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1 Introduction

The fundamental problem in mathematical physics is
to discover new integrable systems. These systems
always have algebraic structures that are responsible
for their integrability. Therefore the most interesting
problem in the study of dynamical systems is to give
such general algebraic structures which provide a hid-
den treasure.

The present paper is devoted to the study of Pois-
son structures for three dimensional dynamical sys-
tems. Poisson structures play an important role in
dynamical systems, fluid dynamics, magnetohydro-
dynamics, superconduity, chromodynamics, etc. Di-
mension three corresponds to the first nontrivial case
where the Poisson structure does not imply the sym-
plectic structure. On the other hand, there are surpris-
ingly many natural phenomena modelled by the three
dimensional vector fields:

X : IR3 → T IR3, X =
3∑

i=1

Xi(x)
∂

∂xi
, (1)

such as the time evolution in chemistry and biology,
economy, in laser physics, plasma physics, optics, dy-
namo theory, fields theory, etc. As is known these
systems show a very reach behavior, from complete
integrability to chaos and strange attractors (at least
numerically). So, one of the most fundamental prob-
lems which arise in these systems is integrability. This
requires the existencen− 1 functionally independent
integrals of motion for ann-dimensional dynamical
system. The trajectories of integrable systems may
be obtained as intersections of level surfaces of first
integrals. We definepartially integrable systemsas
systems with a number of first integrals smaller than
n− 1.

2 Preliminaries
LetM be a real smooth manifold of dimensionn, TM
andT ∗M its tangent and cotangent bundles, respec-
tively. For eachk ∈ N , we denote byX k(M) the
space of smooth sections of

∧k TM , and byVk(M)
the smooth sections of

∧k T ∗M . By convention, for
k = 0, we setX 0(M) = V0(M) = F(M), where
F(M) is a space of real-valued smooth functions de-
fined onM .

A Poisson structureon M is a skew-symmetric
bilinear map [1,2]:

{ , } : F(M)×F(M) → F(M),

called the Poisson bracket, which satisfies the follow-
ing conditions:

(i) {{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0
(ii) {f, gh} = {f, g}h + {f, h}g
(iii) {f, g} = −{g, f}
for all f, g, h ∈ F(M). The pair(M, { , }) is called
a Poisson manifold, and conditions (i) - (iii) make
(F(M), { , }) into a Lie algebraA.

We define analmost Lie algebra[3] to be the
same as a Lie algebraA except that the bracket op-
eration does not satisfy the Jacobi identity (i). A pair
(M, { , }′) is called analmost Poisson manifoldwhen
{ , }′ is an almost Lie algebra structure.

The local expression for the bracket{ , } is

{f, g} =
∑

i,j

{xi, xj} ∂f

∂xi

∂g

∂xj
. (2)

The bracket{f, g} defines a twice covariant skew-
symmetric tensorπ ∈ X 2(M), such that

{f, g} = π(dg, df) (3)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 2, 2008 24    Manuscript received Sept. 30, 2007; Revised received Jan. 19, 2008



then

π =
∑

ij

πij(x)
∂

∂xi
∧ ∂

∂xj
. (4)

Sinceπ is skew,

πij = −πji (5)

and the Jacobi identity (i) is equivalent to

∑

l

(
πli

∂πjk

∂xl
+ πlj

∂πki

∂xl
+ πlk

∂πij

∂xl

)
≡ 0. (6)

Let (M, { , }) be a Poisson manifold. Givenh ∈
F(M), defines the linear mapXh : F(M) → F(M)
by Xh(f) = {f, h}. The correspondenceh 7→ Xh

defines a vector field, called theHamiltonian vector
field, and h plays the role of a Hamiltonian func-
tion. A bi-Hamiltonian manifoldM is a manifold en-
dowed with two Poisson tensorsπ andπ1 such that
πλ = π + λπ1 is a Poisson tensor for anyλ ∈ IR.
A Casimir functionon a Poisson manifold(M, { , })
is a smooth functionψ such that{ψ, f} = 0 for all
f ∈ F(M). A vector fieldX on a Poisson manifold
(M,π) is called aPoisson vector fieldif it is an infin-
itesimal automorphism of the Poisson structure, i.e.
the Lie derivative ofπ with respect toX vanishes

LXπ = 0. (7)

Another equivalent condition forX to be a Poisson
vector field can be written in the following form

X{f, g} = {Xf, g}+{f, Xg}; ∀f, g ∈ F(M). (8)

If X = πdh, (8) is the Jacobi identity.
For a given volume elementΩ onM we consider

its induced isomorphismΦ : X k → Vn−k : u 7→
i(u)Ω, wherei(u) is the contraction by the k-vector
u ∈ X k(M). Let

DΩ = Φ−1 ◦ d ◦ Φ : X k(M) → X k−1(M) (9)

be the pull-back operator under the isomorphismΦ. A
k-vectoru ∈ X k is said to be exact ifDΩ(u) = 0. In
local coordinates, and takingΩ = θ(x)dx1∧· · ·∧dxn,
we have

DΩ(π) =
n∑

i=1




n∑

j=1

∂(θπij)
∂xj


 ∂

∂xi
. (10)

The vector fieldDΩ(π) is known asthe modular vec-
tor fieldof π with respect toΩ [4]. We say that a Pois-
son structureπ on a manifoldM is unimodular [4]
if its modular vector field, with respect to the volume
elementΩ, is identically zero.

