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One-dimensional parabolic equation with a discontinuous
nonlinearity and integral boundary conditions

Abde kader Boucherif

Abstract— In this paper we are concerned with
the existence of solutions of an initial-boundary value
problem for aone-dimensional parabolicinclusionwith

nonlocal integral boundary conditions. Using the Green's

function we transform the problem into an equivalent
integral inclusion. Our technique is based on fixed
point theorems for set-valued maps and the method
of lower and upper solutions. We provide sufficient
conditions that guarantee the existence of at least one
solution.

K eywor ds—parabolicinclusion, integral boundary con-
ditions, Green’sfunction, set-valued maps, fixed point
theorems, lower and upper solutions.

I. INTRODUCTION

Consider thefollowing one-dimensional parabolic
inclusion subjected to integral boundary conditions.

U — Ugy € F(z,t,u),0<z<m0<t<l, (1
u(z,0) = up(z), 0<z<m, 2

u(0,t) = /Oﬂg(u(x,t))dx, 0<t<l, (3

u(m, t) = /07r h(u(z,t))dx, 0 <t <1, (4)

wherewy, g, h aregivenfunctionsand F'isamul-
tivalued map satisfying some conditions that will be
specified later.
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Parabolic problemswith discontinuous nonlinear-
ities arise naturally in chemical reactor theory, porous
medium combustion (see [11] and [12]); aso in best
response dynamics arising in game theory (see [15]),
and the references therein. Parabolic equations with
discontinuous nonlinearities generated by increasing
functions of bounded variations have been investigated
in [24], [22] and [4]. Parabolic problems with inte-
gral boundary conditions appear in the modeling of
concrete problems, such as heat conduction [3], [16],
[5], thermoelasticity [7]. Severa papers have been de-
voted to the study of parabolic problemswith integral
conditions [6], [20], [25]. A good account on humeri-
cal treatment of parabolic problems with integral con-
ditions can befound in [§].

In this paper we consider an intial boundary value
problem for the one-dimensional heat equation with a
convex multivalued right hand side and subjected to
integral boundary conditions. We shall convert Prob-
lem (1), (2), (3), (4) to an integra inclusion using the
properties of the Green's function corresponding to
the linear problem. We, then, provide sufficient con-
ditions on the data that will enable us to obtain a pri-
ori bounds on possible solutions of a one-parameter
family of problems related to the original one. Our
approach is based on fixed point theorems for suitable
multivalued operators.

The outline of the paper is as follows. Section 2
is devoted to the study of the linear nonhomogeneous
problem and the properties of the Green’sfunction. In
section 3, we shall recall the main properties of mul-
tivalued maps. We state and prove our main resultsin
section 4.

1. LINEAR NONHOMOGENEOUS PROBLEM
In this section we consider the linear nonhomogeneous
problem

Ut — Uy = fx,),0<z<m0<t<l, (5

u(z,0) = ug(x), 0<z<m, (6)
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u(0,t) = a(t), 0<t<l, (7
u(m,t) = b(t), 0<t<l, (8)

We say that u € C%1(D) if u has a continuous sec-
ond order partial derivative with respect to x and a
continuousfirst order partial derivative with respect to
t.Let X = C(D) be the Banach space of real-valued
continuous functions on D, equipped with the norm
l|ullo = max{|u(z,t)|; (z,t) € D} foru € X.
A strong solution of the above problem is a function
u € C*Y(D) N C(D). The following result can be
found in [13] and [21].

Assume that the functions f, wug, are Holder continu-
ous, and the functions a and b are continuous. Then,
Problem (5), (6), (7), (8) has a unique strong solution

given by for each (z,t) € D = (0, 7) x (0,1),
= Jy Jo Gla,t;y,9) f (v, 5) dyds
+ Jo Gz, t;y,0) uo (y) dy

t ©
+ /55 8G (x,t;0,s) a(s)ds

g%ﬁ (x,t;m, s) b(s)ds,
where G(z,t;y, s) isthe Green's function corre-

sponding to the linear homogeneous problem. This
function satisfies the following

()Gt —Gap=0(t—3s)0(x—y) s<t,
O<zy<m

(i) G(z,t;y,8) =0 s>t,0<z,y<m
(i) G(0,t;y,5) = G(m, t;y,s) =0 s<t

(iv) G(z,t;y,s) > 0for (z,t) € D
v) G, Gy, G, G, are continuous functions
of (x,t), (y,s) € D, t —s> 0.
(vi) thereexist dp > 0 and p € (0, 1) such that
dole—y|'™"

t—s) 7
do |z —y|* >

(t—s)f

|G(z,t;y,s)| <

<

and ‘0_6‘ x,t;y, s)

withl —§ <pu <1.
Lemmal Let yy be a fixed number in [0, ].

