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Abstract— In this paper we are concerned with
the existence of solutions of an initial-boundary value
problem for a one-dimensional parabolic inclusion with
nonlocal integral boundary conditions. Using the Green’s
function we transform the problem into an equivalent
integral inclusion. Our technique is based on fixed
point theorems for set-valued maps and the method
of lower and upper solutions. We provide sufficient
conditions that guarantee the existence of at least one
solution.
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I. INTRODUCTION

Consider the following one-dimensional parabolic
inclusion subjected to integral boundary conditions.

ut − uxx ∈ F (x, t, u), 0 < x < π, 0 < t < 1, (1)

u(x, 0) = u0(x), 0 ≤ x ≤ π, (2)

u(0, t) =

Z π

0
g(u(x, t))dx, 0 < t < 1, (3)

u(π, t) =

Z π

0
h(u(x, t))dx, 0 < t < 1, (4)

where u0, g, h are given functions andF is a mul-
tivalued map satisfying some conditions that will be
specified later.
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Parabolic problems with discontinuous nonlinear-
ities arise naturally in chemical reactor theory, porous
medium combustion (see [11] and [12]); also in best
response dynamics arising in game theory (see [15]),
and the references therein. Parabolic equations with
discontinuous nonlinearities generated by increasing
functions of bounded variations have been investigated
in [24], [22] and [4]. Parabolic problems with inte-
gral boundary conditions appear in the modeling of
concrete problems, such as heat conduction [3], [16],
[5], thermoelasticity [7]. Several papers have been de-
voted to the study of parabolic problems with integral
conditions [6], [20], [25]. A good account on numeri-
cal treatment of parabolic problems with integral con-
ditions can be found in [8].

In this paper we consider an intial boundary value
problem for the one-dimensional heat equation with a
convex multivalued right hand side and subjected to
integral boundary conditions. We shall convert Prob-
lem (1), (2), (3), (4) to an integral inclusion using the
properties of the Green’s function corresponding to
the linear problem. We, then, provide sufficient con-
ditions on the data that will enable us to obtain a pri-
ori bounds on possible solutions of a one-parameter
family of problems related to the original one. Our
approach is based on fixed point theorems for suitable
multivalued operators.

The outline of the paper is as follows. Section 2
is devoted to the study of the linear nonhomogeneous
problem and the properties of the Green’s function. In
section 3, we shall recall the main properties of mul-
tivalued maps. We state and prove our main results in
section 4.

II. LINEAR NONHOMOGENEOUS PROBLEM

In this section we consider the linear nonhomogeneous
problem

ut − uxx = f(x, t), 0 < x < π, 0 < t < 1, (5)

u(x, 0) = u0(x), 0 ≤ x ≤ π, (6)
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u(0, t) = a(t), 0 < t < 1, (7)

u(π, t) = b(t), 0 < t < 1, (8)

We say that u ∈ C2,1(D) if u has a continuous sec-
ond order partial derivative with respect to x and a
continuous first order partial derivative with respect to
t. Let X = C(D) be the Banach space of real-valued
continuous functions on D, equipped with the norm
kuk∞ = max{|u(x, t)| ; (x, t) ∈ D} for u ∈ X.
A strong solution of the above problem is a function
u ∈ C2,1(D) ∩ C(D). The following result can be
found in [13] and [21].
Assume that the functions f, u0, are Hölder continu-
ous, and the functions a and b are continuous. Then,
Problem (5), (6), (7), (8) has a unique strong solution
given by for each (x, t) ∈D = (0, π)× (0, 1),

u(x, t) =
R t
0

R π
0 G(x, t; y, s) f (y, s) dyds

+
R π
0 G(x, t; y, 0) u0 (y) dy

+
R t
0
∂G
∂y (x, t; 0, s) a(s)ds

− R t0 ∂G
∂y (x, t;π, s) b(s)ds,

(9)

where G(x, t; y, s) is the Green’s function corre-
sponding to the linear homogeneous problem. This
function satisfies the following
(i) Gt −Gxx = δ (t− s) δ (x− y) s < t,
0 < x, y < π
(ii) G(x, t; y, s) = 0 s > t, 0 < x, y < π
(iii) G(0, t; y, s) = G(π, t; y, s) = 0 s < t
(iv) G(x, t; y, s) > 0 for (x, t) ∈ D
(v) G, Gt, Gx, Gxx are continuous functions
of (x, t), (y, s) ∈ D, t− s > 0.
(vi) there exist d0 > 0 and μ ∈ (0, 1) such that

|G(x, t; y, s)| ≤ d0 |x− y|1−μ
(t− s)μ

,

and
¯̄̄̄
∂G

∂y
(x, t; y, s)

¯̄̄̄
≤ d0 |x− y|κ−2+2μ

(t− s)μ
,

with 1− κ
2 < μ < 1.