The Jacobi identity for a Poisson bracket is equiv-
alent to the following condition on the Poisson bivec-
tor π:

[π, π]S = 0, (11)

where [ , ]S denotes theSchouten bracket. The
Schouten bracket

[ , ]S : X k(M)×Xm(M) → X k+m−1(M) (12)

is the extension of the Lie bracket of vector fields and
the action of vector fields on smooth functions (cf.
[2]). For k = m = 1, this bracket is precisely the
commutator. The Schouten bracket satisfies the fol-
lowing properties:

[P, Q]S = (−1)pq[Q,P ]S ,

[P, Q ∧R]S = [P, Q]S ∧R + (−1)pq+qQ ∧ [P, R]S ,

(−1)p(r−1)[P, [Q,R]]S + (−1)q(p−1)[q, [R, P ]]S +
(−1)r(q−1)[R, [P,Q]]S = 0.

A Poisson structureπ on a manifoldM gives rise to a
differential operatorσπ : X k(M) → X k+1(M ), this
operator is given by Schouten bracket withπ as fol-
lows

σπQ = [π,Q]S , Q ∈ X k(M). (13)

The cohomology

Hk
π(M) =

Ker(σπ : X k(M) → X k+1(M))
Im(σπ : X k−1(M) → X k(M))

(14)

is called thePoisson cohomologyof a Poisson man-
ifold. As was noticed by many authors, the com-
putation of the Poisson cohomology is very difficult
(see e.g. [5]). Exceptions are nondegenerate Pois-
son structures and linear Poisson structures. The
Poisson cohomology in low degrees has the follow-
ing interpretations [5]: the zeroth cohomology group
H0

π(M) is group of functionsf ∈ F(M) such that
Xf = [f, π]S = 0, that is Casimir functions;H1

π(M)
is the quotient of the Poisson vector fields, i.e., vector
fields such that[X, π]S = 0, by the Hamiltonian vec-
tor fields, i.e. vector fields of the type[f, π]S = Xf ;
H2

π(M) is the quotient of the space of 2-vectorsΛ ∈
X 2(M) which satisfy the equation[π, Λ]S = 0 by the
space of 2-vector fields of the typeΛ = [π, Y ]S .

3 Almost Poisson Structures

AssumeM = IR3, with coordinates(x1, x2, x3). We
will consider a dynamical system

dxi

dt
= Xi(x) i = 1, 2, 3. (15)
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We denote by

X : IR3 → T IR3, X =
3∑

i=1

Xi(x)
∂

∂xi
, (16)

the vector field associated to system (15) by the re-
lationsdxi/dt = X(xi), i = 1, 2, 3. By integral of
motion (or first integral) of (15) we mean a function
f ∈ F(M) which satisfies

Xf =
3∑

i=1

Xi
∂f

∂xi
= 0. (17)

Theorem 1 Let the system (15) has a first inte-
gral f ∈ F(IR3), then the vector fieldX =∑3

i=1 Xi(x)(∂/∂xi) can be written in terms of an al-
most Poisson structureX = π′df .

Proof If f is a first integral ofX, then the vector field
Y : IR3 → T IR3, Y = (Y1(x), Y2(x), Y3(x)), such
that

X = (∇f × Y ) · ∇ (18)

where∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), always exists. It
is obvious that,

Xf = (∇f × Y ) · ∇f ≡ 0. (19)

To show that the vector field (16) has an almost Pois-
son structure we define the bivector

π′ = Y1
∂

∂x2
∧ ∂

∂x3
+ Y2

∂

∂x3
∧ ∂

∂x1

+Y3
∂

∂x1
∧ ∂

∂x2
. (20)

Hence, the bivectorπ′ is skew-symmetric:π′ij =
−π′ji. Because of (18) and (20) we have

X = Xf = π′df. (21)

A skew-symmetric tensor fieldπ′ on a smooth man-
ifold M defines a vector bundle mapπ′] : T ∗M →
TM , such that for anyα, β ∈ T ∗M

π′(α, β) = i(π′](α))β.

