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1 Introduction 2 Preliminaries

The fundamental problem in mathematical physics is Let M be a real smooth manifold of dimensionZ"M

to discover new integrable systems. These systems and7™M its tangent and cotangent bundles, respec-

always have algebraic structures that are responsible tively. For eachk € N, we denote byx*(M) the

for their integrability. Therefore the most interesting  space of smooth sections Af 7'M, and byV* (M)

problem in the study of dynamical systems is to give the smooth sections gf* 7*A/. By convention, for

such general algebraic structures which provide a hid- £ = 0, we setx?(M) = V(M) = F(M), where

den treasure. F(M) is a space of real-valued smooth functions de-
The present paper is devoted to the study of Pois- fined onl/.

son structures for three dimensional dynamical sys- A Poisson structuren M is a skew-symmetric

tems. Poisson structures play an important role in bilinear map [1,2]:

dynamical systems, fluid dynamics, magnetohydro-

dynamics, superconduity, chromodynamics, etc. Di- {1 F(M) x F(M) — F(M),

mension three corresponds to the first nontrivial case ) ) o

where the Poisson structure does not imply the sym- palled th(_a_P0|sson bracket, which satisfies the follow-

plectic structure. On the other hand, there are surpris- ing conditions:

ingly many natural phenomena modelled by the three (i) {{f, ¢}, h} + {{g,h}, f} + {{h. f},g} = O
dimensional vector fields: (ii)  {f,gh} = {f,g}h+{f h}g

(wi) {f.g} =—{9,f}

3
X :R® — TR, X — ZXi(w) 0 NGY) forall f,g,h € F(M). The pair(M,{ , }) is called
= Ox; a Poisson manifoldand conditions (i) - (iii) make
(F(M),{, })into a Lie algebraA.
such as the time evolution in chemistry and biology, We define amalmost Lie algebrg[3] to be the

economy, in laser physics, plasma physics, optics, dy- same as a Lie algebtd except that the bracket op-
namo theory, fields theory, etc. As is known these eration does not satisfy the Jacobi identity (i). A pair
systems show a very reach behavior, from complete (M, { , }') is called aralmost Poisson manifolthen
integrability to chaos and strange attractors (at least { , }’' is an almost Lie algebra structure.

numerically). So, one of the most fundamental prob- The local expression for the bracket } is
lems which arise in these systems is integrability. This

requires the existenee— 1 functionally independent {f.q} = Z{l‘i»%’}ﬁ%- (2)
integrals of motion for am-dimensional dynamical y O0x; 0z

system. The trajectories of integrable systems may
be obtained as intersections of level surfaces of first The bracket{f, g} defines a twice covariant skew-

integrals. We defingartially integrable systemas symmetric tensorr € X2(M), such that
systems with a number of first integrals smaller than
n—1. {f,9} = =(dg,df) (3)
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then
0

0
Sincer is skew,
Tij = —Tji (5)
and the Jacobi identity (i) is equivalent to

87Tij

Ik
ox;

) —0. (6)

Let (M, { , }) be a Poisson manifold. Givene
F(M), defines the linear mafy;, : F(M) — F(M)
by X,(f) = {f,h}. The correspondende — X},
defines a vector field, called thdamiltonian vector
field, and h plays the role of a Hamiltonian func-
tion. A bi-Hamiltonian manifold} is a manifold en-
dowed with two Poisson tensorsand ! such that
7y = 7+ An! is a Poisson tensor for any € IR.
A Casimir functionon a Poisson manifold, { , })
is a smooth function) such that{vy, f} = 0 for all
f € F(M). A vector field X on a Poisson manifold
(M, ) is called aPoisson vector field it is an infin-
itesimal automorphism of the Poisson structure, i.e.
the Lie derivative ofr with respect taX vanishes

(7)

Another equivalent condition foX to be a Poisson
vector field can be written in the following form

X{f,9} ={X[f,9}+{f, Xg}; Vf, g € F(M). (8)

If X = ndh, (8) is the Jacobi identity.

