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Abstract:-
Following Arnold techniques, in this paper we obtain a canonical reduced form for regular-

izable singular systems and we describe generic holomorphic families with respect feedback and
derivative feedback, that permit us, to analyze the neighborhood of a given system.
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1 Introduction
Let M be the smooth manifold of triples

of matrices (E, A,B) where E, A ∈ Mn(C),
B ∈ Mn×m(C), which represent singular time-
invariant linear systems in the form

Eẋ(t) = Ax(t) + Bu(t) (1)

(that we call triple or system indistinctly).
These equations, arise in a natural way

when modelling different set-ups, for instance,
when modelling mechanical multibody sys-
tems and electrical circuits, largely studied by
different authors (Dai [3], Garćıa-Planas [4],
P. Kunkel, V. Mehrmann [7], for example).

It is well known that a system Eẋ = Ax+
Bu is called regular if and only if det(αE −
βA) 6= 0 for some (α, β) ∈ C2. Remember
that the regularity of the system guarantees
the existence and uniqueness of classical solu-
tions.

For no regular systems one can ask for
whether the close loop system is uniquely solv-
able for all consistent initial solution, when
this is possible the system will be called regu-

larizable by proportional and derivative feed-
back. That is to say, the system is regu-
larizable if and only if, there exist matrices
FE , FA ∈ Mm×n(C) such that the system
(E + BFE)ẋ = (A + BFA)x + Bu is regu-
lar. A special subset of regularizable systems
is the subset of standardizable systems. That
is to say, the set of systems (E, A, B) for which
there exist a derivative feedback FE such that
E + BFE is invertible, so after to apply the
derivative feedback FE and premultiplying the
equation by (E + BFE)−1, the system being
standard.

Notice that, the set MR, consisting in all
regularizable systems is an open and dense set
in the space of all systems.

In order to obtain a simple description
of systems, we consider an equivalence rela-
tion in the space M of singular systems that
preserves regularizability character, consist-
ing in to apply one or more of the follow-
ing elementary transformations: basis change
in the space state, basis change in the input
space, proportional feedback, derivative feed-
back and premultiplication by an invertible
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matrix.
The central goal of this paper is to obtain a

canonical reduced form for regularizable sys-
tems under the equivalence relation defined.
The Arnold technique of constructing a local
canonical form, called versal deformation, of
a holomorphic family of square matrices un-
der conjugation (see [1]), can be generalized to
this case obtaining a local canonical form for
holomorphic families of regularizable holomor-
phic systems. Remember that a holomorphic
family (E(λ), A(λ), B(λ)) λ = (λ1, . . . , λk) at
a point p = (0, . . . , 0) are families of triples of
matrices whose entries are convergent in the
power series expansion of complex parameters
λ1, . . . , λk in a neighborhood of p. (The germ
of a family (E(λ), A(λ), B(λ)) at p is called
a deformation of the triple (E(0), A(0), B(0)),
(see [1], [2]).

The results obtained in this paper are im-
portant for application in which one has ma-
trices that arise from physical measurements,
which means that their entries are known only
approximately.

2 Equivalence relation and
canonical forms

For every integers p, q, we will denote by
Mp×q(C) the space of p-rows and q-columns
complex matrices, and if p = q we will write
only Mp(C), and by Gl(n;C) the linear group
formed by the invertible matrices of Mp(C).
In all the paper, M denotes the space of triples
of matrices (E,A, B) with E, A ∈ Mn(C),
B ∈ Mn×m(C) and MR denotes the open and
dense space of regularizable systems.

In order to classify systems preserving reg-
ularizability character, we consider the follow-
ing equivalence relation.

Definition 1 The triples (E, A,B) and
(E′, A′, B′) in M , are said to be equivalent if
and only if

(E′, A′, B′) = (QEP+QBFE , QAP+QBFA, QBR)

for some Q,P ∈ Gl(n;C), R ∈ Gl(m;C),

FE , FA ∈ Mm×n(C). In a matrix form:

(
E′ A′ B′) = Q

(
E A B

)



P 0 0
0 P 0

FE FA R


 .

That is to say, the triples (E, A, B) and
(E′, A′, B′) are equivalent if and only if
(E′, A′, B′) can be obtained from (E, A, B) by
means of one or more of the following elemen-
tary transformations

i) Basis change in the space state,

ii) Basis change in the inputs space,

iii) Feedback,

iv) Derivative feedback,

v) Premultiplication by an invertible ma-
trix.

It is immediate that the equivalence rela-
tion generalizes the feedback equivalence be-
tween standard linear systems.