For any pair of functionsf, g ∈ F(IR3), we set

{f, g}′ = π′(df, dg) = i(π′](df))dg

= −i(π′](dg))df. (22)

From (22) one can obtain:

π′(df, d(gh)) = i(π′](df))d(gh)

= i(π′](df))(hdg + gdh)

= i(π′](df))hdg + i(π′](df))gdh

= π′(df, dg)h + π′(df, dh)g.

So, we have the Leibnitz rule:

{f, gh}′ = π′(df, d(gh)) = π′(df, gdh + hdg) =
π′(df, dh)g + π′(df, dg)h = {f, g}′h + {f, h}′g.

This completes the proof.

Let as previous, the vectorY defines the al-
most Poisson structure (20). We show thatπ′ =
Y1 (∂/∂x2) ∧ (∂/∂x3) + Y2 (∂/∂x3) ∧ (∂/∂x1) +
Y3 (∂/∂x1)∧(∂/∂x2) is a Poisson tensor if the vector
Y is orthogonal to the vectorcurl Y . Indeed, if

Y · (∇× Y ) = 0,

then

Y1
∂Y3

∂x2
+ Y2

∂Y1

∂x3
+ Y3

∂Y2

∂x1

−Y1
∂Y2

∂x3
− Y2

∂Y3

∂x1
− Y3

∂Y1

∂x2
= 0, (23)

but the Jacobi identity (6) for bivector (20) is given by
equation (23).

4 Poisson Vector Fields
Let (IR3, π) be a Poisson manifold andΩ = dx1 ∧
dx2∧dx3 be the volume form onIR3. Assume that the
modular vector fieldDΩ(π) is identically zero, and
the Poisson manifold is unimodular. Hence the 1-form
ω1 = i(π)Ω is exact, that is,

i(π)Ω = dg. (24)

In that case the Poisson tensorπg reads

πg =
(

∂g

∂x1

)
∂

∂x2
∧ ∂

∂x3
+

(
∂g

∂x2

)
∂

∂x3
∧ ∂

∂x1

+
(

∂g

∂x3

)
∂

∂x1
∧ ∂

∂x2
. (25)

Theorem 2 Letf be a first integral of the system (15),
the vector fieldX = (∇f ×Y ) ·∇ is a Poisson vector
field on the unimodular Poisson manifold(IR3, πf ),
when∇f · (∇× Y ) = 0.

Proof X is a Poisson vector field ifσπf
X = LXπf =

0, then for

πf =
(

∂f

∂x1

)
∂

∂x2
∧ ∂

∂x3
+

(
∂f

∂x2

)
∂

∂x3
∧ ∂

∂x1
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+
(

∂f

∂x3

)
∂

∂x1
∧ ∂

∂x2
(26)

we have

LXπf = [X, (∂f/∂x1)(∂/∂x2) ∧ (∂/∂x3)]S

+[X, (∂f/∂x2)(∂/∂x3) ∧ (∂/∂x1)]S (27)

+[X, (∂f/∂x3)(∂/∂x1) ∧ (∂/∂x2)]S .

Next, from (27) we obtain

LXπf = {∇X(∂f/∂x1)− (∂/∂x1)(X∇f)}

(∂/∂x2) ∧ (∂/∂x3) + {∇X(∂f/∂x2)− (∂/∂x2)

(X∇f)}(∂/∂x3) ∧ (∂/∂x1) + {∇X(∂f/∂x3))

−(∂/∂x3)(X∇f)}(∂/∂x1) ∧ (∂/∂x2). (28)

Putting into (28)X = (∇f × Y ) · ∇ we get

LXπf = −∇f · (∇× Y )πf . (29)

Hence,LXπf = 0 when∇f ·(∇×Y ) = 0. This ends
the proof.

If σπf
X = 0, thenX fulfils the formula (8). The vec-

tor fieldY satisfies the Jacobi identity for∇×Y = 0.
Of course, a Hamiltonian vector field is a Poisson vec-
tor field, but the opposite is false. The first Poisson
cohomology spaceH1

π(IR3) is just the space of Pois-
son vector fieldsX : LXπf = 0, modulo the Hamil-
tonian vector fieldsVh = πfdh. Since the modu-
lar vector fieldDΩ(π) preserves the Poisson structure
π : LDΩ

(π)π = 0 (see [4]), it determines a class in the
first Poisson cohomology , called themodular classof
a Poisson manifold.

5 Hamiltonian Vector Fields
The possibility of describing a given vector fieldX :
IR3 → T IR3 in terms of a Poisson structure is a ques-
tion of fundamental importance.

