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Abstract: This paper is devoted to the construction of models to approximate particle beams and plasma physics
problems. In recent years, solving numerically problems which couple charged particle to electromagnetic fields
has given rise to challenging mathematical and scientific computing developments. In the industry, a variety of
examples can be thought of, such as the ion or electron injectors for particle accelerators, the free electron lasers,
the hyperfrequency devices, the vulnerability of spatial devices to particle flows, etc. The mathematical model
which is most relevant in describing the physics of such problems is provided by the time-dependent coupled
Vlasov-Maxwell system of equations. Eventhough this model is necessary in a number of cases, it leads to very
expensive computations and simpler, i.ereduced modelsare required. The main lines of this paper will treat about
the analysis and the development of the reduced models. We present two situations in which this strategy can be
applied. Numerical results illustrate the possibilites of the approach.
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1 Introduction

Charged particles appear essentially in two kinds of
physics problems: charged particle beams, like in
hyperfrequency devices or vacuum diode technology,
and plasma physics, a plasma being roughly speaking
a gas of quasi neutral charged particles. Plasmas
are involved in a lot of real-life applications. They
are commonly used in Science and Technology and
play an important role in the energy production (for
instance in the magnetic confinement fusion). They
are also ingredients of instruments and others devices
(see the Introduction of [16] for a survey of the ap-
plications). Moreover, all fusion applications involve
non linear interaction of charge particle beams. As a
consequence, there is a need in finding mathematical
models which can be used for numerical simulations.

Quite complete mathematical models to solve these
problems are based on the time-dependent Vlasov-
Maxwell system of equations, sometimes under the
relativistic assumption. Indeed, there exists a strong
correlation between the Maxwell equations and
models that describe the motion of particles. This
correlation is at the origin of most of the coupled
models, where the Maxwell equations (or any kind
of equations approximating them) appear in parallel
with (and depending on) other models of equations.

However, the numerical solution of the Vlasov-
Maxwell system requires an important computational
effort, and can be very expensive in terms of com-
putational cost. This point is particularly important
if the code has to be intensively used to analyse a
lot of experimental results. In such a situation, one
have to take into account the particularities of the
physical problem (geometries, physical properties,
etc.) to derivereducedmodels leading to cheaper
computations.

Deriving such realistic but rigourous mathematical
models is challenging. Moreover, efficient algorithms
are needed for instance in order to be able to select
between several issues in the design of devices,
especially to take into account the three-dimensional
effects.

In this paper, we propose two examples of such
problems, for which reduced models have been de-
rived leading to easier computations than the original
model. The outline of the paper is as follows. In the
next Section, we recall the Vlasov-Maxwell system of
equations, and the methods generally used to solve it.
In Section 3, we introduce two examples of reduced
models. The first is based on a low frequency assump-
tion, whereas the second is derived from a paraxial hy-
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pothesis. Numerical applications illustrate the possi-
bilities of this approach. Concluding remarks follow.

2 The Vlasov-Maxwell model
In this section, we recall the Vlasov-Maxwell sys-
tem of equations and briefly review the most popular
methods to solve it.

2.1 The Vlasov equation
Let us consider a population of charged particles, with
a massm and a chargeq, submitted to the electromag-
netic Lorentz force

F = q (E(x, t) + v(t)× B(x, t)) , (1)

that describes how the electromagnetic fieldE(x, t)
andB(x, t) acts on a particle with a velocityv(t).
Each particle is characterized by its positionx and its
velocity v in the so-called phase space(x,v). We
introduce the distribution functionf(x,v, t), which
can be defined as the average number of particles in a
volumedxdv of the phase space. Assuming that col-
lisions between particles can be neglected, the distri-
bution functionf(x,v, t) is solution to the following
transport equation, named the Vlasov equation

∂f

∂t
+v ·∇xf +

q

m
(E(x, t)+v×B(x, t)) ·∇vf = 0.

(2)

Remark 2.1 If collisions are not neglected, they in-
duce changes in the particle velocity. To model these
collisions, one usually introduces the collision opera-
tor Q(f), that can be linear, quadratic, etc., depend-
ing on the physics involved. The mathematical tools
as well as the numerical methods involved in that case
are fairly different from these we intend to use, and
then, handle the collisions is excluded from this re-
search proposal.

For the relativistic case, denote byp the momentum
andc the speed of the light, we introduce the distribu-
tion functionf(x,p, t) such that

p = γmv, with γm =
√
|p|2 + m2c2

c
,

then the relativistic Vlasov equation is obtained by
substituting the term1

m∇vf in Equation (2) by the
term∇pf .

Solving the time-dependent Vlasov equation in the
six-dimensional phase space(x,p) (or (x,v) in a

non-relativistic case) with a grid method (finite dif-
ference, finite volume or finite element method) is al-
most impossible, since we rapidly reach the limit in
memory available on a computer, leading then to an
intractable cpu time. For this reason, a well suited
method is the widely used particle method (see [5] or
[20] for a theoretical description). However, due to
the increase of the computer memory, especially when
using supercomputer or multiple processors (parallel
computers), grid methods are considered again for one
or two-dimensional Vlasov problems coupled with the
static Poisson equation.
Solving the Vlasov equation by means of a parti-
cle method consists in approximating the distribution
functionf(x,v, t) at any timet, by a linear combina-
tion of delta distributions in the phase space:

f(x,v, t) '
∑
k

wk δ(x− xk(t))δ(v − vk(t)) ,(3)

where each term of the sum can be identified with a
macro-particle, characterized by its weightwk, its po-
sition xk and its velocityvk. This distribution func-
tion is a solution of the Vlasov equation (2) if and only
if (xk,vk) is a solution to the differential system:

dxk

dt
= vk , (4)

dpk

dt
= F(xk,pk) , (5)

which describes the time evolution of a particlek, sub-
mitted to the electromagnetic Lorentz forceF (see
(1)). This system is generally solved by an explicit
time discretization scheme. A leapfrog scheme is
well-adapted in this case (see [3] for more details).