Then there exists a constant g > 0 such that
oG
maX (g 1)eD fgt ‘8—y($,t; Yo, 8)‘ ds < dp.
Proof. Thisfollows from the estimate
on ﬁ(w ty,s)
ay ) )y) *
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We write (9) in the following convenient form, for
esch (z,t) € D,

u(z,t) =G (f +wo)(x,t) +v(a,b)(x,t) (10)
where
G (f +uo) (z,t) =
Jo Jy Gla.tsy,9) f (y,s)dyds — (11)
+ [y Gz, t;y,0) uo (y) dy,
and
7 (a,b) (2,t) =
Jo %2 (,1;0,5) a(s)ds (12)

ft 83 x, t;7,s) b(s)ds.
The operators G, v map C(D) into C**(D). More-
over,v = G (f + ugp) solvesthe problem

Ut — Vg = f, U(l‘,O) = U’O(:E) and w = ’Y(CL, b)
solvesthe problem w;—wy, = 0, w(z,0) = 0, w(0, t)
a(t), w(m,t) = b(t).

I11. MULTIVALUED FUNCTIONS

We, now, introduce some useful definitions and
properties from set-valued analysis. For complete de-
tailson multivalued mapswerefer theinterested reader
to the books[1], [2] and [9].

Let (Y, |-|) be a normed space. We shdl denote
the set of all subsetsof Y having property ¢ by Py (Y).
For instance, U € P, (Y) meansU closedinY’; when
¢ = b we have the bounded subsets of Y, ¢/ = cv
for convex subsets, ¢ = ¢p for compact subsets and
¢ = ¢p, cv for compact and convex subsets. A multi-
vauedmap R : Y — 2Y is convex (closed) valued if
R(z) isconvex (closed) for each z € Y. R is bounded
on bounded sets if R (B) = U,cpR (2) is bounded
inY foral B € P(Y) (i.e. sup,cp{sup{|y|;y €
R(z)}} < o0). The multivalued map R is called up-
per semicontinuous (usc) on Y if for each z € Y the
set R(z) € Py(Y) and is nonempty, and for each
open subset A of Y containing R(z), there exists an
open neighborhood TT of z such that R(IT) C A. The
set-valued map R is called completely continuous if
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R(B) isrelatively compact for every B € Py (Y). If
R is completely continuous with nonempty compact
values, then R is usc if and only if R has a closed
graph (i.e. z, — z, w, — w, w, € R(z,) = w €
R(z)). R hasafixed point if there exists z € Y such
z € R(z). A multivlued map R : D — Py(R) is
called measurable if for every 6 € R, the function
v — dist(0, R(v)) = inf{|0 —z|;2z € R(v)} is
measurable.

Definition 2 f : D x R — 2R\ iscalled

an L2 —Carathéodory multifunction if

(i) F(.,.,u): D — 2R ismeasurablefor al u € R,
(ii) £ (z,t,.) —» R — 2R isuscfor dmost al (x,t) €
D

(iii) for each o > 0 there existsw,, € L?(D) such that
lu| < oimplies

|F (z,t,u)| == {|lw|;w € F(z,t,u)} <w(z,t)for
ae(z,t) € D.

Definition 3 Let w € X. Then S ,, denotes the set
of L?—selections of the set-valued map F : R — 2K,
and is the set

{w € L*(D);
D}.

Thefact that this set is not empty followsfrom Lemma
3in[18].

w(z,t) € F (z,t,u(z,t)), V(z,t) €

Definition 4 Let F : D x R — 2% have nonempty
compact values. The Nemitsky operator F of / isthe
set-valued operator defined by

F:C(D) — L*(D), F(u)istheset of all

w : D — R measurable such that

w(z,t) € F (x,t,u(z,t)),V(x,t) € D.

It can be shown (see [14, page 40], [23]) that if f is
usc with convex bounded val ues then the operator F is

well defined, usc, bounded on bounded setsin C'(D),
and has convex values.