Lemma 1 Let y0 be a fixed number in [0, π].

Then there exists a constant δ0 > 0 such that

max(x,t)∈D
R t
0

¯̄̄̄
∂G

∂y
(x, t; y0, s)

¯̄̄̄
ds ≤ δ0.

Proof. This follows from the estimate
on
¯̄̄̄
∂G

∂y
(x, t; y, s)

¯̄̄̄
.

We write (9) in the following convenient form, for
each (x, t) ∈ D,

u(x, t) = G (f + u0) (x, t) + γ (a, b) (x, t) (10)

where

G (f + u0) (x, t) =R t
0

R π
0 G(x, t; y, s) f (y, s) dyds

+
R π
0 G(x, t; y, 0) u0 (y) dy,

(11)

and

γ (a, b) (x, t) =R t
0
∂G
∂y (x, t; 0, s) a(s)ds

− R t0 ∂G
∂y (x, t;π, s) b(s)ds.

(12)

The operators G, γ map C(D) into C2,1(D). More-
over, v = G (f + u0) solves the problem

vt − vxx = f, v(x, 0) = u0(x) and w = γ (a, b)
solves the problemwt−wxx = 0, w(x, 0) = 0, w(0, t) =
a(t), w(π, t) = b(t).

III. MULTIVALUED FUNCTIONS

We, now, introduce some useful definitions and
properties from set-valued analysis. For complete de-
tails on multivalued maps we refer the interested reader
to the books [1], [2] and [9].

Let (Y, |·|) be a normed space. We shall denote
the set of all subsets of Y having property c by Pc(Y ).
For instance, U ∈ Pcl(Y )means U closed in Y ;when
c = b we have the bounded subsets of Y, c = cv
for convex subsets, c = cp for compact subsets and
c = cp, cv for compact and convex subsets. A multi-
valued map R : Y → 2Y is convex (closed) valued if
R(z) is convex (closed) for each z ∈ Y. R is bounded
on bounded sets if R (B) = ∪z∈BR (z) is bounded
in Y for all B ∈ Pb(Y ) (i.e. supz∈B{sup{|y| ; y ∈
R(z)}} < ∞). The multivalued map R is called up-
per semicontinuous (usc) on Y if for each z ∈ Y the
set R(z) ∈ Pcl(Y ) and is nonempty, and for each
open subset Λ of Y containing R(z), there exists an
open neighborhood Π of z such that R(Π) ⊂ Λ. The
set-valued map R is called completely continuous if
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R(B) is relatively compact for every B ∈ Pb(Y ). If
R is completely continuous with nonempty compact
values, then R is usc if and only if R has a closed
graph (i.e. zn → z, wn → w, wn ∈ R(zn)⇒ w ∈
R(z)). R has a fixed point if there exists z ∈ Y such
z ∈ R(z). A multivalued map R : D → Pcl(R) is
called measurable if for every θ ∈ R, the function
v 7−→ dist(θ,R(v)) = inf{|θ − z| ; z ∈ R(v)} is
measurable.

Definition 2 z : D ×R→ 2R\∅ is called

an L2−Carathéodory multifunction if
(i) z(., ., u) : D→ 2R is measurable for all u ∈ R,
(ii)z(x, t, .)→ R→ 2R is usc for almost all (x, t) ∈
D
(iii) for each ( > 0 there exists ω( ∈ L2(D) such that
|u| ≤ ( implies
|z (x, t, u)| := {|w| ;w ∈ F (x, t, u)} ≤ ω (x, t) for
a.e.(x, t) ∈ D.

