a(6d
4

c
3

b
2

a
1 ΛΛϕϕϕϕ

Λ
=++++=∫ (for a=1 

and b=c=d=0), where Λ  is the volume of the tetrahedral 
element [15]. This volume can be computed by the integration 
formula as,  
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where ix  and iδ  are the average direction i coordinates 
and projected area (normal to direction i) for every side face 
opposite to node k of the element. 

Therefore, the transient term ∫∂
∂

Ω
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tetrahedral element Λ  (inside the sub-domain) can be written 
as: 
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Consequently, the transient term of equation (12) for the 
sub-domain Ω  (with central node n) takes the following 
form: 
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Now we try to discretize the terms containing spatial 

derivative, Ω∫Ω
dxF

i

d
i )( ∂

φ∂ in equation (10). Since the 

only unknown dependent variable is ∑=
4

k kkhh ϕ  and 

the shape functions, kϕ , are chosen linear piecewise in every 

tetrahedral element, the heat gradient flux ( d
iF  which is 

formed by first derivative) is constant over each element and 
can be taken out of the integration. On the other hand, the 
integration of the shape function spatial derivation over 
tetrahedral element can be converted to boundary integral 
using Gauss divergence theorem [18], and hence: 
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face element normal to the direction i. The discrete form of 
the line integral can be written as: 
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perpendicular to the direction i by ϕ  the average shape 
function value of its three end nodes. 
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Ω  (containing N elements sharing its central node). Since the 
shape function ϕ  takes the value of unity only at central node 
of CV and is zero at the nodes located at the boundary of CV, 

3/1=ϕ  for the faces connected to the central node of CV 
and 0=ϕ  for the boundary faces of the CV. On the other 
hand the sum of the projected area (normal to direction i) of 
three side faces of every tetrahedral element equates to the 
projected area of the fourth side face; hence the term 
containing spatial derivatives in direction i of the equation 
(10), can be written as: 
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where mi ][δ  is the component of the boundary face m 

(opposite to the central node of the CV Ω ) perpendicular to 
direction i. Note that, d

iF  is computed at the center of 
tetrahedral element of the CV, which is associated with side 
m. The head gradient flux in direction i, 

i
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each tetrahedral element can be calculated using Gauss 
divergence theorem, 

∫∫∫ −==
ΔΛΩ

ΔΛ∂
∂Ω ii

i
i

d
i )d(Tkdx

hkdF , where 

id )( Δ  is the projection of side faces of the element 
perpendicular to direction i. By expressing the boundary 

integral in discrete form as, ∑∫ ≈
3

k kii )h()d(h δΔ
Δ

, for 

each element  inside the CV Ω. Therefore, we have, 
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where, iδ  is the component of kth face of a tetrahedral 

element (perpendicular to the direction i) and h is the average 
head of that face and Λ is the volume of the element. 

Noteworthy that for CVs at the boundary of the 
computational domain, central node n of the CV Ω  locates at 
its own boundary. For the boundary sides connected to the 
node n there are no neighboring elements to cancel the 
contribution. Hence, their contributions remain and they act as 
the boundary sides of the sub-domain. Therefore, there is no 
change to described procedure for computation of the spatial 

derivative terms Ω∫Ω
dxF

i

d
i )( ∂

ϕ∂ . 

Finally, using expressions (15) and (16) the equation (12) 
can be written for a CV Ω (with center node n) as: 
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The volume of CV Ω  can be computed by summation of 
the volume of the elements associated with node n.  
The resulted numerical model, which is similar to Non-
Overlapping Scheme of the Cell-Vertex FVUM, can explicitly 
be solved for every node n (the center of the sub-domain Ω  
which is formed by gathering elements sharing node n). The 
explicit solution of head at every node of the domain of 
interest can be modeled as, 
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C. Computational Steps 
Now we need to define a limit for the explicit time step, 

tδ . Considering thermal diffusivity as Cρκα=  with the 
unit ( sm2 ), the criterion for measuring the ability of a 
material for head change. Hence the rate of head change can 
be expressed as, ktn ≈ΔΩ / . Therefore, the appropriate size 
for local time stepping can be considered as, 

kt nΩ=Δ β        )1( ≤β                                                (20) 

β is considered as a proportionality constant coefficient, 
which its magnitude is less than unity. For the steady state 
problems this limit can be viewed as the limit of local 
computational step toward steady state.  