Definition 5 « isa strong solution of (1), (2), (3), (4)
if there existsa Lipschitz selection f € Sf,, and v has
the integral representation (9).

Remark. If F'isaLipschitz multifunction then it ad-
mits a Lipschitz selection. See[17].

Definition 6 Let (Z, d) beametricspaceandlet A, B
be two nonempty subsets of Z. The Hausdorf distance
between A and B is defined by
di (A, B) = max{supd(a, B),
A

ac

supd(A,b)}.
beB
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Hered(a, B) = inf{d(a,b);b € B}.Then (P (Z), du)

isametric space.

Definition 7 A multivalued operator £: Z — P.(Z)
iscalled

(i) 0—Lipschitz if and only if there exists é > 0
such that d (L(u), L(v)) < § d(u,v) foral u,v €
Z

(i) a contraction if and only if it is §—Lipschitz
withé < 1.

The following theorems play an important role in
our existence results.

Theorem 8 [19] Let £ be a Banach space and L :
E — P, . (F) acondensing map. If the set S :=
{z € E; \z € L(z) for some A > 1} is bounded,
then £ has a fixed point.

We remark that a compact map isthe simplest ex-
ample of condensing maps.

Theorem 9 [10]Let B,(0) and B, (0) denote respec-
tively the open and closed balls in a Banach space
(E,||-||) centered at 0 and having radius r. Let £; :

B, (0) = Py cpp(E)and Ly : B, (0) — Py eo(E) be
two multivalued operators satisfying

(i) £1 isacontraction,

(i) Lo iscompact and usc.

Then either

(i) the operator inclusion v € Liu + Lou has a
solution in B,.(0), or

(jj) there exists u € E with |lu|| = r such that
Au € Liu+ Lou for some A > 1.

Theorem 10 [14, page 11]Let E' be a normed linear
space, C' convex subsetin E and U openin Cwith0 €
U.Let A : U — 2¢ be an usc, compact multivalued
operator with closed and convex values. Then either

() A hasafixed point, or
(b) there exists z € OU such that z € AAz for
some\ € (0,1).

V. MAIN RESULTS
In this section, we shall state and prove our main

results.We shall assume throughout the remainder of
the paper that the following conditions hold.
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(HO) The multifunction F : D x R — 2R isnon-
empty, usc and has compact and convex values. More-
over, there exists a Lipschitz selection f € S, for
eachu € X.

(H1) up € C ([0, 7).

Theorem 11 Suppose that, in addition to (HO) and
(H1) the following assumptions are satisfied,

(H2) g, h : C(D) — R arecontinuous and bounded,

(H3) F' maps bounded sets into relatively com-
pact sets, and there are positive constants ¢;, ¢z such
that |F'(z,t,u)| < c1 + c2|ul.

Then Problem (1), (2), (3), (4) has at least one
strong solution.

Proof. It follows from (9), (10), and (11) that v isa
solution of (1), (2), (3), (4) if and only if u isafixed
pont of the multivalued operator £, defined by

Lu=GF(u)+v(u), (13)

where F isthe Nemitski operator of F.
In fact, we have

Lu(z,t) fo fO (x,t;y,8)F(y, s,u(y, s))dyds
+ [y Gz, t;9,0) uo (y) dy
+ftaG:EtOS fo s))dyds
J%CJ (z,t;m,s) [y h(u(y, s))dyds,

where

/ot /0” G(z,tyy,s) (Fu) (y, s) dyds

isthe Aumann integral of 7. We seethat £ isthe sum
of amultivalued operator GF and asingle valued op-
erator v (-) . We apply Theorem 6 to the operator L.
Letw € X. Weshow that Lu € Py ., (X).

(&) Lu isaconvex subset of X foreachu € X. Let
vi,v2 € Lu. Then there exists wy, we € Sg, such
that for each (x,t) € D wehavefori =1,2

t m
/ / G(x,t;y, s)w; (y, s) dyds
0 JO

4 / G2, t;9,0) uo (y) dy
t

+ mtOs/g
0 0
to

— mtﬂ's/h
0 0

Issue 1, Volume 2, 2008

s))dyds

s))dyds.

Since Sr,, is convex, it is clear from the above rela-
tion that any convex combination of vy, v, is an ele-
ment of Lu.