Definition 3 Let u ∈ X. Then Sz,u denotes the set
of L2−selections of the set-valued map z : R→ 2R,
and is the set

{w ∈ L2(D); w(x, t) ∈ z (x, t, u (x, t)) , ∀ (x, t) ∈
D}.
The fact that this set is not empty follows from Lemma
3 in [18].

Definition 4 Let z : D × R → 2R have nonempty
compact values. The Nemitsky operator F of z is the
set-valued operator defined by

F : C(D)→ L2(D), F(u) is the set of all

w : D→ R measurable such that
w(x, t) ∈ z (x, t, u(x, t)) , ∀ (x, t) ∈ D.
It can be shown (see [14, page 40], [23]) that if z is
usc with convex bounded values then the operatorF is
well defined, usc, bounded on bounded sets in C(D),
and has convex values.

Definition 5 u is a strong solution of (1), (2), (3), (4)
if there exists a Lipschitz selection f ∈ SF,u and u has
the integral representation (9).

Remark. If F is a Lipschitz multifunction then it ad-
mits a Lipschitz selection. See [17].

Definition 6 Let (Z, d) be a metric space and letA,B
be two nonempty subsets of Z. The Hausdorf distance
between A and B is defined by

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}.

Here d(a,B) = inf{d(a, b); b ∈ B}.Then (Pcl,b(Z), dH)
is a metric space.

Definition 7 A multivalued operator L: Z → Pcl(Z)
is called

(i) δ−Lipschitz if and only if there exists δ > 0
such that dH (L(u),L(v)) ≤ δ d (u, v) for all u, v ∈
Z

(ii) a contraction if and only if it is δ−Lipschitz
with δ < 1.

The following theorems play an important role in
our existence results.

Theorem 8 [19] Let E be a Banach space and L :
E → Pcp,cv(E) a condensing map. If the set S :=
{z ∈ E; λz ∈ L (z) for some λ > 1} is bounded,
then L has a fixed point.

We remark that a compact map is the simplest ex-
ample of condensing maps.

Theorem 9 [10]Let Br(0) and Br(0) denote respec-
tively the open and closed balls in a Banach space
(E, k·k) centered at 0 and having radius r. Let L1 :
Br(0)→ Pcl,cv,b(E) and L2 : Br(0)→ Pcp,cv(E) be
two multivalued operators satisfying

(i) L1 is a contraction,
(ii) L2 is compact and usc.
Then either
(j) the operator inclusion u ∈ L1u + L2u has a

solution in Br(0), or
(jj) there exists u ∈ E with kuk = r such that

λu ∈ L1u+ L2u for some λ > 1.

Theorem 10 [14, page 11]Let E be a normed linear
space, C convex subset inE and U open in C with 0 ∈
U. Let Λ : U → 2C be an usc, compact multivalued
operator with closed and convex values. Then either

(a) Λ has a fixed point, or
(b) there exists z ∈ ∂U such that z ∈ λΛz for

some λ ∈ (0, 1) .

IV. MAIN RESULTS

In this section, we shall state and prove our main
results.We shall assume throughout the remainder of
the paper that the following conditions hold.
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(H0) The multifunction F : D × R→ 2R is non-
empty, usc and has compact and convex values. More-
over, there exists a Lipschitz selection f ∈ SF,u for
each u ∈ X.

(H1) u0 ∈ C ([0, π]) .

Theorem 11 Suppose that, in addition to (H0) and
(H1) the following assumptions are satisfied,

(H2) g, h : C(D)→ R are continuous and bounded,
(H3) F maps bounded sets into relatively com-

pact sets, and there are positive constants c1, c2 such
that |F (x, t, u)| ≤ c1 + c2 |u| .

Then Problem (1), (2), (3), (4) has at least one
strong solution.
Proof. It follows from (9), (10), and (11) that u is a
solution of (1), (2), (3), (4) if and only if u is a fixed
pont of the multivalued operator L, defined by

Lu = GF(u) + γ (u) , (13)

where F is the Nemitski operator of F.
In fact, we have
Lu (x, t) = R t0 R π0 G(x, t; y, s)F (y, s, u (y, s))dyds

+
R π
0 G(x, t; y, 0) u0 (y) dy

+
R t
0
∂G
∂y (x, t; 0, s)

R π
0 g(u(y, s))dyds

− R t0 ∂G
∂y (x, t;π, s)