For a given volume elemefit on M we consider
its induced isomorphisn® : X* — Yk .oy
i(u)?, wherei(u) is the contraction by the k-vector
u € X*k(M). Let

Lxm=0.

Do=®lodod: X*(M)— XY M) (9)
be the pull-back operator under the isomorphisni
k-vectoru € X'* is said to be exact iDqg(u) = 0. In
local coordinates, and takifg = 6(x)dzi A- - -Adzy,
we have

Do(m) =3 (2

i=1 \j=1

3(97{'@])) 8 (10)

al'j 871’1

The vector fieldDg () is known aghe modular vec-
tor field of = with respect td2 [4]. We say that a Pois-
son structurer on a manifoldM is unimodular[4]

if its modular vector field, with respect to the volume
element, is identically zero.
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The Jacobi identity for a Poisson bracket is equiv-
alent to the following condition on the Poisson bivec-

tor r:
(11)

where [, |s denotes theSchouten bracket The
Schouten bracket

[r,7]s =0,

[, s : XF(M) x X™(M) — XFm=Y(M) (12)

is the extension of the Lie bracket of vector fields and
the action of vector fields on smooth functions (cf.
[2]). For k = m = 1, this bracket is precisely the
commutator. The Schouten bracket satisfies the fol-
lowing properties:

[PJ Q}S = (_1)PQ[Q7P]S’

[P,Q A Rls = [P,Q]s A R+ (=1)P79Q A [P, R]s,
(—=PCV[P[Q,Rlls + (—1)"@ Vg, [R, Plls +
(1)@ VIR, [P,Q]]s = 0.

A Poisson structure on a manifoldM gives rise to a
differential operator, : X*(M) — X*+1(M), this

operator is given by Schouten bracket withas fol-
lows

0:Q = [1,Qls, Q€ X*(M). (13)
The cohomology
Hf_(M):Ker(aW:Xk(M)HXkJrl(M)) (14)

Im(oy : XE=1(M) — Xk(M))

is called thePoisson cohomologgf a Poisson man-
ifold. As was noticed by many authors, the com-
putation of the Poisson cohomology is very difficult
(see e.g. [5]). Exceptions are nondegenerate Pois-
son structures and linear Poisson structures. The
Poisson cohomology in low degrees has the follow-
ing interpretations [5]: the zeroth cohomology group
HY(M) is group of functionsf € F(M) such that

X = [f,7]s = 0, that is Casimir functionsiZ} (M)

is the quotient of the Poisson vector fields, i.e., vector
fields such thatX, =|s = 0, by the Hamiltonian vec-

tor fields, i.e. vector fields of the tyd¢, 7] = Xy;
H2(M) is the quotient of the space of 2-vectaysc
X?(M) which satisfy the equatiopr, A]s = 0 by the
space of 2-vector fields of the type= [r,Y]s .

3 Almost Poisson Structures

AssumeM = IR3, with coordinategzy, 2, z3). We
will consider a dynamical system

dwi
dt

= X;(z) i=1,2,3. (15)
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We denote by

9

3
X:R—>TR?, X =) Xz
=1

the vector field associated to system (15) by the re-

lationsdzx; /dt = X (x;),i = 1,2,3. By integral of
motion (or first integral) of (15) we mean a function
f € F(M) which satisfies

of

3
Xf=> X
i=1

Theorem 1 Let the system (15) has a first inte-
gral f € F(IR?), then the vector fieldX =
3 X;(x)(0/0z;) can be written in terms of an al-

most Poisson structur® = 7'df.

Proof If fis afirstintegral ofX, then the vector field
Y :R? - TIR3, Y = (Yi(x), Ya(x), Y3(x)), such
that

X=(VfxY) -V (18)

whereV = (9/0x1,0/0x2,0/0x3), always exists. It
is obvious that,

Xf=(VfxY) -Vf=0. (19)

To show that the vector field (16) has an almost Pois-

son structure we define the bivector

0 0 0 0
'— Vi — A —+Y — A —
T 18.%’2/\8.1‘3+ 28353/\6301
0 0
Ys — AN —. 2
+38?L‘1/\ax2 (O)