(b) Lu isacompact subset of X for eachu € X. Let
(wn),en beabounded sequencein Sg,,. By (HO) and
(H3) the Nemitski operator F of F'iswell defined, usc
and maps bounded sets into relatively compact sets.
The sequence (vy,),,c given by, foreachn € N

t m
/ / G(z,t;y, s)wn (y, s) dyds
0 Jo

+ / Gz, t:9,0) uo (y) dy
0

t 8G m
+/ —($,t;075) / g(u(y,S))dde
0o Oy 0

t i
- / 9G (2 tim, s) / hu(y, s))dyds.
0 39 0

isrelatively compact in Lu. Thisimpliesthat Lu isa
compact subset of X.

(c) We show that £ = GF + ~(+) is acompact op-
erator. To achieve this, we show that £ is uniformly
bounded and maps bounded sets into equicontinuous
Sets.

Let B be abounded subset of X, andletu € B. Then
thereis M > 0 such that ||ul|,, < M

Now, for eachv € Lu thereexistsw € Sr,, such that

t m
/ / G(z,t;y, s)w (y, s) dyds
0 JO

+ / G, t:9,0) uo (y) dy

t 9G 4
+ (2,40, 5) / o(uly, s))dyds
0 6 0
Y - |ty )duds
0 33/ 0

v(z,t) =

Hence, if m, and m;, denote the bounds on g and h
respectively,

[v(z,t)] <
Iy TGz, tyy, 8)[er + e2 |u(y, s)||dyds
+ Jo Gz, t;9,0) | uo (y)| dy

+mmgmax fo ‘ e (@, 40 s)‘ ds

+7rmhmgxf0 ay G (x,t;m s)‘ ds.

It follows from Lemma 1
lv(z, )| < 7 (c1 + [Juolloo) |Gl oo
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+(mmg 4+ mmy,)do

te2 fo fo

§M0+C2f0 fo

(7,59, 5) |u(y, s)| dyds
(7,859, 5) [u(y,s)| dyds

where

Mo =7 (c1+ [Juoll o) |Gl oo +
Then |v(z, t)|
§M0+7TCQHG||OO -SMO+7T02HG||OOM
This shows that L« is uniformly bounded.

(ng + th)(s().

el

Next, let (z,t), ({,7) € D. Then

lv(z,t) —v (&) <
(c1 +c2M) [ [T 1G (@, tyy, ) — G(E, T3y, 5)| dyds

+ [Juoll o fy G2, t;9,0) — G(&,73y,0)dy

+mmyg fol ‘% (z,80,8) — % (&, 0, s)) ds

- % (§7T;7T7S) ds

It follows from the properties of the Green's function
that, as | — &| + |t — 7| — 0, the right hand of the
last inequality tends to zero. This shows that Lu is
equi continuous.

(d) Now, consider theset S = {u € X; \u € Lu, for
some A\ > 1}. We show that this set is bounded.

+7rmhf0‘ay (z,t;7,s)

We proceed as before to obtain
|Au(z,t)] <
MO + c2 fo fo .I tayv S) |'LL (y7 8)| dde

Since A > 1 it follows from the above inequalities
that,

u(z, )] <

My + ¢ fol foﬂ G(z,t;y,s) |u(y,s)| dyds.
Gronwall’s inegquality implies

[ull oo < Mo exp (mea [|Gll,) -
Therefore the set S is bounded and consequently, £
has afixed point in X. Thisfixed point is the solution
to our original problem.[]
For our second result, we shall assume, in addition
to (HO) and (H1), that the following conditions are
satisfied.
(H4) g and h are Lipschitz continuous, with Lipschitz
constants k, and kj, respectively, with

A= (kg +Fkp)do <1
and further ¢(0) = h(0) = 0.
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(H5) F has compact, convex values and there exists
U : [0,00) — (0,00) continuous and nondecreasing
such that |F'(x,t,u)| < W (Jul)

p(l—m
(H6) sup
pe(0,00) T Gl (w0l

Theorem 12 If the conditions (HO), (H1), (H4), (H5),
and (H6) are satisfied. Then Problem (1), (2), (3), (4)
has at least one solution.