Theorem 3 Let (IR3, π, f) be a Hamiltonian system.
Suppose, in addition, that there exists a second inte-
gral h, functionally independent off , i.e. dh∧df 6= 0,
andπ(dh, df) = 0. Then the Poisson tensorπ satis-
fies the extra conditions

π12 = %(x)
∂h

∂x3
, π31 = %(x)

∂h

∂x2

π23 = %(x)
∂h

∂x1
, %(x) ∈ F(IR3). (30)

Proof If h is a first integral ofXf , thenXf (h) = 0.
From (18) we have

Xf (h) = (∇f × Y ) · ∇h = 0. (31)

Sincedf ∧ dh 6= 0, from (20) it immediately follows
that

π12 = %(x)
∂h

∂x3
, π31 = %(x)

∂h

∂x2

π23 = %(x)
∂h

∂x1
. (32)

Denote by%(∂h/∂xi) = ui, i = 1, 2, 3, the Jacobi
identity (23) reads

u1∂u3/∂x2 + u2∂u1/∂x3 + u3∂u2/∂x1

−u1∂u2/∂x3−u2∂u3/∂x1−u3∂u1/∂x2 = 0 (33)

But this equation is always satisfied. This ends the
proof.

Theorem 4 If the Hamiltonian system(IR3, π, h)
possesses the second first integralf ∈ F(IR3)
functionally independent of Hamiltonianh, then
the vector fieldXh has a bi-Hamiltonian structure
πλ = π + λπ1, λ ∈ IR, connected with functions
f, h ∈ F(IR3) respectively:

πij = εijk%(x)
(

∂f

∂xk

)
∂

∂xi
∧ ∂

∂xj
, (34)

and

π1
ij = −εijk%(x)

(
∂h

∂xk

)
∂

∂xi
∧ ∂

∂xj
, (35)

whereεijk is the Levi-Civita tensor.

Proof It can be easily seen that the vector fieldXh

has the form

Xh = πdh = π1df. (36)

We have to prove thatπλ = π+λπ1, λ ∈ IR, is a Pois-
son tensor. Denoting byω1

f = i(π)Ω, ω1
h = i(π1)Ω,

one can observe from (23) that the bivectorπλ defines
the Poisson structure if

ω1
λ ∧ dω1

λ = 0. (37)

Therefore, ifπλ = π + λπ1 is a Poisson tensor then

(ω1
f + λω1

h) ∧ d(ω1
f + λω1

h) = 0. (38)

From (38) we obtain:

(ω1
f +λω1

h)∧d(ω1
f +λω1

h) = %(df−λdh)∧d(%(df−
λdh)) = −λ%(df ∧ d% ∧ dh + dh ∧ d% ∧ df) = 0.

This ends the proof.
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Theorem 5 Hamiltonian vector fieldsXh = πdh on
a Poisson manifold(IR3, π) are completely integrable,
thus have the bi-Hamiltonian structure.

Proof The vector fieldXh = πdh is a Hamiltonian
vector field if the bivectorπ is a Poisson tensor.
Hence, the 1-formω1 = i(π)Ω obeys the condition
ω1 ∧ dω1 = 0. More precisely, ifω1 is not exact, by
virtue of the Frobenius theorem there exist functions
f, g ∈ F(IR3), such thatω1 = gdf . The Poisson ten-
sor is

π = εijkg

(
∂f

∂xk

)
∂

∂xi
∧ ∂

∂xj
, (39)

and the Hamiltonian vector field becomesXh =
g(∇f×∇h) ·∇. As the vector fieldXh has two func-
tionally independent first integralsf andh, by The-
orem 4, it admits a bi-Hamiltonian form. This com-
pletes the proof.

6 Deformation of Poisson Structures
Let us consider a Hamiltonian vector fieldXh = πdh,
where i(π)Ω = %(x)df . There are infinitely many
deformations of the bivectorπ 7→ π̃, such thatπdh =
π̃dh. These deformations have the form:π̃ = π +
επ1, i(π1)Ω = %dh.

Theorem 6 The deformed bivector̃π is a Poisson ten-
sor if one of the following conditions holds:
(i) ε ∈ IR,
(ii) dε ∧ df = 0,
(iii) dε ∧ dh = 0.

Proof If π̃ is a Poisson tensor, then
i(π̃)Ω∧d(i(π̃)Ω) = %(df +εdh)∧d(%(df +εdh)) =
%2df ∧ dε ∧ dh = 0. This ends the proof.

The modular vector fieldDΩ(π̃) of the deformed
Poisson structurẽπ with respect to the volume ele-
mentΩ = dx1 ∧ dx2 ∧ dx3, defined by (10), reads

DΩ(π̃) = ∇%× (∇f + ε∇h) · ∇.