R π
0 h(u(y, s))dyds,

where Z t

0

Z π

0
G(x, t; y, s) (Fu) (y, s) dyds

is the Aumann integral of F . We see that L is the sum
of a multivalued operator GF and a single valued op-
erator γ (·) . We apply Theorem 6 to the operator L.
Let u ∈ X. We show that Lu ∈ Pcp,cv(X).
(a) Lu is a convex subset of X for each u ∈ X. Let
v1, v2 ∈ Lu. Then there exists w1, w2 ∈ SF,u such
that for each (x, t) ∈ D we have for i = 1, 2

vi(x, t) =

Z t

0

Z π

0
G(x, t; y, s)wi (y, s) dyds

+

Z π

0
G(x, t; y, 0) u0 (y) dy

+

Z t

0

∂G

∂y
(x, t; 0, s)

Z π

0
g(u(y, s))dyds

−
Z t

0

∂G

∂y
(x, t;π, s)

Z π

0
h(u(y, s))dyds.

Since SF,u is convex, it is clear from the above rela-
tion that any convex combination of v1, v2 is an ele-
ment of Lu.
(b) Lu is a compact subset of X for each u ∈ X. Let
(wn)n∈N be a bounded sequence in SF,u.By (H0) and
(H3) the Nemitski operatorF ofF is well defined, usc
and maps bounded sets into relatively compact sets.
The sequence (vn)n∈N given by, for each n ∈ N

vn(x, t) =

Z t

0

Z π

0
G(x, t; y, s)wn (y, s) dyds

+

Z π

0
G(x, t; y, 0) u0 (y) dy

+

Z t

0

∂G

∂y
(x, t; 0, s)

Z π

0
g(u(y, s))dyds

−
Z t

0

∂G

∂y
(x, t;π, s)

Z π

0
h(u(y, s))dyds.

is relatively compact in Lu. This implies that Lu is a
compact subset of X.
(c) We show that L = GF + γ (·) is a compact op-
erator. To achieve this, we show that L is uniformly
bounded and maps bounded sets into equicontinuous
sets.
Let B be a bounded subset of X, and let u ∈ B. Then
there is M > 0 such that kuk∞ ≤M.
Now, for each v ∈ Lu there exists w ∈ SF,u such that

v(x, t) =

Z t

0

Z π

0
G(x, t; y, s)w (y, s) dyds

+

Z π

0
G(x, t; y, 0) u0 (y) dy

+

Z t

0

∂G

∂y
(x, t; 0, s)

Z π

0
g(u(y, s))dyds

−
Z t

0

∂G

∂y
(x, t;π, s)

Z π

0
h(u(y, s))dyds.

Hence, if mg and mh denote the bounds on g and h
respectively,

|v(x, t)| ≤R t
0

R π
0 G(x, t; y, s)[c1 + c2 |u (y, s)|]dyds

+
R π
0 G(x, t; y, 0) | u0 (y)| dy

+πmgmax
D

R 1
0

¯̄̄
∂G
∂y (x, t; 0, s)

¯̄̄
ds

+πmhmax
D

R 1
0

¯̄̄
∂G
∂y (x, t;π, s)

¯̄̄
ds.

It follows from Lemma 1
|v(x, t)| ≤ π (c1 + ku0k∞) kGk∞
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+(πmg + πmh)δ0

+c2
R 1
0

R π
0 G(x, t; y, s) |u (y, s)| dyds

≤M0 + c2
R 1
0

R π
0 G(x, t; y, s) |u (y, s)| dyds

where
M0 = π (c1 + ku0k∞) kGk∞ + (πmg + πmh)δ0.

Then |v(x, t)|
≤M0 + πc2 kGk∞ kuk∞ . ≤M0 + πc2 kGk∞M.

This shows that Lu is uniformly bounded.