> 1

+ 7 (p))

Proof. Condition (H6) implies that there existsr > 0
such that

r(l—7A)

(lwols + 72 ()~

14
el ok

Consider the closed ball B,.(0) in the Banach space
X.Letu € B,(0). Write Lu as Liu + Lou,
with

Elu(mvt) =
Jo 52 (2,£,0,5) J5 g(uly, s))dyds (15)
— Jo B2 (@, t;m,9) Jq Bluly, s))dyds,

and
Lou(z,t) =
fo Jo Gz, t;y, s)F(y,s,u(y,s))dyds (16)
+ Jo G(=,t;y,0) uo (y) dy.

Claim 1. £; : B,(0) — P.c,p(X) isacontraction.

Notice that £, is a single valued operator. The con-
tinuity of the functions g and A implies that £Liu €
Pcl,cv,b(X)~

Now, let u,v € B,(0). Then

|Liu(z,t) — Liv(x,t)| <
ly \%‘ (2,:0,5)| 7 9(u(y, 9)) — 9(o(y, )| dyds

+ o |5

Hence

(z,t;m, s ’ fo |h(u(y,s)) — h(v(y, s))| dyds
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||£1u — El””oo <

ko Ji |3 (

(2.450,5)| J§ lu(y, ) = v(y, 5)| dyds

-Hchfo‘ (x,t;m, ) ‘ fo lu(y, s) —v(y, s)| dyds.

Condition (H4) implies that

du(Liu, L1v) = || Liu — L1v]| oo < Afju — v o

Since A < 1 it follows (see Definition 5) that £, isa
contraction.[J
Claim 2. [,2 :
USC.

Let u € B,(0). We proceed as in the proof of the
previous theorem to show that Lou is a compact and
convex subset of X.

"We show that £ isacompact operator on B,.(0). For
each v € Lou, there existsw € Sp,, such that for
each (z,t) € D we have

=k G

a:ty,

B, (0) — Py e(X) is compact and

(z,t;y, s)w (y, s) dyds

+ fo uo (y) dy.
Condition (H5) implies that

ol 0)] < 7 Gt 5) Jw (9, )] dyds
+ Jo G(x,t;9,0) Jug (y)] dy

< lra U(lu (y, s)|)dyds

+fp G |uo (y)] dy
<JoJo G )V ([[ullog

+7 |G| o
Thus,

(7, t;9,5)

(z,t9,0)

(x,t;y, s )dyds

[[wollo

[W(r) + fluoll]-

-Next, we show that £, maps bounded setsinto equicon-
tinuous subsets of X.

Let (x,t) and (&, 7) € D. For eachv € Lou thereis
w € Sk, such that

[w(y, s)| < ¥(|u(y,s)).
Thus,

[0]] oo

<Gl

@) —v(En) <
Iy J& |Gz, t;y, s) — G(&, 759, 8)| [w (y, s)| dyds
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(") fy S |Gz, t;y,5) — G(&, 75y, 5)| dyds.
The continuity of the Green’sfunction impliesthat the
right hand side of the above inequality tendsto zero as
|z — &| + |t — 7| tends to zero. By the Ascoli-Arzela
theorem, we conclude that the operator £, iscompact.
-L9 has aclosed graph. Let (uy,,v,) € Gr(L2) con-
vergeto (u,v) . Wemust show that v € Lou. We have
vy, € Louy,, and there exists w, € S, such that for
each (z,t) € D

t e
| [ 6t tivsw, w.s) dyds
0 JO

+ [ 6tti0.0 w0 () dy
0
Obvioudly,

v — v|| o, — 08N — o0.

Consider the continuous operator I' : L?(D) — X,
defined by

twe = [ [ e

s) dyds

ThenI'oSr hasaclosed graph (see[16, Theorem 2]).
Also,
v, €lNo SF,Un'

Since u,, — u, uniformly, it follows that
vel oSk,

Hence, there exists w € S, such that

t T
/ / Gz, t;y, s)w (3, 5) dyds
0 0

+/OWG(w>t;y,0) uo (y) -

This showsthat v € Lou, and hence £ has a closed
graph.

-Since L2 has compact values, it follows that Lo is
usc.[]

Claim 3. The second dternative in Theorem 7 does
not hold.