However, there are different sizes of CVs in unstructured 
meshes. This fact implies that the minimum magnitude of the 
above relation be considered. Hence, to maintain the stability 
of the explicit time stepping, the global minimum time step of 
the computational field should be considered. So, 

min)(
k

t nΩ
=Δ β  )1( ≤β                                             (21) 

Noteworthy that for the solution of steady state problems 
on suitable fine unstructured meshes, the use of local 
computational step instead of global minimum time step may 
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considerably reduce the computational efforts.In order to 
stabilizing the numerical solution, time step is restricted by: 

min
)max( ⎟
⎠
⎞⎜

⎝
⎛ Ω=Δ

i

n
s kSt                                                   (22) 

where nΩ  is area of each CV and ik  (i=1,2,3), is hydraulic 
conductivity in direction i. 

III. MODEL VERIFICATION  

In the following sections, the accuracy of the results of the 
developed model is verified by comparison of the computed 
seepage and uplift pressure in natural foundation of a gravity 
dam with a cut off wall with analytical solutions obtained by 
application of conformal mapping technique. The plots of 
computed pressure head, velocity vectors and flow net are 
used to provide better understanding of the numerical solution 
results. 

To verify the above described numerical model, a test case 
considered, for which analytical solution is available. The 
analytical solutions of the seepage and uplift pressure through 
the homogeneous and isotropic dam foundation are obtained 
for a number of ratios of cut off wall over half of dam base 
length (s/b) using conformal mapping technique. The 
parameters were chosen so that the analyzed cases correspond 
to those analytically solved by Pavlovsky, 1956 [12].  

The geometry of the dam foundation with an upstream cut 
off wall at the dam base test case is schematically described in 
Fig.2. The boundary conditions employed in present 
numerical simulation are also illustrated. The foundation 
region considered to be as homogeneous and isotropic sand 
with 

Sec
mkkk zyx

5105 −×===  and mSs
1108 5−×=  . 

The model is represented in a discrete form by a three-
dimensional tetrahedral mesh for a cubic dam foundation in 
Fig.3. 
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Fig.2 : Description of verification case 
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Fig.3 : A three-dimensional tetrahedral 

 mesh for dam foundation 
 

Figure 4 shows a typical computed color coded surfaces of 
head in the homogeneous and isotropic sand foundation of 
dam with upstream cutoff. 

Figures 5 and 6, present typical computed color coded 
velocity vectors and flow net, respectively, in a homogeneous 
and isotropic sand foundation of dam with upstream cutoff. 

Figure 7 presents plots of uplift pressure distribution 
underneath of dam with upstream cutoff for various ratios of 
cutoff wall depth over half of dam base length (s/b) for a 
constant unit ratio of foundation depth over half of dam base 
( 1T b = ).   
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Fig.4 : Typical computed color coded surfaces of head in the 

homogeneous and isotropic sand foundation of dam 
 

Figure 8 presents plots of uplift pressure drop 
100h/)hh(D RLp ×−=  underneath of dam with upstream 

cutoff for various ratios of cutoff wall depth for a range of s/b 
for 1T b = . In this relation hL and hR are pressure heads 
upstream and downstream of the cutoff wall and h is the 
difference of water heads at upstream and downstream of 
dam. The average error between numerical results and 
analytical solution is 0.56%, while the maximum error is 
computed as 7% . 
   As can be seen, the accuracy of the results computed by 
present matrix free Galerkin finite volume model for solution 
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of seepage flow and computation of uplift pressure are quite 
acceptable.  
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Fig.5 : Typical computed velocity vectors in the homogeneous 

and isotropic sand foundation of dam 
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Fig.6 : Typical computed flow net in the homogeneous and 

isotropic sand foundation of dam 
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Fig.7 : Uplift pressure distribution underneath of dam with 

upstream cutoff for different s/b ( 1bT = ) 
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Fig.8 : The comparison of the computed results for various 

(s/b) with the analytical solution of Pavlovsky,1956 [3] 
 

IV. ERRORS OF EMPIRICAL RELATIONS  
There are some empirical relations which globally estimate 

the value of uplift force underneath of the dam base as 
functions of pore pressure in dam foundation. These relations 
define some criterion for considering equivalent seepage 
length Le. Then, uplift pressure at any point underneath of the 
dam base can be estimated by considering linear variation of 
pressure head from Hup to Hdown along Le.  