Hence, the bivectorr’ is skew-symmetric:ng =
—n;. Because of (18) and (20) we have
X =X;=n'df. (21)

A skew-symmetric tensor field’ on a smooth man-
ifold M defines a vector bundle mag* : T*M —
T M, such that foranw, 8 € T*M

m'(a, B) = i(x"*())B.
For any pair of functiong, g € F(IR?), we set
{f.9) ='(df,dg) = i(x"*(df))dg

= —i(n"*(dg))df.
From (22) one can obtain:

' (df, d(gh)) = i(7"*(df))d(gh)

(22)
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= i(n*(df))(hdg + gdh)
= i(w"(df))hdg + i(7"*(df ))gdh
= 7'(df,dg)h + 7' (df,dh)g.
So, we have the Leibnitz rule:

{f,gh} = ='(df,d(gh)) = «'(df,gdh + hdg) =
' (df, dh)g + 7' (df, dg)h = {f, g}'h +{f, h}'g.

This completes the proof.

Let as previous, the vectay defines the al-
most Poisson structure (20). We show that =
Y1 (0/0z2) A (0/0x3) + Yo (0/0x3) A (0/0x1) +
Y3 (0/0x1) N (0/0x2) is a Poisson tensor if the vector
Y is orthogonal to the vectarl Y. Indeed, if

Y- (VxY)=0,

then Y- Y Y5
3 1 2
YI—+Yo—+Ys5—
181’2 + 28.%‘3 + 3(9.%’1
0Ys 0Ys oY1
Y= - Yo" —YV3— =0
183)3 26901 38.7}2 ’

but the Jacobi identity (6) for bivector (20) is given by
equation (23).

(23)

4 Poisson Vector Fields

Let (IR?, 7) be a Poisson manifold arld = dz; A
dxs Ndzs be the volume form oiR3. Assume that the
modular vector fieldDq(7) is identically zero, and
the Poisson manifold is unimodular. Hence the 1-form
w! =i(7)Q is exact, that is,

i(m)Q = dg. (24)

In that case the Poisson tensgrreads
r= (2) 20 () 0,0
g 81‘1 83:2 8903 61’2 (9:133 6::31

(2 20
al‘g 8:131 8:52'
Theorem 2 Let f be afirstintegral of the system (15),
the vector fieldX = (Vf xY')-V is a Poisson vector

field on the unimodular Poisson manifofdR?, 7 ),
whenVf . (V xY)=0.

(25)

Proof X is a Poisson vector field ifﬂfX =Lxmy =
0, then for

(Al (H) 2,
7Tf_ 8%1 81’2 (9173 8$2 8333 6%1
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( 86;’ ) ail A aig (26) E:g?; (IISl; \i;eahfziirjé integral ofX ;, then X ;(h) = 0.
we have Xp(h) = (VfxY)-Vh=0. (31)
Lx7y=[X,(0f/0x1)(0/0x2) A (0/0x3)]s Shincedf A dh # 0, from (20) it immediately follows
+H[X, (0f/02)(0/0x3) A (0/0x1)]s  (27) e 1o = o() 88;; | = o) 88;2
X, (0F /023)(9/1) A (9 D2)]s. o
Next, from (27) we obtain 28 = Q(x)aixl' (32)
Ly = (VX(9f [01) — (0/02) (XY F)) donde o ) = it = 12,3, he Jacob
(0/0x2) A (0)0x3) + {VX(Df/Ox2) — (0/0x2) u10us/0xs + u20uy /Oxs + ugdug /01
(XVHHO/0x3) A (0)0x1) + {VX(Df/Ox3)) —u10ug /03 —ugdug/Oxr1 —uzduy /0re = 0 (33)
—(0/023)(XV £)}(0/0x1) A (0/0x2).  (28) Ilgrtgotfttis equation is always satisfied. This ends the

Putting into (28)X = (Vf x Y) - V we get
Theorem 4 If the Hamiltonian system(IR?, 7, h)
Lxmp=—-Vf-(VxY)rs. (29) possesses the second first integial € F(IR?)
functionally independent of Hamiltoniah, then
Hence Lx7y = 0whenV f-(V xY) = 0. This ends the vector fieldX;, has a bi-Hamiltonian structure
the proof. ™ = 7+ Ar', A € IR, connected with functions