Next, let (x, t) , (ξ, τ) ∈ D. Then

|v (x, t)− v (ξ, τ)| ≤
(c1 + c2M)

R 1
0

R π
0 |G(x, t; y, s)−G(ξ, τ ; y, s)| dyds

+ ku0k∞
R π
0 G(x, t; y, 0)− G(ξ, τ ; y, 0)dy

+πmg

R 1
0

¯̄̄
∂G
∂y (x, t; 0, s) − ∂G

∂y (ξ, τ ; 0, s)
¯̄̄
ds

+πmh

R 1
0

¯̄̄
∂G
∂y (x, t;π, s) − ∂G

∂y (ξ, τ ;π, s)
¯̄̄
ds

It follows from the properties of the Green’s function
that, as |x− ξ| + |t− τ | → 0, the right hand of the
last inequality tends to zero. This shows that Lu is
equicontinuous.
(d) Now, consider the set S = {u ∈ X;λu ∈ Lu, for
some λ > 1}. We show that this set is bounded.
We proceed as before to obtain

|λu(x, t)| ≤
M0 + c2

R 1
0

R π
0 G(x, t; y, s) |u (y, s)| dyds

Since λ > 1 it follows from the above inequalities
that,

|u(x, t)| ≤
M0 + c2

R 1
0

R π
0 G(x, t; y, s) |u (y, s)| dyds.

Gronwall’s inequality implies
kuk∞ ≤M0 exp (πc2 kGk∞) .

Therefore the set S is bounded and consequently, L
has a fixed point in X. This fixed point is the solution
to our original problem.¤
For our second result, we shall assume, in addition
to (H0) and (H1), that the following conditions are
satisfied.
(H4) g and h are Lipschitz continuous, with Lipschitz
constants kg and kh respectively, with

∆ := (kg + kh)δ0 < 1

and further g(0) = h(0) = 0.

(H5) F has compact, convex values and there exists
Ψ : [0,∞) → (0,∞) continuous and nondecreasing
such that |F (x, t, u)| ≤ Ψ (|u|)
(H6) sup

ρ∈(0,∞)
ρ (1− π∆)

π kGk∞ (ku0k∞ + πΨ (ρ))
> 1

Theorem 12 If the conditions (H0), (H1), (H4), (H5),
and (H6) are satisfied. Then Problem (1), (2), (3), (4)
has at least one solution.

Proof. Condition (H6) implies that there exists r > 0
such that

r (1− π∆)

π kGk∞ (ku0k∞ + πΨ (r))
> 1. (14)

Consider the closed ball Br(0) in the Banach space
X. Let u ∈ Br(0). Write Lu as L1u+ L2u,
with

L1u(x, t) =R t
0
∂G
∂y (x, t; 0, s)

R π
0 g(u(y, s))dyds

− R t0 ∂G
∂y (x, t;π, s)

R π
0 h(u(y, s))dyds,

(15)

and

L2u(x, t) =R t
0

R π
0 G(x, t; y, s)F (y, s, u (y, s))dyds

+
R π
0 G(x, t; y, 0) u0 (y) dy.

(16)

Claim 1. L1 : Br(0)→ Pcl,cv,b(X) is a contraction.
Notice that L1 is a single valued operator. The con-
tinuity of the functions g and h implies that L1u ∈
Pcl,cv,b(X).

Now, let u, v ∈ Br(0). Then

|L1u(x, t)− L1v(x, t)| ≤R t
0

¯̄̄
∂G
∂y (x, t; 0, s)

¯̄̄ R π
0 |g(u(y, s))− g(v(y, s))| dyds

+
R t
0

¯̄̄
∂G
∂y (x, t;π, s)

¯̄̄ R π
0 |h(u(y, s))− h(v(y, s))| dyds

Hence
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kL1u− L1vk∞ ≤

kg
R t
0

¯̄̄
∂G
∂y (x, t; 0, s)

¯̄̄ R π
0 |u(y, s)− v(y, s)| dyds

+kh
R t
0

¯̄̄
∂G
∂y (x, t;π, s)

¯̄̄ R π
0 |u(y, s)− v(y, s)| dyds.

Condition (H4) implies that

dH(L1u,L1v) = kL1u− L1vk∞ ≤ ∆ ku− vk∞ .

Since ∆ < 1 it follows (see Definition 5) that L1 is a
contraction.¤
Claim 2. L2 : Br(0) → Pcp,cv(X) is compact and
usc.
·Let u ∈ Br(0). We proceed as in the proof of the
previous theorem to show that L2u is a compact and
convex subset of X.
·We show that L2 is a compact operator on Br(0). For
each v ∈ L2u, there exists w ∈ SF,u such that for
each (x, t) ∈ D we have

v(x, t) =
R t
0

R π
0 G(x, t; y, s)w (y, s) dyds

+
R π
0 G(x, t; y, 0) u0 (y) dy.