One of the popular relations for calculation of equivalent 
seepage length Le is proposed by Lane [3]. 

  ∑∑ += HorizontalverticalLanee LLL )(                                (23) 

Another popular relation for calculation of equivalent 
seepage length Le is proposed by Bligh [3]. 

  ∑∑ += HorizontalverticalBlighe LLL
3
1)(                             (24) 

In this section the estimated uplift pressure foundation of a 
dam (specified in the previous section) using above mentioned 
relations are compared with the uplift pressure computed by 
introduced numerical solver (Fig.9). 

Following table presents the uplift pressure errors caused 
by using the two empirical relations for estimating Le are 
presented. 
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Fig.9 : Uplift pressure variation underneath of dam with 

upstream cutoff for different s/b ( 1bT = ) 
 

Table 1 : Uplift pressure errors using empirical relations for 
Le 

0.8 0.6 0.4 0.2 0 
s/b 

 
Pc/(gwh) 

3.046 4.975 6.376 8.053 10.002 Computed  
5.778 6.438 7.286 8.417 10.0 Bligh 
-89.7 -29.4 -14.3 -4.9 0.02  Error(%) 
3.294 3.893 4.818 6.438 10.0 Lane 
-8.14 21.76 24.43 19.78 0.02  Error(%) 

 

V. MODEL APPLICATION  
In this section, the three layers foundation region 

considered to be as heterogeneous foundation case with 
following coefficients of permeability:  
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The model is represented in a discrete form by a three-
dimensional tetrahedral mesh for a cubic dam foundation. The 
geometrical features of the case are described in Fig.10. 
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Fig.7 : Description of the application problem  

 
Figure 11 shows a typical computed color coded surfaces 

of head in the isotropic sand foundation of dam with upstream 
cutoff. Figure 12 and Figure 13, present typical computed 
color coded velocity vectors and flow net, respectively, in a 
heterogeneous foundation of dam with upstream cutoff. Figure 
14 presents plots of uplift pressure distribution underneath of 
dam with upstream cutoff in the heterogeneous foundation. 
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Fig.11 : Typical computed 3D color coded surfaces of head in 

the isotropic sand foundation of dam  
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Fig.12 : Typical computed velocity vectors in a heterogeneous 
foundation of dam 
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Fig.13 : Typical computed flow net in a heterogeneous 

foundation of dam 
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Fig.14 : Uplift pressure distribution underneath of dam with 
upstream cutoff in A HETEROGENEOUS foundation 

 

VI. CONCLUSION 
     In present paper, a three-dimensional numerical model 

is developed for computing the seepage flow and uplift 
pressure under gravity dams with cutoff wall. This model 
explicitly solves the equation of ground water flow on the 
three dimensional unstructured mesh using Galerkin Finite 
Volume Method developed for linear tetrahedral elements. 
Since there is no shape function in the final formulation of the 
model, the introduced matrix free nodal base method 
consumes very light computational overhead. The proposed 
algorithm suits the unstructured meshes and therefore, the 
developed model can predict seepage flow and pressure head 
distribution in geometrical complex porous media. In order to 
verify the accuracy of model results, the seepage flow through 
a homogeneous and isotropic sand dam foundation is solved 
for various ratios of upstream cutoff wall depth over half of 
dam base length (s/b) for a constant unit ratio of foundation 
depth over half of dam base (T/b=1). The computed results of 

uplift pressure distribution are compared with the analytical 
solutions obtained by application of conformal mapping 
technique by Pavlovsky, 1956. The agreements between the 
computed results obtained from described modeling algorithm 
and analytical solutions are promising. 

The comparison of the results of present numerical solver 
with the empirical relations shows that the uplift pressure 
calculated using the equivalent seepage lengths suggested by 
Lane and Bligh are close to the computed values only for 
small s/b. For large values of s/b the equivalent seepage length 
suggested by Bligh will produce over estimated uplift pressure 
values. 