If o, X = 0, thenX fulfis the formula (8). The vec- /! € F(IR?) respectively:

tor field Y satisfies the Jacobi identity f&f x Y = 0. of \ 0 o
Of course, a Hamiltonian vector field is a Poisson vec- 5 = €ijk@(90) (8 ) P A B (34)
tor field, but the opposite is false. The first Poisson T/ O i
cohomology spacé/! (IR?) is just the space of Pois-  and

son vector fieldsX : Lxmy = 0, modulo the Hamil- .

tonian vector fieldsV;, = mwydh. Since the modu- Tij = —€ijro(T) (
lar vector fieldDg (7) preserves the Poisson structure

7 : Lpg (m)m = 0 (see [4]), itdetermines aclassinthe wheree;;; is the Levi-Civita tensor.

first Poisson cohomology , called theodular classf ) _
a Poisson manifold. Proof It can be easily seen that the vector fielg

has the form

ah) 0,0 g

07113].3 (‘sz aa:j ’

5 Hamiltonian Vector Fields Xp = wdh = 7' df. (36)

We have to prove thaty, = 7T—i—)\7r A€ ]R is a Pois-
son tensor. Denoting hy! Q wi =i(rhHQ,
one can observe from (2§) that the bivectqrdefines
the Poisson structure if

The possibility of describing a given vector field :
IR3 — TIR? in terms of a Poisson structure is a ques-
tion of fundamental importance.

Theorem 3 Let (IR?, 7, f) be a Hamiltonian system. wh A dwh = 0. (37)
Suppose, in addition, that there exists a second inte- . _ _
gral h, functionally independent ¢f, i.e. dh Adf # 0, Therefore, ifr) = m + Ar! is a Poisson tensor then

andr(dh,df) = 0. Then the Poisson tensarsatis-

1 1 1 1y
fies the extra conditions (Wi + Awp) Ad(wp + Awy) = 0. (38)

From (38) we obtain:

B oh B oh
M2 = 0@)g s T = e(w) g (w4 Awh) Ad(w}+Awh) = o(df — Adh) Ad(o(df —
Adh)) = —Xo(df Ndo A dh+dh Ado Adf) =0.
Tog = Q@)c‘?xhl’ o(z) € F(IR). (30) This ends the proof.
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Theorem 5 Hamiltonian vector fieldsX;, = wdh on
a Poisson manifoldIR?, ) are completely integrable,
thus have the bi-Hamiltonian structure.

Proof The vector fieldX; = wdh is a Hamiltonian
vector field if the bivectorr is a Poisson tensor.
Hence, the 1-formu! = i(7){) obeys the condition
w! A dw' = 0. More precisely, itu! is not exact, by
virtue of the Frobenius theorem there exist functions
f,g € F(IR?), such that! = gdf. The Poisson ten-

Sor is
e () 20 2
T = Eigkd 8$k 8%1 8$]‘7
and the Hamiltonian vector field becomés§, =
g(VfxVh)-V. As the vector field\}, has two func-
tionally independent first integralg and h, by The-

orem 4, it admits a bi-Hamiltonian form. This com-
pletes the proof.

(39)

6 Deformation of Poisson Structures

Let us consider a Hamiltonian vector field, = wdh,
wherei(m)Q2 = o(x)df. There are infinitely many
deformations of the bivector — 7, such thatrdh =
wdh. These deformations have the form:= 7 +
ert, i(71)Q = odh.

Theorem 6 The deformed bivectaris a Poisson ten-
sor if one of the following conditions holds:

(7) e € R,

(ii)  dendf =0,

(¢i1) de ANdh = 0.

Proof If 7 is a Poisson tensor, then

{(F)QAA((7)Q) = o(df +edh) Ad(o(df +edh)) =
o?df A de A dh = 0. This ends the proof.

The modular vector fieldq(7) of the deformed
Poisson structuré with respect to the volume ele-
ment2 = dxq A dze A dzxs, defined by (10), reads

Dq(m)=Vox (Vf+eVh)-V.