Condition (H5) implies that

|v(x, t)| ≤ R 10 R π0 G(x, t; y, s) |w (y, s)| dyds
+
R π
0 G(x, t; y, 0) |u0 (y)| dy

≤ R 10 R π0 G(x, t; y, s)Ψ(|u (y, s)|)dyds

+
R π
0 G(x, t; y, 0) |u0 (y)| dy

≤ R 10 R π0 G(x, t; y, s)Ψ(kuk∞)dyds

+π kGk∞ ku0k∞
Thus,

kvk∞ ≤ π kGk∞ [Ψ(r) + ku0k∞].

·Next, we show thatL2 maps bounded sets into equicon-
tinuous subsets of X.
Let (x, t) and (ξ, τ) ∈ D. For each v ∈ L2u there is
w ∈ SF,u such that

|w(y, s)| ≤ Ψ(|u (y, s)|).
Thus,

|v (x, t)− v (ξ, τ)| ≤R 1
0

R π
0 |G(x, t; y, s)−G(ξ, τ ; y, s)| |w (y, s)| dyds

≤ Ψ(r) R 10 R π0 |G(x, t; y, s)−G(ξ, τ ; y, s)| dyds.
The continuity of the Green’s function implies that the
right hand side of the above inequality tends to zero as
|x− ξ| + |t− τ | tends to zero. By the Ascoli-Arzela
theorem, we conclude that the operatorL2 is compact.
·L2 has a closed graph. Let (un, vn) ∈ Gr(L2) con-
verge to (u, v) . We must show that v ∈ L2u. We have
vn ∈ L2un, and there exists wn ∈ SF,un such that for
each (x, t) ∈ D

vn(x, t) =

Z t

0

Z π

0
G(x, t; y, s)wn (y, s) dyds

+

Z π

0
G(x, t; y, 0) u0 (y) dy.

Obviously,

kvn − vk∞ → 0 as n→∞.

Consider the continuous operator Γ : L2(D) → X,
defined by

(Γw) (x, t) =

Z t

0

Z π

0
G(x, t; y, s)w (y, s) dyds

+

Z π

0
G(x, t; y, 0) u0 (y) dy.

Then Γ◦SF has a closed graph (see [16, Theorem 2]).
Also,

vn ∈ Γ ◦ SF,un .
Since un → u, uniformly, it follows that

v ∈ Γ ◦ SF,u.

Hence, there exists w ∈ SF,u such that

v(x, t) =

Z t

0

Z π

0
G(x, t; y, s)w (y, s) dyds

+

Z π

0
G(x, t; y, 0) u0 (y) .

This shows that v ∈ L2u, and hence L2 has a closed
graph.
·Since L2 has compact values, it follows that L2 is
usc.¤
Claim 3. The second alternative in Theorem 7 does
not hold.
Suppose, on the contrary, that there exists u ∈ X with
kuk∞ = r and λ > 1 such that λu ∈ L1u + L2u.
There exists z ∈ SF,u such that
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λu(x, t) =
R t
0

R π
0 G(x, t; y, s)z (y, s) dyds

+
R π
0 G(x, t; y, 0) u0 (y) dy

+
R t
0
∂G
∂y (x, t; 0, s)

R π
0 g(u(y, s))dyds

− R t0 ∂G
∂y (x, t;π, s)

R π
0 h(u(y, s))dyds.

Then

|u(x, t)|
≤

Z 1

0

Z π

0
G(x, t; y, s) |z (y, s)| dyds

+

Z π

0
G(x, t; y, 0) |u0 (y)| dy

+

Z t

0

¯̄̄̄
∂G

∂y
(x, t; 0, s)

¯̄̄̄ Z π

0
|g(u(y, s))| dyds

+

Z t

0

¯̄̄̄
∂G

∂y
(x, t;π, s)

¯̄̄̄ Z π

0
|h(u(y, s))| dyds.

Hence by (H5)

|u(x, t)|
≤

Z 1

0

Z π

0
G(x, t; y, s) |Ψ(u (y, s))| dyds

+π kGk∞ ku0k∞
+kgπ

Z 1

0

¯̄̄̄
∂G

∂y
(x, t; 0, s)

¯̄̄̄
ds kuk∞

+πkh

Z 1

0

¯̄̄̄
∂G

∂y
(x, t;π, s)

¯̄̄̄
ds kuk∞ .