Assumeε ∈ IR, the condition forπ̃ = π + επ1 to
be a Poisson tensor gives:[π̃, π̃]S = 2ε[π, π1]S +
ε2[π1, π1]S = 0. The second Poisson cohomology
groupH2

π(IR3) is the quotient of the space of bivec-
tor fieldsµ such satisfy the equation[π, µ]S = 0 by
the space of bivector fields of the typeµ = [Z, π]S .
The infinitesimal deformationµ = [Z, π]S of Poisson
tensorπ always satisfies[π, µ]S = 0. If the cohomol-
ogy class ofπ in H2

π(IR3) vanishes, thenπ is called
an exact Poisson structure. More precisely, an exact
Poisson structure is a couple(π, Z) which satisfies the
relation[Z, π]S = π. In our situation,π1 is a Poisson
tensor compatible withπ, butπ1 is not necessary ob-
tained by an infinitesimal deformation.

7 Normal Form and Reduction for
Hamiltonian Systems

Consider a Hamiltonian system on symplectic mani-
fold (IR4, ω2 = π−1 = dp1∧dq1+dp2∧dq2,H). Re-
call that the Hamiltonian vector fieldXH on(IR4, ω2)
associated withH is defined byi(XH)ω2 = dH, and
assume that the HamiltonianH is the Taylor series.
Let the Taylor series starts with quadratic terms. In the
study of the qualitative properties of the Hamiltonian
system near an equilibrium point, which we assume to
be0, one of most powerful techniques available is to
simplify H using nonlinear canonical transformations
which leave the origin fixed. LetL =

∑
n≥2 Ln be a

positive graded Lie algebra [6]. We subscriptHm ∈
Lm and assume that the Lie bracket[ , ] in L satisfies
[Hk,Hm] ∈ Lk+m−2. We will say the elementH in
L is in normal formthrough terms of ordern ≥ 2 with
respect toH2 if Hk ∈ Ker(adH2 |Hk) for 2 ≤ k ≤ n
(cf.[7]). We define the adjoint representation ofL as
adG(H) = [G,H]. Consider the Hamiltonian system
with H ∈ L andH2 = 1

2(p2
1+p2

2+q2
1 +q2

2). Note that
for H,F ∈ L: [G,F ] = {F, G} = ω2(XF , XG) =
XG(F ). Since the vector fieldXH2 has purely imag-
inary eigenvalues±i we sayXH2 is in 1 : 1 reso-
nance. If we introduce complex conjugate variables
zj = qj + ipj , wj = qj − ipj , j = 1, 2, the linear
operatoradH2 reads

adH2 = i

(
w1

∂

∂w1
+ w2

∂

∂w2
− z1

∂

∂z1
− z2

∂

∂z2

)
.

The eigenvalues ofadH2 are i(m1 + m2 − k1 −
k2) with corresponding eigenvectorszk1

1 zk2
2 wm1

1 wm2
2 .

Thus among the generators forKer(adH2) are
those given in the nonresonance case, which are
called the Birkhoff generators. In addition to the
Birkhoff generators we have the resonance gener-
ators given by(k1, k2,m1,m2) = (1, 0, 0, 1) and
(k1, k2,m1,m2) = (0, 1, 1, 0). Therefore we may
considerKer(adH2) as algebra of formal power se-
ries in the Hopf variables [7]

W1 =
1
2
(z1w2 + w1z2), W2 =

1
2
(z1w2 − w1z2)

W3 =
1
2
(z1w1 − z2w2), W4

1
2
(z1w1 + z2w2),

with relation

W 2
1 + W 2

2 + W 2
3 = W 2

4 . (40)

The map(p1, p2, q1, q2) 7→ (W1,W2,W3) is the stan-
dard Hopf map. ThusH being in normal form with
respect toH2 (i.e.,XH2(H) = {H2,H} = 0), means
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that can be written as a polynomial in the Hopf vari-
ables, and the flow ofXH leaves the 3-sphereMc =
H−1

2 (c) invariant. The flow ofXH2 is periodic and
defines free and properS1– action onMc.

A reduced space for the flow onMc is a sym-
plectic manifold(NR, ωR) together with a surjective
submersionφ : Mc → NR (cf. [8], and reference
therein), such thatK ◦ φ = H ◦ j andφ∗X(x) =
X(φ(x)), ∀x ∈ Mc, wherej : Mc → IR4 is inclu-
sion,K is reduced Hamiltonian onNR associated to
H, andφ∗ is the tangent map ofφ. The related vector
field onNR is given by

X = (∇C ×∇K) · ∇ (41)

whereC = x2
1+x2

2+x2
3. The dynamics of such a sys-

tem reduces to dynamics onIR3, with respect Poisson
structure. (In fact, such a structure is called the Lie-
Poisson structure since the Casimir is a homogeneous
quadratic polynomial.) The various reductions give
different coordinate representations of the solutions.
The dynamical system considered correspond to the
bi-Hamiltonian dynamics with Poisson bracket. Each
Poisson bracket{F,K} = ∇C · (∇K × ∇F ) is as-
sociated with the Casimir functionC. When reduced
to level sets of Casimir, the equations of motion take
various symplectic forms. The various reductions give
different coordinate representations of the solutions.
These coordinate representations my be used to seek
the simplest representation of the solutions.