Assumes € IR, the condition forr = 7 + en! to
be a Poisson tensor give$t, s = 2¢[m, ml]s +
e2[x!t, 7l]s = 0. The second Poisson cohomology
group HZ(IR3) is the quotient of the space of bivec-
tor fields . such satisfy the equatidm, u]s = 0 by
the space of bivector fields of the type= [Z, 7]s.
The infinitesimal deformatiop = [Z, 7]s of Poisson
tensorr always satisfiegr, u]s = 0. If the cohomol-
ogy class ofr in H2(IR?) vanishes, them is called
an exact Poisson structureMore precisely, an exact
Poisson structure is a cougle, Z) which satisfies the
relation[Z, 7]s = . In our situationzr! is a Poisson
tensor compatible withr, but7! is not necessary ob-
tained by an infinitesimal deformation.
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7 Normal Form and Reduction for
Hamiltonian Systems

Consider a Hamiltonian system on symplectic mani-
fold (]R4,w2 =71 = dpy Ndqy +dpa ANdge, H). Re-
call that the Hamiltonian vector field ; on (IR*, w?)
associated wittif is defined byi( X )w? = dH, and
assume that the HamiltoniaH is the Taylor series.
Let the Taylor series starts with quadratic terms. In the
study of the qualitative properties of the Hamiltonian
system near an equilibrium point, which we assume to
be 0, one of most powerful techniques available is to
simplify H using nonlinear canonical transformations
which leave the origin fixed. Let = 3" -, L, be a
positive graded Lie algebra [6]. We subscrig, €

L,, and assume that the Lie bracKet in L satisfies
[Hy, Hy,) € Liym—o. We will say the element in
Lis innormal formthrough terms of ordet > 2 with
respect taHs if H, € Ker(adp,|H)for2 <k <n
(cf.[7]). We define the adjoint representationlofas
adg(H) = |G, H]. Consider the Hamiltonian system
with H € L andH, = 3(p}+p3+qi+¢3). Note that
for HF € L: [G,F] = {F,G} = w*(XF,Xq) =
Xq(F). Since the vector fiel& 7, has purely imag-
inary eigenvaluesti we say Xy, isin1l : 1 reso-
nance. If we introduce complex conjugate variables
zj = qj +1ip;j, wj = q; —ip;, j = 1,2, the linear
operatofady, reads

9,9 _, 5)
28’(02 1621 2822 '

The eigenvalues otidy, are i(m; + ma — k1 —

k) with corresponding eigenvector§' 252w w}'2,
Thus among the generators fdKer(adp,) are
those given in the nonresonance case, which are
called the Birkhoff generators. In addition to the
Birkhoff generators we have the resonance gener-
ators given by(k1, ko, m1,ms) = (1,0,0,1) and
(k1, ko2, m1,ma) = (0,1,1,0). Therefore we may
considerKer(adg,) as algebra of formal power se-
ries in the Hopf variables [7]

i 0
adp, =1 (wlawl +w

1 1
Wi = 5(2’1102 +wizg), W= 5(21102 — w1 22)

1 1
W3 = 5(21101 — Zws), W4§(z1w1 + zows),
with relation

Wi+ Wi+ Wi =W} (40)

The map(p1, p2, 41, ¢2) — (Wi, W, W3) is the stan-
dard Hopf map. Thud¢{ being in normal form with
respect taH» (i.e., X, (H) = {H2, H} = 0), means
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that can be written as a polynomial in the Hopf vari-
ables, and the flow oKy leaves the 3-spherkl,. =
Hy'(c) invariant. The flow ofX, is periodic and
defines free and propéf'— action on)/...