This last inequality implies that

|u(x, t)|
≤ π∆ kuk∞ + π kGk∞ ku0k∞

+

Z 1

0

Z π

0
G(x, t; y, s) |Ψ(kuk∞)| dyds

≤ π∆r + π kGk∞ ku0k∞ + π kGk∞Ψ (r) .

This last inequality infer that

r ≤ π∆r + π kGk∞ ku0k∞ + π kGk∞Ψ(r),

which, in turn, implies that

r(1− π∆) ≤ π(kGk∞ ku0k∞ + kGk∞Ψ(r)).

This contradicts the definition of r (see(14)).
Therefore the first alternative holds, which means that
u ∈ L1u + L2u has a solution in Br(0). This proves
that our problem has at least one solution.¤

Theorem 13 Suppose that (H1) holds and F is an
L2−Carathéodory multifunction satisfying (H0) and

(H7) |F (x, t, u| ≤ H(x, t, |u|) for a.e (x, t) ∈
D, all u ∈ R, where H : D × [0,∞) → [0,∞)
is an L2−Carathéodory function, nondecreasing with
respect to its third argument and such that

lim sup(→∞
kGk∞
(

R T
0

R
ΩH(x, t, ()dxdt < 1.

(H8) g, h are continuous, nondecreasing and

lim supu→∞
g(u)

u
= 0 = lim supu→∞

h(u)

u
.

Then problem (1), (2), (3), (4) has at least one
solution.

Proof. For λ ∈ [0, 1] , consider the following
one-parameter family of problems

ut − uxx ∈ λF (x, t, u), 0 < x < π, 0 < t < 1,

u(x, 0) = λu0(x) 0 ≤ x ≤ π,
u(0, t) = λ

R π
0 g(u(x, t))dx, 0 < t < 1,

u(π, t) = λ
R π
0 h(u(x, t))dx, 0 < t < 1.

Notice that this problem has only the trivial solu-
tion for λ = 0, while its solutions of are fixed points
of the multivalued operator Lλ := λGF + γ, where
L1 = L is given by (13).
We have

u(x, t) ∈ λ
R t
0

R π
0 G(x, t; y, s)F (y, s, u (y, s))dyds

+λ
R π
0 G(x, t; y, 0) u0 (y) dy

+λ
R t
0
∂G
∂y (x, t; 0, s)

R π
0 g(u(y, s))dyds

−λ R t0 ∂G
∂y (x, t;π, s)

R π
0 h(u(y, s))dyds,

so that |u(x, t)|
≤ R t0 R π0 G(x, t; y, s)H(y, s, |u (y, s)|)dyds
+
R π
0 G(x, t; y, 0) | u0 (y)| dy

+
R t
0

¯̄̄
∂G
∂y (x, t; 0, s)

¯̄̄ R π
0 |g(u(y, s))| dyds

+
R t
0

¯̄̄
∂G
∂y (x, t;π, s)

¯̄̄ R π
0 |h(u(y, s))| dyds.

Then
R0 := kuk∞ ≤
kGk∞

R T
0

R π
0 H(y, s,R0)dyds+π kGk∞ ku0k∞

+δ0π (g(R0) + h(R0)).

Thus
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ≤ kGk∞

R0

R T
0

R π
0 H(y, s,R0)dyds

+
π kGk∞ ku0k∞

R0
+

δ0π (g(R0) + h(R0))

R0

On the other hand, it follows from the conditions
on the functions H, g, h that there exists R∗ > 0 such
that for all ( > R∗ we have
kGk∞
(

R T
0

R π
0 H(y, s, ()dyds+

π kGk∞ ku0k∞
(

+
δ0π (g(() + h(())

(
< 1.

Comparing the last two inequalities we see that R0 ≤
R∗.
Hence, all possible solutions of (17.λ) are a priori
bounded, independently of λ.
Let U := {u ∈ X; kuk∞ < R∗+1}. Then U is open
in X with 0 ∈ U.
Assume that there exists z ∈ ∂U such that z ∈ Lλz
for some λ ∈ (0, 1) . This implies that z is a solution
of (17.λ) with kzk∞ = R∗ + 1, which is not possi-
ble. This implies that the first alternative in Theorem
8 holds. Consequently, L1 = L has a fixed point z0,
which is a solution of the above family of problems
for λ = 1, which is exactly our original problem. This
completes the proof.