8 Poisson Coalgebra and Integrabil-
ity

First we recall some algebraic preliminaries. Detailed
exposition of the theory can be found for example in
[9]. A unital associative algebra overK is a linear
spaceA together with two linear mapsm : A

⊗
A →

A andη : K → A such that

m(m⊗ 1) = m(1⊗m),

m(1⊗ η) = m(η ⊗ 1) = id.

HereA
⊗

A is tensor product of two algebras,1 is the
unit element ofA andid means the identity map. The
usual notation for an algebra multiplication is simply
ab := m(a ⊗ b), and we will use this notation. Let
(A1,m1, η1) and (A2,m2, η2) be algebras, then the
tensor productA1

⊗
A2 is naturally endowed with the

structure of an algebra. The multiplicationmA1

⊗
A2

is defined as

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2).

A coalgebra is a triple(A,4, ε) with a linear spaceA
overK, and4 : A → A

⊗
A is a linear map called

comultiplication,ε : A → K is a linear morphism
called counit with the property

4(ab) = 4(a)4(b) ∀a, b ∈ A

(4⊗ id) ◦ 4 = (id⊗) ◦ 4
(id ⊗ ε) ◦ 4 = (ε ⊗ id) ◦ 4 = id

We note thatA
⊗

A is both an algebra and coalge-
bra ofA. One can define a tensor product of Poisson
algebras.F(M)

⊗F(M) is again a Poisson algebra
with the vector product algebra structure and the ten-
sor product coalgebra structure. We have to define
a Poisson structure onF(M)

⊗F(M) such that the
axioms of Poisson algebra are satisfied. For our pur-
pose the maps are defined as follows [10]. The multi-
plicationmF⊗F

(f ⊗ g)(h⊗ j) = (fh)⊗ (gj)

the coproduct onF(M)

4(xi) = xi ⊗ 1 + 1⊗ xi

and the Poisson bracket onF(M)
⊗F(M)

{f⊗g, h⊗j}F⊗F = {f, h}F ⊗gj+fh⊗{g, j}F .

This gives

{4(f),4(g)}F⊗F = 4({f, g}F ). (42)

Assume thatC is a Casimir for Poisson tensorπ, then
for anyh ∈ F(IR3)

4({C, h}F ) = {4(C),4(h)}F⊗F = 0. (43)

So, ifC is a Casimir function forπ andh is an arbitrary
smooth function onIR3 then the Hamiltonian system
defined by the HamiltonianH = 4(h(x1, x2, x3)) is
completely integrable (see [10]).

9 Applications

9.1 Partially Integrable 3D Lotka-Volterra
System

The 3D Lotka-Volterra system plays an important role
in modelling many physical, chemical and biological
processes. Let us consider the case (10) in Table I in
Ref. [11]:

ẋ1 = x1(x3 + λ)

ẋ2 = x2(x1 + x3 + λ) (44)

ẋ3 = x3(Bx1 + x2).

The system (44) has the first integral [11]:

f =
x2

x1
+ B(lnx2 − ln x1)− lnx3. (45)
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Due to Theorem 1, (44) can be rewritten as

Xf = (Y ×∇f) · ∇. (46)

From (46) we obtain,

Y1 = −x1x2x3, Y2 = 0

Y3 =
x2

1x2(x3 + λ)
Bx1 + x2

. (47)

Hence, an almost Poisson structure reads

π′ = −x1x2x3
∂

∂x2
∧ ∂

∂x3

+
x2

1x2(x3 + λ)
Bx1 + x2

∂

∂x1
∧ ∂

∂x2
. (48)

As it can be easily seen, the tensor (48) does not sat-
isfy the extra conditions (30), and therefore the L-V
system (44) is not completely integrable in this form.
From Theorem 3 and Theorem 5 we can conclude that
the system (44) is completely integrable if there exist
functionsg, h, % ∈ F(IR3) that

Y = %∇h− g∇f. (49)

So, it is very difficult to decide whether this system is
completely integrable or not.