A reduced space for the flow ol/,. is a sym-
plectic manifold( N, wr) together with a surjective
submersiony : M. — Ng (cf. [8], and reference
therein), such thak o ¢ = H o j and ¢, X (z) =
X (¢(x)), Vo € M,, wherej : M. — IR*is inclu-
sion, K is reduced Hamiltonian oV associated to
H, and¢, is the tangent map af. The related vector
field on Ny is given by

X =(VCxVK)- -V (41)
whereC = 22+ 2%+ z3. The dynamics of such a sys-
tem reduces to dynamics dR?, with respect Poisson
structure. (In fact, such a structure is called the Lie-

Poisson structure since the Casimir is a homogeneous

guadratic polynomial.) The various reductions give

different coordinate representations of the solutions.
The dynamical system considered correspond to the

bi-Hamiltonian dynamics with Poisson bracket. Each
Poisson brackefF, K} = VC - (VK x VF) is as-
sociated with the Casimir functiafi. When reduced
to level sets of Casimir, the equations of motion take
various symplectic forms. The various reductions give

different coordinate representations of the solutions.

comultiplication,e : A — K is a linear morphism
called counit with the property

A(ab) = A(a)A(b) Va,be A

(A® id)o A= (id®)o A

(id @ €)o A= (e ®id)o A =id
We note thatA @ A is both an algebra and coalge-
bra of A. One can define a tensor product of Poisson
algebras.F (M) Q® F(M) is again a Poisson algebra
with the vector product algebra structure and the ten-
sor product coalgebra structure. We have to define
a Poisson structure af (M) Q F (M) such that the
axioms of Poisson algebra are satisfied. For our pur-

pose the maps are defined as follows [10]. The multi-
plicationm rg

(f@g)(h®j) = (fh) @ (97)

the coproduct oF (M)
Az)=x2;01+1QRux;

and the Poisson bracket g M) Q F (M)
{f®9,h®@j}rer = {f, h}r @gi+fh@{g,j}F.

This gives

{A(), Ag)yrer = A{ . 9YF).  (42)

These coordinate representations my be used to seekAssume that is a Casimir for Poisson tensey then

the simplest representation of the solutions.

8 Poisson Coalgebra and Integrabil-
ity

First we recall some algebraic preliminaries. Detailed
exposition of the theory can be found for example in
[9]. A unital associative algebra ovéf is a linear
spaceA together with two linearmaps : AQ A —
Aandn: K — A such that

m(m® 1) =m(1l®m),

m(l®n) =m(n® 1) =id
HereA & A is tensor product of two algebrakis the
unit element ofd andid means the identity map. The
usual notation for an algebra multiplication is simply
ab := m(a ® b), and we will use this notation. Let
(A1,mq,m) and (A, mo, n2) be algebras, then the

tensor productl; @ As is naturally endowed with the
structure of an algebra. The multiplication, ® Az

is defined as
(a1 & bl)(az & bQ) = (alag) &® (blbg).

A coalgebra is a tripl¢ A, A, €) with a linear spacel
overK,andA : A — A® A is a linear map called
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foranyh € F(IR?)
A({C, hiF) ={A(C), A(h) }Frer = 0.

So, ifC is a Casimir function forr andh is an arbitrary
smooth function ordR? then the Hamiltonian system
defined by the Hamiltoniald = A(h(z1, z2,x3)) IS
completely integrable (see [10]).

(43)

9 Applications

9.1 Partially Integrable 3D Lotka-Volterra
System

The 3D Lotka-Volterra system plays an important role
in modelling many physical, chemical and biological
processes. Let us consider the case (10) in Table | in
Ref. [11]:

1 =x1(x3 + )

To = X9 (acl +x3 + )\) (44)
T3 = Ig(BCEl + :Eg).
The system (44) has the first integral [11]:
fzﬁ—i—B(ln:rz—lnxl)—ln:rg. (45)

T1
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Due to Theorem 1, (44) can be rewritten as

Xp= (Y xVf) V. (46)

From (46) we obtain,

Y1 = —x12w0m3, Yo=0
22xo (w3 + N)

Vo —
s Bxq + w2

Hence, an almost Poisson structure reads

; 0
T = —I1Tox3— N —

8$2 8953

0
81‘2.
As it can be easily seen, the tensor (48) does not sat-
isfy the extra conditions (30), and therefore the L-V
system (44) is not completely integrable in this form.
From Theorem 3 and Theorem 5 we can conclude that
the system (44) is completely integrable if there exist
functionsg, h, o € F(IR?) that

+x%a¢2(azg +A) 0

— 48
Bxi+xo 011 ( )

Y =oVh —gVf. (49)

So, it is very difficult to decide whether this system is
completely integrable or not.