Loiseau, Ölçadiram and Malabre in [8]
consider the restricted pencil sπE−πA where
π is the projection of state space over ImB,
and they prove that two triples are equivalent
if and only if the associated restricted pencils
are strictly equivalent, consequently a singular
system (E,A, B), can be reduced to

((
0

E′
1

)
,

(
0

A′1

)
,

(
Ir 0
0 0

))

where (E′
1, A

′
1) is the Kronecker canonical re-

duced form of the pencil sπE + πA. Garćıa-
Planas and Magret in [6] obtain the same re-
sult using polynomial matrices.

For regularizable systems we obtain a most
useful reduced form in the following manner.

Proposition 1 Let (E, A,B) be a
n-dimensional m-input regularizable sys-
tem. Then, it can be reduced to((

Ir
N

)
,
(

A1
In−r

)
,
(

B1
0

))
where (A1, B1) is

a pair in its Kronecker canonical form, and N
is a nilpotent matrix in its canonical reduced
form.

Proof. Let (E, A,B) be a regularizable
triple, making a proportional and derivative
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feedback in such a way that the standardiz-
able subsystem being maximal. We consider
the equivalent triple where the pair (A,B) is
in its Weirstass form

((
I1

N

)
,

(
Ac

I2

)
,

(
B1

B2

))

(Observe that if the triple is standardizable
then I1 = In).

It suffices to prove that in this case B2 = 0.
For that we consider the following equivalent
triple

(
I1

P−1

) (
I1 0 Ac 0 B1
0 N 0 I2 B2

)
( I1

P
I2

P
F R

)
=

(
I1 0 Ac 0 B1R

0 P−1NP+PB2F 0 I2 P−1B2R

)

where and if B2 6= 0, P−1NP + PB2F =(
I3

N

)
, P−1BR =

(
B21
0

)
, so the standardiz-

able part is not maximal.
Finally, it suffices to reduce the system

(Ac, B1) in its Kronecker canonical reduced
form. ¤

2 Miniversal deformations
The equivalence relation may be seen as in-

duced by Lie group action. Let us consider the
following Lie group G = Gl(n;C)×Gl(n;C)×
Gl(m;C) × Mm×n(C) × Mm×n(C) acting on
M .

The action α : G ×M −→ M is defined as
follows:

α((P, Q, R, FE , FA), (E,A, B)) =
(QEP + QBFE , QAP + QBFA, QBR)

(2)
So, the orbits are equivalence classes of

triples of matrices under the equivalence re-
lation considered.

O(E,A, B) =
{(QEP + QBFE , QAP + QBFA, QBR)}

∀Q, P ∈ Gl(n;C), R ∈ Gl(m;C), FE , FA ∈
Mm×n(C).

For a triple (E, A,B) ∈ M , we denote by

T(E,A,B)O(E, A, B) =
{(EP + QE + BFE , AP + QA + BFA, BR + QB)}

for all P, Q ∈ Mn(C), R ∈ Mm(C), FE , FA ∈
Mm×n(C), the tangent space at (E, A, B) to
the orbit through (E,A, B).

Now, we will use the description of the or-
thogonal complementary subspace to the tan-
gent space to the orbit to explicit miniversal
deformations.

First, we recall the definition of versal de-
formations. Let H be a smooth manifold.

Two families (E(λ), A(λ), B(λ)) and
(E′(λ), A(λ), B′(λ)) are called equivalent if
there exist matrices Q(λ), P (λ), R(λ), FE(λ),
FA(λ) holomorphic at the origen p such that

(
E′(λ) A′(λ) B′(λ)

)
=

Q(λ)
(
E(λ) A(λ) B(λ)

)



P (λ)
P (λ)

FE(λ) FA(λ) R(λ)




in a neighborhood of the origen p.

Definition 2 Let Λ be a neighborhood of
the origin of C`. A deformation ϕ(λ) of x0 is
a smooth mapping

ϕ : Λ −→ H

such that ϕ(0) = x0. The vector λ =
(λ1, . . . , λ`) ∈ Λ is called the parameter vec-
tor.

The deformation ϕ(λ) is also called differ-
entiable family of elements of H.

Let G be a Lie group acting smoothly on
H. We denote the action of g ∈ G on x ∈ H
by g ◦ x.

Definition 3 The deformation ϕ(λ) of
x0 is called versal if any deformation ϕ′(ξ) of
x0, where ξ = (ξ1, . . . , ξk) ∈ Λ′ ⊂ Ck is the
parameter vector, can be represented in some
neighborhood of the origin as

ϕ′(ξ) = g(ξ) ◦ ϕ(φ(ξ)), ξ ∈ Λ′′ ⊂ Λ′, (3)

where φ : Λ′′ −→ C` and g : Λ′′ −→ G are dif-
ferentiable mappings such that φ(0) = 0 and
g(0) is the identity element of G. Expression 3
means that any deformation ϕ′(ξ) of x0 can be
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obtained from the versal deformation ϕ(λ) of
x0 by an appropriate smooth change of param-
eters λ = φ(ξ) and an equivalence transforma-
tion g(ξ) smoothly depending on parameters.