V. LOWER AND UPPER SOLUTIONS

In this section we study a general case of problem
(1), (2), (3), (4) by the method of lower and upper so-
lutions. More specifically, we shall consider the case
where the multifunction F (x, t, u) has the form
[ϕ(x, t, u), ψ (x, t, u)] , where ϕ,ψ : D × R → R
satisfy the following conditions
(j) ϕ (., ., u) , ψ (., ., u) : D → R are measurable,
(jj) ϕ (x, t, .) : R→ R is lower semicontinuous,
(jjj) ψ (x, t, .) : R→ R is upper semicontinuous,
(jv) ϕ (x, t, u) ≤ ψ (x, t, u)
Then F = [ϕ,ψ] is the general upper semicontinu-
ous multifunction with compact, convex values (see
[9, page 5]).
We will refer to the original problem, in this case, by
problem (P ) .

Definition 14 A solution of our problem is a function
u ∈ C(D) such that the exists f ∈ L2(D), ϕ (x, t, u) ≤
f(x, t) ≤ ψ (x, t, u) and u satisfies ut − uxx = f for
a.e. (x, t) , (2), (3), (4).

Definition 15 θ ∈ C(D) is a lower solution of (P ) if
it satisfies

(l.1) θt − θxx ≤ ϕ (x, t, θ)
(l.2) θ (x, 0) ≤ u0(x)
(l.3) θ (0, t) ≤ R π0 g (θ (x, t)) dx
(l.4) θ (π, t) ≤ R π0 h (θ (x, t)) dx

Definition 16 Θ ∈ C(D) is an upper solution of (P )
if the above inequalities are reversed when we substi-
tute Θ for θ.

Definition 17 Let θ ≤ Θ be as above. Then [θ,Θ]
denotes the set of all u ∈ C(D) such that θ (x, t) ≤
u(x, t) ≤ Θ (x, t) for all (x, t) ∈ D.

Theorem 18 Assume that

(1) there exists β ∈ C(D;R+) such that
max(|ϕ (x, t, u)| , |ψ (x, t, u)|) ≤ β (x, t)
(2) (P ) has a lower solution θ and an upper solu-

tion Θ such that θ ≤ Θ,
(3) the functions g and h are continuous and bounded.
Then (P ) has at least one solution u ∈ [θ,Θ] .

Proof. Define a truncation operator T : C(D) →
[θ,Θ] by T (u) = max{θ,min(u,Θ)}. Then, it can
be shown that T is continuous and bounded. Consider
the modified problem
ut − uxx ∈ F (x, t, T (u)), (x, t) ∈ D
u(x, 0) = u0(x)
u(0, t) =

R π
0 g (T (u(x, t))) dx

u(π, t) =
R π
0 h (T (u(x, t))) dx.

Notice that that the multifunction F1 : D × R →
2R, given by F1(x, t, u) = F (x, t, T (u)) is nonempty
L2−Carathéodory multifunction with compact and convex
values, and bounded. So, we can apply Theorem 8 to
obtain a solution u of (P ) .
We show that u ≥ θ.
Suppose on the contrary that the set ω := {(x, t) ∈
D; u (x, t) < θ (x, t)} has positive measure. Then
for all (x, t) ∈ ω we have T (u(x, t)) = θ (x, t) .
HenceF1(x, t, u (x, t)) = [ϕ (x, t, θ (x, t)) , ψ (x, t, θ (x, t))] .
Let w (x, t) = u (x, t)-θ (x, t) . Then (recall that θ
is a lower solution),
· for all (x, t) ∈ ω we have w (x, t) < 0
·wt − wxx = (ut − uxx)− (θt − θxx) ≥

ϕ (x, t, θ (x, t))− ϕ (x, t, θ (x, t)) = 0

·w(x, 0) ≥ u0(x)− u0(x) = 0

·w(0, t) ≥ R π0 g (T (u(x, t))) dx− R π0 g(θ(x, t))dx =R π
0 g(θ(x, t))dx− R π0 g(θ(x, t))dx = 0
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