
 

 

  
Abstract— Distance or similarity measures are essential to solve 

many pattern recognition problems such as classification, clustering, 
and retrieval problems. Various distance/similarity measures that are 
applicable to compare two probability density functions, pdf in short, 
are reviewed and categorized in both syntactic and semantic 
relationships. A correlation coefficient and a hierarchical clustering 
technique are adopted to reveal similarities among numerous 
distance/similarity measures. 
 
Keywords—Distance, Histogram, Probability Density Function, 

Similarity.  

I. INTRODUCTION 
BEIT the concept of Euclidean distance has prevailed in 
different cultures and regions for millennia, it is not a 

panacea for all types of data or pattern to be compared.  The 
20th century witnessed tremendous efforts to exploit new 
distance/similarity measures for a variety of applications. 
There are a substantial number of distance/similarity measures 
encountered in many different fields such as anthropology, 
biology, chemistry, computer science, ecology, information 
theory, geology, mathematics, physics, psychology, statistics, 
etc. 

There have been considerable efforts in finding the 
appropriate measures among such a plethora of choices 
because it is of fundamental importance to pattern 
classification, clustering, and information retrieval problems 
[1].  Such endeavors have been conducted throughout 
different fields [2-5]. Despite such comparative studies on 
diverse distance/similarity measures, further comprehensive 
study is necessary because even names for certain 
distance/similarity measures are fluid and promulgated 
differently.  

From the scientific and mathematical point of view, 
distance is defined as a quantitative degree of how far apart 
two objects are. Synonyms for distance include dissimilarity. 
Those distance measures satisfying the metric properties are 
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simply called metric while other non-metric distance measures 
are occasionally called divergence. Synonyms for similarity 
include proximity and similarity measures are often called 
similarity coefficients. A distance measure and a similarity 
measure are denoted as dx and sx, respectively throughout the 
rest of the paper. 

The choice of distance/similarity measures depends on the 
measurement type or representation of objects. Here the 

probability density function or pdf in short which is one of the 
most popular pattern representations, is considered. Let X be a 
set of n elements whose possible values are discrete and finite. 
A histogram H(X) of a set X represents the frequency of each 
value as shown in Figure 1. The frequency value of the ith bin 
is denoted as Hi(X), e.g., H2(X) = 4 and H3(Y) = 2 in Figure 1. 
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Fig. 1 Histogram Representation. 

 
Let d be the number of bins in the histogram. There are 

different types of histograms [6]. Here only the nominal type 
histogram where each level or bin is independent from other 
levels or bins is considered and other types of histogram are 
abstained. When each bin is divided by n, the probability 
density function which represents a probability distribution is 
produced. A pdf for a corresponding histogram is produced by 
dividing each level by n: P = H(X)/n. For example, let P and 
Q be pdfs for H(X) and H(Y) and then P2 = 0.4 and Q3 = 0.2 in 
Figure 1.  

In this paper, various distance/similarity measures that are 
applicable to compare two probability density functions are 
perambulated and categorized. All measures appearing in this 
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paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 

1. Euclidean L2 ∑
=
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d

i
iiEuc QPd

1
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2. City block L1 ∑
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4. Chebyshev L∞  ||max iiiCheb QPd −=  (4) 
 

A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 

 
Table 2. L1 family 
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* L1 family ⊃ {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 

 
Table 3. Intersection family 
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 

 
Table 4. Inner Product family 
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Table 4 deals exclusively with similarity measures which 

incorporate the inner product , P•Q explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized P•Q to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 

 
Table 5. Fidelity family or Squared-chord family 
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The sum of geometric means in the eqn (32) is referred to 

as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
Hellinger affinity [2]. Bhattacharyya distance given in the eqn 
(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 

 
Table 6. Squared L2 family or χ2 family 
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* Squared L2 family ⊃ {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the χ2 family (eqns (41)~(47)) is Pearson χ2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson χ2 divergence is asymmetric. Neyman χ2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the χ2 have been exploited. The eqn (43) is called the squared 
χ2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric χ2 [2] which 
is equivalent to Sangvi χ2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric χ2 divergence’, let’s call it the additive 
symmetric χ2 here in order to distinguish other symmetric 
versions of χ2. Other techniques that are not listed in the 
above table would include max, min, and avg methods; dmax-

sym(P,Q) = max(dasym(P,Q), dasym(Q,P)), dmin-sym(P,Q) = 
min(dasym(P,Q), dasym(Q,P)), and davg-sym(P,Q) = 
avg(dasym(P,Q), dasym(Q,P)). 

 
Table 7. Shannon’s entropy family 
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42. Jensen difference 
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=Σd
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 

 
Table 8. Combinations 
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Table 8 exhibits distance measures utilizing multiple ideas 

or measures. Taneja utilized both arithmetic and geometric 
means came up with the arithmetic and geometric mean 
divergence in the eqn (54) [36]. Symmetric χ2, arithmetic and 
geometric mean divergence is given in the eqn (55) [37]. The 
average of city block and Chebyshev distances in the eqn (56) 
appears in [9]. 