A versal deformation having minimal num-
ber of parameters is called miniversal.

The following result was proved by Arnold
[1], in the case where Gl(n;C) acts on Mn(C),
and was generalized by Tannenbaum [9], in
the case where a Lie group acts on a complex
manifold. It provides the relationship between
a versal deformation of x0 and the local struc-
ture of the orbit.

Theorem 1 ([9])

1. A deformation ϕ(λ) of x0 is versal if and
only if it is transversal to the orbit O(x0)
at x0.

2. Minimal number of parameters of a ver-
sal deformation is equal to the codi-
mension of the orbit of x0 in M , ` =
codimO(x0).

Let {v1, . . . , v`} be a basis of
any arbitrary complementary subspace
(Tx0O(x0))c to Tx0O(x0) (for example,
(Tx0O(x0))⊥).

Corollary 1 The deformation

x : Λ ⊂ C` −→ H, x(λ) = x0 +
∑̀

i=1

λivi (4)

is a miniversal deformation.
In order to describe a complementary sub-

space of T(E,A,B)O(E, A, B), we consider the
following standard hermitian product in the
space M

〈x1, x2〉=tr(E1E
∗
2 ) + tr(A1A

∗
2) + tr(B1B

∗
2),

where xi = (Ei, Ai, Bi) ∈ M,, A∗ denotes
the conjugate transpose of a matrix A and tr
denotes the trace of the matrices.

Proposition 2

T(E,A,B)O(E, A,B)⊥ =
{(X, Y, Z) | X∗B = 0, Y ∗B = 0, Z∗B = 0,
EX∗ + AY ∗ + BZ∗ = 0, X∗E + Y ∗A = 0.}

Proof. Let (X,Y, Z) be in
T(E,A,B)O(E, A,B)⊥ equivalently

〈(EP +QE+BU, AP +QA+BV, BR+QB), (X, Y, Z)〉 = 0

that is to say

tr((EP + QE)X∗) + tr((AP + QA)Y ∗) + tr(QBZ∗)

+tr((BU)X∗) + tr((BV )Y ∗) + tr((BR)Z∗) =

tr((EX∗)Q) + tr((AY ∗)Q) + tr((BZ∗)Q)

+tr((X∗E)P ) + tr((Y ∗A)P )+

+tr((X∗B)U) + tr((Y ∗B)V ) + tr((Z∗B)R) = 0.

∀ (P, Q,R, U, V ) ∈ TeG. That is to say

AB = 0

where

A =




EX∗+AY ∗+BZ∗ 0 0 0 0
0 X∗E+Y ∗A 0 0 0
0 0 X∗B 0 0
0 0 0 Y ∗B 0
0 0 0 0 0
0 0 0 0 Z∗B




and

B =

( Q 0 0 0 0
0 P 0 0 0
0 0 U 0 0
0 0 0 V 0
0 0 0 0 R

)
= 0.

We observe that this condition is equivalent
to

AX = 0

where

X =

( Q ∗ ∗ ∗ ∗
∗ P ∗ ∗ ∗
∗ ∗ U ∗ ∗
∗ ∗ ∗ V ∗
∗ ∗ ∗ ∗ R

)
= 0,

where ∗ are arbitrary matrices in adequate
size. So, taking into account that the prod-
uct is hermitian product we have

A = 0

and the proof is concluded. ¤

Corollary 2 Let (E,A, B) be a stan-
dardizable triple in its canonical reduced form.
Then a miniversal deformation is given by

(E, A,B) + {(0, Y, Z)}
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where (A,B) + {(Y, Z)} is a miniversal de-
formation of the pair (A,B) under block-
similarity equivalence.

Proof. Following proposition 2, we have
(X, Y, Z) ∈ T(E,A,B)O((E,A, B))⊥ if and only
if 




EX∗ + AY ∗ + BZ∗ = 0
X∗E + Y ∗A = 0

X∗B = 0
Y ∗B = 0
Z∗B = 0

(5)

Taking into account that E = In





X∗ −AY ∗ −BZ∗ = 0
X∗ + Y ∗A = 0

X∗B = 0
Y ∗B = 0
Z∗B = 0

(6)

Observe that if X∗ = −AY ∗−BZ∗, Y ∗B = 0,
Z∗B = 0, then X∗B = 0, so the system is
equivalent to





X∗ −AY ∗ −BZ∗ = 0
−AY ∗ −BZ∗ + Y ∗A = 0

Y ∗B = 0
Z∗B = 0

(7)

The last three equations describe the
miniversal orthogonal deformation of the pair
(A,B) (see [5]) and the first equation inform
us that all equation the parameters of the ma-
trix X are depending on the parameters of Y
and Z. So, if we want a minimal miniversal
deformation we can take X = 0. ¤