9.2 Integrable Lotka-Volterra System

Let us consider the case (4) in Table | in Ref. [11]:

1 =21 (A + Cxo + x3)
T9 = xo(p + 1 + Axs) (50)
(i3 = $3(V + B$1 + JZQ)

where:ABC'+1 =0, andv = uB — A\AB. This sys-
tem has two functionally independent integrals [11]:

f=ABlnz; — Blnzs + Inzxs, (51)
h=ABz) + 2y +vinzg — Azg — plnzs. (52)

Hence, we can rewrite the system (50) as
X =o(z)(Vf xVh)-V (53)

where o(x) —Cx12923. The modular vector
field of the Poisson structure, with respect to
the volume elemenf) = dxi A dxo A dzs, reads
DQ(Wf) = —C’xl(a/axl) + (1 + C)$2(8/ax2) -
C(l + B)(IJg(a/a{L'?,)
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9.3 Hoyer System

The Hoyer system is defined by the three-dimensional
dynamical system depending on nine parameters

T1 = a1T2x3 + b1T3T1 + 17122

To = agxox3 + boxsx1 + c1x12T9 (54)

T3 = azxrar3 + b3r3w + c3T102

This system was introduced by P. Hoyer in 1879 in his
PhD thesis. The existence of Poisson structures for the
Hoyer system with quadratic Hamiltonians was stud-
ied in [12]. There exist four cases for which (54) has
a Poisson structure with quadratic Hamiltonians

(i) a1,ba,c3 # 0,
Cy = 0

(“’) a17b2)b3762)c3 #07
(¢17) a1,b1,ba,c3 # 0,
Cy) = 0.

Evidently the authors were unconscious of finding
completely integrable cases of the system (54). In-
deed, consider case (i) for which the authors obtained
two Poisson structures ((26) and (27) in Ref. [12])

_ﬂa+h

a2:a3:b1:b3261:

as=a3=by=c1 =0
a2 = as 263261

a—vy+h

T = 3 0x1NOxT9— T9 Ox3NOT1
afes ayby
— h
+u$28$2 A 03
ayby
and

ai + bo

Ty =
C3

(1+03h)x28m3/\8x17 <

+ bgh) 23011 N\ Ox9—

ay + by
c3
where«, 3,y are nonzero parameter, such that-
B+~ =0, andh is arbitrary.
It can be easily shown that in this case the Hoyer
system has the bi-Hamiltonian form

+ b2h> 130T9N0T3.

X = (VfxVg) -V (55)

where f 1/2 (23 — a123/b2) and g
1/2 (c373 — bax3). For cases (ii) and (iii) in virtue of
Theorem 6, the system (54) is completely integrable.

9.4 Henon-Heiles System
Consider the Henon-Heiles system given by the
Hamiltonian

1 1
H = 5(19? +p3+ai+a3)+ gaﬁ —q1g3.  (56)
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The normal form of (56) with respect tH5 of order
four is [8]

K = a123 + asx3 + aszs + as. (57)
From (41) we have
dx

— =V(C x VK. 58

o X (58)

Since the level sets of Casim@’ are spheres, we
choose a new basis of coordinates as follows:=
7 COS USINU, Ty = rsinucosv, x3 = rcosv. In

terms of these coordinates Casimir and Hamiltonian

become
C =r?
K = a1Ccos?u sin’v + asC sin® u cos®v
+a5C2cos v.