 
Table 9. Grouping of distance/similarity measures by 
caveats to implementation 
Vector 
Ops 

Eqns (1~9), (11~13), (16~19), (21~23),
(26~40), and (56~57) 

0 / 0 Canberra (10), Wave Hedges (14), Harmonic 
mean (25), Squared χ2 (43),  Probabilistic 
Symmetric χ2 (44), Divergence (45), Clark (46), 
and Additive Symmetric χ2 (47) 

division 
by zero 

Kulczynski (9) (20),  Pearson χ2 (41), Neyman 
χ2 (42), KL (48), Jeffreys (49), Taneja (54), and 
Kumar-Johnson (55) 

0 log0 KL (48), K divergence (50), Topsøe (51), 
Jensen-Shannon (52), Jensen difference (53), 
and Taneja (54) 

Log of 0 Jeffreys (49) 
 

Those readers who wish to implement some 
distance/similarity measures presented in this section will face 
some technical problems. Table 9 identifies measures with 
their caveats to implementation. While most measures can be 
efficiently computed using simple vector operators, some 
measures prone to the division by zero and the log of zero 
cases deserve careful attention. Measures like Canberra 
belong to the zero divided by zero caveat group. When the 
divisor becomes zero, the dividend is always zero as well. It 
should be noted that 0/0 are treated as 0. Similarly, 0 log0 is 
treated as 0 as well. For the division by zero and log of zero 
group cases, the zero is replaced by a very small value.   

III. HIERARCHICAL CLUSTERING ON DISTANCE/SIMILARITY 
MEASURES 

Hitherward, the focus is moved from the syntactic similarity 
to the semantic similarity between distance/similarity 
measures. So as to assess how similar distance/similarity 
measures are, the following experiments were conducted 
using the cluster analysis. n samples whose values are 
between 1 and d are randomly selected to build a histogram. 
Next, each bin is divided by n to produce the pdf. Let R be the 
set of r number of reference pdfs and q be a query pdf. Then r 

number of distance values are produced using a certain 
distance measure dx(ri,q) for ∀i. ri and q are randomly 
generated pdfs.  

Figure 2 presents the upper triangle matrix of correlation 
between dx(ri,q) and dy(ri,q) plots for selected distance or 
similarity measures where n = 20, b = 8, and r = 30. Each plot 
in Figure 2 represents the relation between two distance 
measures. In order to quantify the correlation between 
distance/similarity measures, a correlation coefficient measure 
in the eqn (57) is used. 
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(57) 

It indicates the strength and direction of a linear 
relationship between two distance measures. If the value gets 
close to 1, it represents a good fit, i.e., two distance measures 
are semantically similar. As the fit gets worse, the correlation 
coefficient approaches zero. When either two distance or two 
similarity measures are compared, the correlation coefficient 
is a positive value. When a distance measure and a similarity 
measure are compared, the correlation coefficient is a negative 
value e.g., the squared χ2 and probabilistic symmetric χ2 
divergences have dSsqChi,= .5 dPrChi and Corr (dSsqChi, dPrChi) = 1 
whereas Motyka similarity (20) and Sørensen (5) have sMot = 1 
– dSor and Corr (sMot, dSor) = –1.  

To adequately understand the similarities among 
distance/similarity measures, cluster analysis is adopted. The 
correlation coefficient is converted into the distance in the eqn 
(58) to find clusters of distance or similarity measures shown 
in Figure 3. 

dDM (dx, dy) = 1 – |Corr(dx, dy)| (58) 
The dendrogram representing the hierarchical clusters of 

distance/similarity measures is produced by averaging 30 
independent trials of the above experiment. It is built using the 
agglomerative single linkage with the average clustering 
method [1]. The vertical scale on the left represents various 
distance/similarity measures and the horizontal scale 
represents the closeness between two clusters of 
distance/similarity measures. The dendrogram provides 
intuitive groupings of distance/similarity measures. Some 
distance measures in syntactic groups are interspersed in the 
semantic groups. Here are a few simple observations.   
Observation 1: if two measures are proportional to each 
other, i.e., dx=cdy , dDM (dx, dy) = 0.  
Observation 2: if two measures are in distance/similarity 
relation such that dx=1 – sy,  

dDM (dx, dy) = 0.  
Observation 3: if two measures are in distance/similarity 
relation such that sy = 1/dx, dDM (dx, dy) ≥ 0.    e.g, Kulczynski 
has skul = 1/dkul and dDM (skul, dkul) > 0. 
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Fig. 2 Upper triangle matrix of correlation plots between two distance measures. 

 
Fig 3 Dendrogram for pdf distance/similarity measures
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Observation 4: Angular based similarity coefficients such as 
cosine, Jaccard, and Dice are closely related to the Euclidean 
distance.  
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Fig. 4 Histogram / PDF space. 

 
It is because histograms are of the same size. As depicted in 

Figure 4 (a), pdf or histogram space of the same size is only 
subpart of the entire vector space. The pdf space in the d 
dimensional vector space is a segmented d – 1 space which 
has three corners in Figure 4 (c) case. Figure 4 (b) illustrates 
the intuitive close relation between the angle and the 
Euclidean distances.  

IV. CONCLUSION 
This article built the edifice of distance/similarity measures 

by enumerating and categorizing a large variety of 
distance/similarity measures for comparing nominal type 
histograms. Grouping aforementioned measures has 
concentrated upon three general aspects: syntactic similarity, 
implementation caveats, and semantics. The importance of 
finding suitable distance/similarity measures cannot be 
overemphasized. There is a continual demand for better ones.  
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Table 10 exhibits a few distance measures that are not in 

literature. Similar syntactic relationship between Sørensen and 
Canberra can be applied to Kulczynski which yields the eqn 
(60). When squared, a new kind of symmetric χ2divergence 
can be derived in the eqn (61). Evolving from this point, two 
symmetric χ2 divergences can be generated given in eqns (62) 
and (63). They are not the same as using the max and min 
method to make the χ2 divergence symmetric given in eqns 
(64) and (65). A large number of new distance/similarity can 
be relayed by studying the syntactic relations and may be 
useful in some applications. 
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