2 Holomorphic canonical form
Now, we are going to explicit the miniver-

sal orthogonal deformation for regularizable
triples. First of all and taking into account
the homogeneity of the orbits, we observe
that we can consider the triple in its canon-
ical reduced form. So, partitioning the ma-

trices X∗ =
(

X1 X2

X3 X4

)
, Y ∗ =

(
Y1 Y2

Y3 Y4

)
,

Z∗ =
(
Z1 Z2

)
following the blocks on the

matrices E, A, B in its canonical reduced
form, we obtain the following independent sys-
tems:

i)
X1 + AcY1 + B1Z1 = 0

X1 + Y1Ac = 0
X1B1 = 0
Y1B1 = 0
Z1B1 = 0





according remark, this system corre-
sponds to the miniversal orthogonal
deformation to the standard system
(I,A2, B1) (see [5] for a solution).

ii)
−NX4 = Y4

X4N −NX4 = 0

}

this system corresponds to the miniver-
sal orthogonal deformation to the square
matrix N1 (see [1] for a solution).

iii)
NX3 + Y3 = 0
X3 + Y3Ac = 0

X3B1 = 0
Y3B1 = 0





having zero-solution, and

iv)
X2 + AcY2 + B1Z2 = 0

X2N + Y2 = 0

}
.

To solve system iv), we partition the system
into independent subsystems corresponding to

the blocks in the matrix Ac =
(

N1

J

)
, so

B1 =
(

B′

0

)
, obtaining

X2
1 −N1X

2
1N + B′Z2 = 0}

and
X2

2 − JX2
2N = 0}

with solutions

X1
2 =

(
X11 ... X1r

...
...

Xs1 ... Xsr

)
,

Xij =

(
0 ... 0 x1 ... xν
0 ... x1 x2 ... xν+1

... ... ...
x1 ... ... x`

)
.
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Xij =

(
0 ... 0 x1
0 ... x1 x2

...
x1 ... x`−1 x`

)
,

or

Xij =




0 ... 0 0
...

...
0 ... 0 0
0 ... 0 x1
0 ... x1 x2

... ...
x1 ... x`−1 x`


 ,

depending on the size of the nilpotent
submatrices in N and N1, and Z2 =(−x1 . . . −x`

)
.

And X2
2 = 0.

Finally, we describe a simplest holomor-
phic canonical form.

Theorem 2 Given a triple (E, A,B) ∈
MR in its canonical reduced form and the or-
thogonal miniversal deformation, we can con-
sider a minimal miniversal deformation (E +

X, A + Y, B + Z) with X =
(

0 0
X3 X4

)
, Y =

(
Y1 0
0 0

)
, Z =

(
Z1 0

)
. Y1, Z1 in such away

that (A2 + Y1, B1 + Z1) being a minimal de-
formation of the pair (A1, B1). Concretely,

Y1 =
(

0 0
Y 2

1 Y 2
2

)
, Z1 =

(
Z1

1 Z1
2

0 Z2
2

)
where

the block-decomposition correspond to that of
(A1, B1) and

i) all the entries in Y 2
1 are zero except

yp+1
i , . . . , yn

i , i = 1, k1 + 1, . . . , k1 +
. . . + kp−1 + 1,

ii) the matrices Y 2
2 are such that J + Y 2

2 is
the miniversal deformation of J given by
Arnold [1],

iii) all the entries in Z1
1 are zero except

zj
i , 2 ≤ i ≤ p, k1+. . .+ki−2+ki+1 ≤

j ≤ k1 + . . . + ki−2 + ki−1 − 1 (provided
that ki ≤ ki−1 + 2,

iv) Z1
2 is such that zi

p+1 = . . . = zi
m =

0, i = k1, k1 + k2, . . . , k1 + . . . + kp,

v) all the entries in Z2
2 are arbitrary.

N1 + X4 is a miniversal deformation of the
square matrix N1 given by Arnold (see [1]),
and X3 = (Xij) with

Xij =




0 ... 0
...

...
0 ... 0
x1 ... x`


 ,

Xij =




0 ... 0 ... 0
...

...
...

0 ... 0 ... 0
0 ... x1 ... x`


 ,

corresponding to size in the nilpotent subma-
trices N1 and N2.

3 Conclusion
It is well know that computing the fine

canonical structure elements of triples of ma-
trices (E,A, B) ∈ Mn(C) × Mn(×Mn×m(C)
under feedback and derivative feedback cor-
responding to the singular systems Eẋ =
Ax + Bu are ill-posed problem because of
arbitrary small perturbations in the entries
may drastically change the canonical struc-
ture. The knowledge of holomorphic canon-
ical forms permit us to know the canonical
structures what are nearby of a fixed triple.
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