The basis of the tangent spdEgR? read

o 9 1 9 _ sinu 0
Dy = COSUSINVZ + COSUCOS Vg — ot 5,
o . 9 1. K3 cosu_ O
Fu; = Stnusinvg: + 1sinucosvg; + o A

a O _ lgin O
T%—COSUBT T,SZnUav

The bi-Hamiltonian vector field (58) then reduces to

L [0K D 0K d

(59)

and the equations of motion have the following form

d
di: = 4V C (aycos*u + agsin®u) cos v — 2as
dv . .
pri 2vC (ag —a1) sin2u sinv. (60)

The system (60) is integrable, nevertheless obtaining

the flow of X i for this case is nontrivial task. A small
calculations shows that the vector fielx may be
written as

Xg =(VF xVGQG)-V (61)
where

F =2(ay — al)a:% + 2a2:1:§ — 2a473

2 ai 2 as
G == 2(az —a1) T3 2(ag —ay)
We introduce a new basis of coordinates:
y1=/2(a2 —a1) x1, Yo =T, Y3 = /20273
—as/+/2as. In these coordinates we obtain

T3

F=yl+43
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(2@2 — CL1)CL5)
2(as — a1)(2az)3/2
a?(2az — ay)

80,3((12 — al) '

al 2

G =13
Y2 das(as —a1) Y3 +

Since the level sets of" are circular cylinders,
we choose the cylindrical coordinatesy; =
recosu, Yz = v, y3 = rsinu. In these coordinates
F andd take the form

F =72
alF 2

G=v>——""  sin*u
4((12 —al)ag

N a5(2a2—a1)\/F i a?(2az — a1)
2(ag — a1)(2a2)3/2 8a3(as — ay)’
The basis of T,R® is 2 = cosug: —
1. 0 o _ 0 o __
o SIHU%, 87y2 = a.-

dur Bys
sinuZ 42 cos uZ. The reduced Hamiltonian vector
fieldX 4 reads

XG:2<8G6 aGa)

Judy 9o ou (62)

In this form the flow of X can be easily obtained as

(cf. [8])

T = const.
v =x[(1+ sn(r, k)2 + (6 + sn(r, k))}/2x
en(T, k)dn(T, k)

B+ sn(r, k:))
1+ Bsn(r, k

wherex =2 = 1[98 + 51)(8 + s2) (8% — 1)].

u = arcsin (

9.5 Calogero System

In this subsection we consider a Hamiltonian system
defined by the Hamiltonian [10]

n n
H™ =Xn> pi+u Y. /pipkcosv(q — ar)
i=1 ik=1
(63)
where), u, v are constants. We have showed [10] that
this Hamiltonian system can be solved by extension of
the Poisson structure

T =vx301 N0y +vx903 N\ — g Oy N\ O3 (64)

wherev = const. and0; = 9/0z;. LettingV = V;
we define [9]:

Vot = (V®id") oV,
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that is, diagonalizing on the first factor after applying
V.. Hence form = 1 anda, b € A, we have

No(a)=a®101+1Ra®1+1®1®a
and
{A2(a), L2(D)} agaea = D2({a,b}a)
={a,b}4®101+1®{a,b}a®1

+1®1®1®{a,b}a.
Next, putting

a1 =a®1®1, am=1a®1l, a3=101Ra
we get
3
No(a) :Zai
i=1
and

3
{£a(a), Do(b)} agawa = Y _{a,bhi.
i=1

Thus for arbitraryn > 2 we have

and
{An—1(a), Np—1(b) agn = Z{a, b};.
=1
One can easily check that the Casimir for the Poisson
structure (63) is
C=ajy+a3—m (65)

The Poisson brackets are fulfilled by the following
functions [10]

r1=p, x2=./psinvg, x3=/pcosvq.
Consider the simple Hamiltonian
H = ajz1 + ag(23 + 23). (66)

The relations (65) and (66) give

n
> \/pipj cosv(qi — ;)

An-1(H) = a1y pit o
i=1 ij=1
(67)

and

Np—1(C) =2 i V/Pipj cosv(q; — q;).  (68)

1=i<j
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The Hamiltonian (67) and the Calogero Hamiltonian
(63) are equivalent fory = Av andas = u. The
integrals of the Calogero system are given by the co-
products of the Casimir (65) and read [10]

j=k
Crp=L41(C) =2 Y /pibjcosv(g; — gj),
1=i<j

(69)
k =2,---,n. Thus, the Calogero system (63) is com-
pletely integrable because the first integrals =
Ap—1(H) and Cy,---,C,_1 are functionally inde-
pendent (cf. [10]).
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