Suppose, on the contrary, that there existsu € X with
|ull, = rand X > 1 suchthat A\u € Liu + Lou.
There exists z € S, such that



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Au(z,t) fo Jo Gz, t;y,8)z (v, s) dyds
+ Jo Gla,t;9,0) uo (y) dy

+ Jo 5 (2,80, 5) [o 9(uly, s))dyds

ft 9G (x,t;7, ) foﬁ h(u(y

Then

,8))dyds.

|u(z, )]

// (2,8:9,5) |2 (9 )] dyds

+/0 G(z,t;9,0) |uo (y)| dy
i
)

Hence by (H5)

IN

oG
a_y (:I:?t) 07 S)

/ " g(uly, s))| dyds
0

9G (o tim, s) / Ih(uly, s))) dyds.
8y 0

lu(z, t)]

// (2,1, 5) [ W (u (y, 5))] dyds

+ (|Gl l[uoll oo

1
—i-k:g7r/ %
0

Jdy

1
+7T]{Jh/ 8—G
0

dy

IN

(2,80, )| ds ||ullo

(@, 7, 8)| ds ||ull

Thislast inequality implies that

u(z, 1)
TA JJullg + 7 |Gl lluollo

1 T
T /O /0 Gz, t:y, 9) ¥ ([[ullo)| dyds

< TAr+7|[Gllog uolloe + 7 [[Glloe ¥ (7) -

IN

Thislast inequality infer that

r < aAr+ 7 ||Gl o [Juoll oo + 7 Gl o0 ¥(r),
which, in turn, implies that

r(1=mA) < 7([|Gll uollo + 1G]l ¥(r))-

This contradicts the definition of r (see(14)).
Therefore thefirst aternative holds, which means that
u € Liu+ Lou hasasolution in B,.(0). This proves
that our problem has at |east one solution.[]
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Theorem 13 Suppose that (H1) holds and F' is an
L?—Carathéodory multifunction satisfying (HO) and

(H?7) |F(x,t,u| < H(x,t,|ul) for ae (z,t) €
D,dlu € R,where H : D x [0,00) — [0,00)
isan L2 —Carathéodory function, nondecreasing with
respect to its third argument and such that

16l fOT Jo H(z,t, 0)dzdt < 1.
0

(H8) g, h are continuous, nondecreasing and
g(w) h(u)

limsup,, .o — = 0 = limsup,,_,,, —=.

Then problem (1), (2), (3), (4) has at leagt one
solution.

Proof. For A € [0,1], consider the following
one-parameter family of problems

U — Ugy € AF (2, t,u), 0 <z <m 0<t<l,

limsup,_,

u(x,())—)\uo() 0<$<7r
=X [y 9( )dz, 0 <t <1,

u(m,t) = X [y h(u(z

Notice that this problem has only the trivial solu-
tion for A = 0, while its solutions of are fixed points
of the multivalued operator £, := AGF + ~, where
Ly = Lisgiven by (13).

We have
u(zx,t) € A fg foﬂ G(x,t;y,s)F(y, s,u(y,s))dyds

+A f5 Gz, t;y,0) uo (y) dy

,0)dz, 0 <t <1.

+)\ftaG:ntOs fo s))dyds
—)\ft 8(; x,t;m,s) fo h
so that |u(z,t)]

< fo Jo G(z,t;y,5)H(y, s, [u(y, s)|)dyds
+ Jo G(z,t:9,0) [ uo ()] dy

+ [y |9 (2,1;0, 5 ‘ Jo lg(u(y, s))| dyds

u(y, s))dyds,

+f0 xtﬂs’fo |h(u(y, s))| dyds.

Then
Ro = [Jull &
IIGH Jo fo (Y, 8, Ro)dyds +7[|G|| o, [[uoll o

+dom (9(Ro) + h(Ryp)).-
Thus
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”G”°° b 7 H

TGl luolloe  dom (9(F0) + h(£o))
Ro RO

On the other hand, it follows from the conditions
on the functions H, g, h that there exists R* > 0 such
that for dl o > R* we have

||G”°° I

+5o7t (g(ag+ h(o))

(y, s, Ro)dyds

_l’_

G
(4, 5, o)dyds + 1 Clo [¥0lloe

<1

Comparing the last two inequalities we see that Ry <
R*.

Hence, al possible solutions of (17.\) are a priori
bounded, independently of \.

LetU :={u e X; ||Jul|, < R*+1}. ThenU isopen
in X with0 € U.

Assume that there exists z € 90U such that z € £,z
for some A € (0,1). Thisimpliesthat z isasolution
of (17.\) with ||z||,, = R* + 1, which is not possi-
ble. Thisimplies that the first aternative in Theorem
8 holds. Consequently, £; = £ has afixed point zg,
which is a solution of the above family of problems
for A = 1, whichisexactly our original problem. This
compl etes the proof.