9.2 Integrable Lotka-Volterra System

Let us consider the case (4) in Table I in Ref. [11]:

ẋ1 = x1(λ + Cx2 + x3)

ẋ2 = x2(µ + x1 + Ax3) (50)

ẋ3 = x3(ν + Bx1 + x2)

where:ABC +1 = 0, andν = µB−λAB. This sys-
tem has two functionally independent integrals [11]:

f = AB ln x1 −B lnx2 + lnx3, (51)

h = ABx1 + x2 + ν ln x2 −Ax3 − µ ln x3. (52)

Hence, we can rewrite the system (50) as

X = %(x)(∇f ×∇h) · ∇ (53)

where %(x) = −Cx1x2x3. The modular vector
field of the Poisson structureπf with respect to
the volume elementΩ = dx1 ∧ dx2 ∧ dx3, reads
DΩ(πf ) = −Cx1(∂/∂x1) + (1 + C)x2(∂/∂x2) −
C(1 + B)x3(∂/∂x3).

9.3 Hoyer System

The Hoyer system is defined by the three-dimensional
dynamical system depending on nine parameters

ẋ1 = a1x2x3 + b1x3x1 + c1x1x2

ẋ2 = a2x2x3 + b2x3x1 + c1x1x2 (54)

ẋ3 = a3x2x3 + b3x3x1 + c3x1x2

This system was introduced by P. Hoyer in 1879 in his
PhD thesis. The existence of Poisson structures for the
Hoyer system with quadratic Hamiltonians was stud-
ied in [12]. There exist four cases for which (54) has
a Poisson structure with quadratic Hamiltonians

(i) a1, b2, c3 6= 0, a2 = a3 = b1 = b3 = c1 =
c2 = 0
(ii) a1, b2, b3, c2, c3 6= 0, a2 = a3 = b1 = c1 = 0
(iii) a1, b1, b2, c3 6= 0, a2 = a3 = b3 = c1 =
c2 = 0.
Evidently the authors were unconscious of finding
completely integrable cases of the system (54). In-
deed, consider case (i) for which the authors obtained
two Poisson structures ((26) and (27) in Ref. [12])

π1 = −βα + h

αβc3
x3 ∂x1∧∂x2−α− γ + h

αγb2
x2 ∂x3∧∂x1

+
β − γ + h

αγb2
x2∂x2 ∧ ∂x3

and

π2 =
(

a1 + b2

c3
+ b2h

)
x3∂x1 ∧ ∂x2−

(1+c3h)x2∂x3∧∂x1−
(

a1 + b2

c3
+ b2h

)
x3∂x2∧∂x3.

whereα, β, γ are nonzero parameter, such thatα +
β + γ = 0, andh is arbitrary.

It can be easily shown that in this case the Hoyer
system has the bi-Hamiltonian form

X = (∇f ×∇g) · ∇ (55)

where f = 1/2
(
x2

1 − a1x
2
2/b2

)
and g =

1/2
(
c3x

2
2 − b2x

2
3

)
. For cases (ii) and (iii) in virtue of

Theorem 6, the system (54) is completely integrable.

9.4 Henon-Heiles System

Consider the Henon-Heiles system given by the
Hamiltonian

H =
1
2
(p2

1 + p2
2 + q2

1 + q2
2) +

1
3
aq3

1 − q1q
2
2. (56)
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The normal form of (56) with respect toH2 of order
four is [8]

K = a1x
2
1 + a2x

2
2 + a5x3 + a5. (57)

From (41) we have

dx

dt
= ∇C ×∇K. (58)

Since the level sets of CasimirC are spheres, we
choose a new basis of coordinates as follows:x1 =
r cos u sin v, x2 = r sin u cos v, x3 = r cos v. In
terms of these coordinates Casimir and Hamiltonian
become

C = r2

K = a1Ccos2u sin2v + a2C sin2 u cos2v

+a5C
1/2cos v.

The basis of the tangent spaceTxIR3 read

∂
∂x1

= cos u sin v ∂
∂r + 1

r cos u cos v ∂
∂v − sin u

r sin v
∂
∂u

∂
∂x2

= sin u sin v ∂
∂r + 1

rsin u cos v ∂
∂v + cos u

r sin v
∂
∂u

∂
∂x3

= cos v ∂
∂r − 1

rsin v ∂
∂v

The bi-Hamiltonian vector field (58) then reduces to

XK = 2(
√

Csin v)−1
[
∂K

∂v

∂

∂u
− ∂K

∂u

∂

∂v

]
(59)

and the equations of motion have the following form

du

dt
= 4

√
C (a1cos

2u + a2sin
2u) cos v − 2a5

dv

dt
= 2

√
C (a2 − a1) sin 2u sin v. (60)

The system (60) is integrable, nevertheless obtaining
the flow ofXK for this case is nontrivial task. A small
calculations shows that the vector fieldXK may be
written as

XK = (∇F ×∇G) · ∇ (61)

where

F = 2(a2 − a1)x2
1 + 2a2x

2
3 − 2a4x3

G = x2
2 −

a1

2(a2 − a1)
x2

3 −
a5

2(a2 − a1)
x3

We introduce a new basis of coordinates:

y1 =
√

2(a2 − a1) x1, y2 = x2, y3 =
√

2a2x3

−a5/
√

2a2. In these coordinates we obtain

F = y2
1 + y2

3

G = y2
2

a1

4a2(a2 − a1)
y2
3 +

(2a2 − a1)a5)
2(a2 − a1)(2a2)3/2

+
a2

5(2a2 − a1)
8a2

2(a2 − a1)
.