The good performance and acceptable results of the 
introduced modeling technique encouraged application of the 
model for solving seepage flow in a real world multilayer 
porous foundation. Hence, the ability of the developed model 
for solving seepage flow through a natural heterogeneous 
foundation of a gravity dam with three isotropic incline layers 
is examined.  

In order to provide better understanding from the solution 
results color coded surfaces of the computed pressure head, 
velocity vectors and flow net are presented and the computed 
uplift pressure underneath of the dam is compared with the 
results of common empirical relations. 

REFERENCES   
[1] J. Bear, Hydraulics of Groundwater, McGraw-Hill, New Your, 1979.  
[2] US Army Corps of Engineers, Engineering and Design; Seepage 

analysis and control for dams, EM 1110-2-1902, Chapter2 
(Determination of permeability of soil and chemical composition of 
water), April 1993. 

[3] Y. Jie, G. Jie, Z. Mao and G. Li, “Seepage analysis based on boundary-
fitted coordinate transformation method”, Computers and Geotechnics, 
31, 2004, pp.279–283. 

[4] J.L. Serafim, A.P. Santos and M.C. Matos, “Three-dimensional seepage 
through a dam foundation”, Questions of ICOLD congresses, Q58: 
Foundation treatment for control of seepage, R.43, 1985, pp.767-779. 

[5] P.D. Kiousis, “Least-Squares Finite-Element Evaluation of Flow Nets”, 
Journal of Geotechnical and Geo-environmental Engineering, ASCE, 
August 2002, pp.699-701. 

[6] D.V. Griffiths, G.A Fenton and A. Gordon, “Three-Dimensional seepage 
through spatially random soil”, Journal of Geotechnical and Geo-
environmental Engineering, ASCE, February 1997, pp.153-160. 

[7] D.V. Griffiths and G.A. Fenton, “Probabilistic analysis of exit gradients 
due to steady seepage”, Journal of Geotechnical and Geo-environmental 
Engineering, ASCE, Sep. 1998, pp.789-797. 

[8] M.C. Boufadel, M.T. Suidan, A.D. Venosa and M.T. Bowers  “Steady 
Seepage in Trenches and Dams: Effect of Capillarity Flow”, Journal of 
Hydraulic Engineering, ASCE, March 1999, pp.286-294. 

[9] G Li., J. Ge and Y. Jie, “Free surface seepage analysis based on the 
element-free method”, Mechanics Research Communications, 30, 2003, 
pp.9–19. 

[10] G.A. Plizzari, “On the influence of uplift pressure in concrete gravity 
dams”, Engineering Fracture Mechanics, Vol. 59, No. 3, 1998, pp. 253-
267. 

[11] R.R. Dewey, R.W. Reich and V.E. Saouma, “Uplift modeling for 
fracture mechanics analysis of concrete dams”, Journal of structural 
Engineering, ASCE, Vol.120, No.10, October 1994, pp.3025-3044. 

[12] L. N. Reddi  , “Seepage in Soils”, John Wiley & Sons Inc. , 2003. 
[13] K.A. Hoffmann and S.T. Chiang, , “Computational Fluid Dynamic for 

Engineers”, Engineering Education System, 1993. 
[14] G. Segol,  G. F.Pinder and W.G. Gray, “A galerkin finite element 

technique for calculating the transient position of the saltwater front.” 
Journal of Water Res., 11(2), 1975, pp.343-347. 

[15] S.R. Sabbagh-Yazdi and E.N. Mastorakis, “Efficient Symmetric 
Boundary Condition for Galerkin Finite Volume Solution of 3D 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 292



 

 

Temperature Field on Tetrahedral Meshes”, 5th IASME / WSEAS 
International Conference on Heat Transfer, Thermal Engineering and 
Environment , Vouliagmeni Beach, Greece, 2007. 

[16] J.F. Thompson, B.K. Soni and N.P. Weatherill, “Hand book of grid 
generation”, CRC Press, New York, 1999. 

[17] J.N. Reddy and D.K. Gartling, “The Finite Element Method in Heat 
Transfer and Fluid Dynamics”, CRC Press, 2000. 

 
 
 
 
 
 
 
First Author's biography may be found in: http://sahand.kntu.ac.ir/~syazdi/ 
 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 293