V. LOWER AND UPPER SOLUTIONS

In this section we study a general case of problem
(D, (2), (3), (4) by the method of lower and upper so-
lutions. More specifically, we shall consider the case
where the multifunction F'(x, t, ) hasthe form
[o(z,t,u), ¢ (z,t,u)], where o, b : D x R — R
satisfy the following conditions
DNe(,uu),¥(,.,u): D— R aemeasurable,
(i) ¢ (z,t,.) : R — R islower semicontinuous,
(i) ¥ (z,t,.) : R — R isupper semicontinuous,
(jV) 14 (xv t u) < 7/} ((E, t, u)
Then F = [p, ] is the general upper semicontinu-
ous multifunction with compact, convex values (see
[9, page 3]).
We will refer to the origina problem, in this case, by
problem (P) .

Definition 14 A solution of our problemisa function
u € C(D) suchthattheexists f € L?(D), ¢ (x,t,u)
f(z,t) < (x,t,u) and u satisfiesu; — uy, = f for

ae (z,t),(2),(3), (4).
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Definition 15 6 € C(D) isalower solution of (P) if
it satisfies

(1.1) 6; — 040 < © (,t,0)
(1.2) 6 (z,0) < up(x)

(1:3)0(0,¢) < [ g(O(
(1.4 0 (m,t) <[5 h(0

Definition 16 © € C(D) isan upper solution of (P)
if the above inequalities are reversed when we substi-
tute © for 6.

Definition 17 Let § < O be as above. Then [¢, 6]
denotes the set of all w € C(D) such that 6 (z,t) <
u(x,t) < O (z,t) for al (z,t) € D.

Theorem 18 Assume that

(1) thereexists 8 € C(D;R.) such that

max(|o (z, ¢, u)| [ (2,t,0)]) < (x,1)

(2) (P) hasalower solution 6 and an upper solu-
tion © suchthat 8 < ©,

(3) thefunctions g and & are continuous and bounded.
Then (P) has at least one solution u € [0, O] .
Proof. Define a truncation operator 7' : C(D) —
[0,0] by T'(u) = max{6, min(u,®)}. Then, it can
be shown that 7" is continuous and bounded. Consider

the modified problem
Ut — Ugg € F(2,t,T(u)), (z,t) € D
(rv 0) = ug(x )
=Jo 9 t))) dx
fo t))) dw.

Notlce that that the multlfunctlon Fi : DxR —
2R given by I (z,t,u) = F(z,t,T(u)) is nonempty
L?—Carathéodory multifunction with compact and convex
values, and bounded. So, we can apply Theorem 8 to
obtain asolution v of (P).
We show that u > 6.
Suppose on the contrary that the set w := {(z,t) €
D; u(z,t) < 6(x,t)} has positive measure. Then
fordl (z,t) € wwehave T'(u(zx,t)) = 0 (z,1).
Hence Fy(x,t,u (z,t)) = [¢ (x,t,0 (x,t)) , ¢ (z,t,0 (z,1))] .
Let w(x,t) = u(x,t)-0 (z,t) . Then (recall that ¢
isalower solution),
-forall (z,t) € wwehavew (z,t) < 0
Wt — Wgg = (ut - uxz) - (‘gt - exx) >
¢ (21,0 (z,1) — ¢ (z,2,0 (z,1)) =0
‘w(z,0) = uo(z ) —up(z) =0
w(0,1) > fo” (u(, 1)) dz — [ g(0(x, t))dz =
o o ))dz — [ g(0(z,t))dz =0
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w(m,t) > fo h(T(u(z,t))) do— [ h(0(z,1)) de =

f(;r h(6(z,t)) dz — f(;r h(6(z,t))dz =0.
The maximum principle (see [13], [21]) implies that
w(z,t) > 0 forall (z,t) € w.
This is a contradiction. Hence the set w has measure
zero, and so u (z,t) > 0 (z,t) forall (z,t) € D.
Similarly, we can show that u (z,t) < © (x,t) for all
(z,t) € D.
Thus T'(u(z, t)) = u(z,t). We infer that
Fi(z,t,u(z,t)) = F(z,t,u(z,1)).
Therefore problem (P) has a solution » in the order
interval [0, ©] .03
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