Since the level sets ofF are circular cylinders,
we choose the cylindrical coordinates:y1 =
r cos u, y2 = v, y3 = r sin u. In these coordinates
F andG take the form

F = r2

G = v2 − a1F

4(a2 − a1)a2
sin2 u

+
a5(2a2 − a1)

√
F

2(a2 − a1)(2a2)3/2
sinu +

a2
5(2a2 − a1)

8a2
2(a2 − a1)

.

The basis of TyIR3 is ∂
∂y1

= cosu ∂
∂r −

1
r sinu ∂

∂u , ∂
∂y2

= ∂
∂v , ∂

∂y3
=

sinu ∂
∂r + 1

r cosu ∂
∂u . The reduced Hamiltonian vector

fieldXG reads

XG = 2
(

∂G

∂u

∂

∂v
− ∂G

∂v

∂

∂u

)
(62)

In this form the flow ofXG can be easily obtained as
(cf. [8])

r = const.

v = χ[(1 + sn(τ, k))2 + (β + sn(τ, k))2]1/2×
cn(τ, k)dn(τ, k)

u = arcsin
(
−β + sn(τ, k)

1 + βsn(τ, k

)

whereχ−2 = 1
8 [9β + s1)(β + s2)(β2 − 1)].

9.5 Calogero System

In this subsection we consider a Hamiltonian system
defined by the Hamiltonian [10]

H(n) = λ n
n∑

i=1

pi + µ
n∑

i,k=1

√
pipk cos ν(q1 − qk)

(63)
whereλ, µ, ν are constants. We have showed [10] that
this Hamiltonian system can be solved by extension of
the Poisson structure

π = ν x3∂1 ∧ ∂2 + ν x2∂3 ∧ ∂1 − ν

2
∂2 ∧ ∂3 (64)

whereν = const. and∂i = ∂/∂xi. Letting∇ = ∇1

we define [9]:

∇n+1 = (∇⊗ idn) ◦ ∇n
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that is, diagonalizing on the first factor after applying
∇n. Hence forn = 1 anda, b ∈ A, we have

42(a) = a⊗ 1⊗ 1 + 1⊗ a⊗ 1 + 1⊗ 1⊗ a

and

{42(a),42(b)}A⊗A⊗A = 42({a, b}A)

= {a, b}A ⊗ 1⊗ 1 + 1⊗ {a, b}A ⊗ 1

+1⊗ 1⊗ 1⊗ {a, b}A.

Next, putting

a1 = a⊗1⊗1, a2 = 1⊗ a⊗1, a3 = 1⊗1⊗ a

we get

42(a) =
3∑

i=1

ai

and

{42(a),42(b)}A⊗A⊗A =
3∑

i=1

{a, b}i.

Thus for arbitraryn ≥ 2 we have

4n−1(a) =
n∑

i=1

a1

and

{4n−1(a),4n−1(b)}A⊗n =
n∑

i=1

{a, b}i.

One can easily check that the Casimir for the Poisson
structure (63) is

C = x2
2 + x2

3 − x1 (65)

The Poisson brackets are fulfilled by the following
functions [10]

x1 = p, x2 =
√

p sin νq, x3 =
√

p cos νq.

Consider the simple Hamiltonian

H = α1x1 + α2(x2
2 + x2

3). (66)

The relations (65) and (66) give

4n−1(H) = α1

n∑

i=1

pi + α2

n∑

ij=1

√
pipj cos ν(qi − qj)

(67)
and

4n−1(C) = 2
n∑

1=i<j

√
pipj cos ν(qi − qj). (68)

The Hamiltonian (67) and the Calogero Hamiltonian
(63) are equivalent forα1 = λν andα2 = µ. The
integrals of the Calogero system are given by the co-
products of the Casimir (65) and read [10]

Ck = 4k−1(C) = 2
j=k∑

1=i<j

√
pipj cos ν(qi − qj),

(69)
k = 2, · · · , n. Thus, the Calogero system (63) is com-
pletely integrable because the first integralsHn =
4n−1(H) and C1, · · · , Cn−1 are functionally inde-
pendent (cf. [10]).
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