2.2 The Maxwell equations

The expressions of the charge and the current density
induced by the motion of these particles are given by

ρ(x, t) = q

∫
IR3

v

f(x,v, t) dp, (6)

J (x, t) = q

∫
IR3

v

f(x,v, t)v dp, (7)

that express the coupling of the Maxwell and Vlasov
equations. Indeedρ(x, t) andJ (x, t) appear as the
right-hand sides of the Maxwell equations (in the vac-
uum)

1
c2

∂E
∂t

−∇× B = −µ0J , (8)

∂B
∂t

+∇× E = 0 , (9)

∇ · E =
ρ

ε0
, (10)

∇ · B = 0 , (11)
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where the constantsε0, µ0 are respectively the dielec-
tric permittivity and the magnetic permeability in the
vacuum, that satisfiesε0µ0c

2 = 1.

The Vlasov and Maxwell equationsseparatelyare
linear hyperbolic systems, but the expression of the
Lorentz forceF in a way and those of the charge
and current densityρ and J in another way leads
to a strong coupling, that makes the whole problem
quadratic. Indeed, the term

F · ∇pf = q(E(x, t) + v × B(x, t)) · ∇pf

is a quadratic term sinceE andB depend on the dis-
tribution functionf in an affine way, throughρ andJ .

For computing the solution of Maxwell’s equations,
some of the numerical codes which are developed
are based on finite difference approximations of
Maxwell’s equations on structured meshes. These
are completely explicit, at least when the charge
conservation equation∂tρ+∇·J = 0 is numerically
verified. The first and probably most popular method
was introduced by Yee [24] in 1966, and is straight-
forward to implement in simple cases. However,
despite its simplicity and its efficiency, as soon as
the domain geometry becomes too complex, or when
local refinements are necessary, the structured mesh
strategy is not well adapted, and suffers from the
inaccurate representation of the solution on curved
boundaries.

An alternative is to use the flexibility of unstructured
meshes to approximate complex geometries and to
achieve local refinements. For the finite element
discretization, different formulations are available.
Examples are the edge elements [19], the vector
finite element method [22], or the Cartesian elements
eventually in a constrained form [2] . Other nodal
finite element techniques based on a least-squares
approach were also proposed. Concerning finite
volumes solvers, several kind have been developed
: Delaunay-Voronoi finite volume methods [17], or
other types of methods include traditional vertex
centered or cell centered [18] finite volume methods,
regarding the Maxwell equations as a first-order
strictly hyperbolic system.

From a mathematical point of view, the Cauchy
problem for the Vlasov-Maxwell sytem is quite
well understood. The existence of a weak solution
was proved by DiPerna-Lions [8]. For the Vlasov-
Maxwell system with boundary conditions, see
[13]. We also refer to [6] and [9] for a survey on
the existence of weak solutions. For the classical

solutions, Glassey et. al [11], [12] have shown that
the existence of a global solution depends only on the
control of high velocities. The local in time existence
and uniqueness of strong solutions was proved by
Degond [7].

From a numerical point of view, this model is very
complete but also not easy to solve numerically,
in particular in a three-dimensional domain. Even-
hougth this is necessary in several cases (see [2],
[3]), one easy understands the need of deriving
simpler (but accurate) models, by exploiting given
physical assumptions. Hence, in some cases, as-
suming that the problem is static allows to replaced
Maxwell’s equations by areduced modellike Pois-
son’s equation. Following this idea, one can obtain
a hierarchy of reduced models, like Vlasov-Poisson,
Vlasov-Darwin, paraxial models, gyrokinetic mod-
els, laser-plasma interaction models, etc...generally
obtained by exploiting specific geometries/properties
of the problem. Often, these models have been
derived by physicists in a formal way. We think
there is a need first to justify them, then to precise
how much accurate they are, finally to improve their
accuracy. An important part is also to obtain by
these techniques new approximate models, and to
develop new algorithms. To our opinion, this will be a
significant progress for improving the comprehension
of complex problems.

In what follows, taking into account the particularities
of the physical problems, we derive two such reduced
models leading to cheaper computations.

3 A low frequency reduced model

As a first example of reduced model, we consider
the modelling and the simulation of the multipaction
effect. This is an unwanted breakdown phenom-
enon, wich can occur in high power space compo-
nents. This can be schematized as follows: consider
for instance in a step waveguide (see Fig. 1) a free
electron accelerated by an applied electromagnetic
field. A secondary emission and the electron reflec-
tion result from the electron impact on the waveguide
wall. These two electrons may now be accelerated
across the waveguide if the applied field reverses at
the proper time, and strike an opposite waveguide wall
leading to new secondary and reflected electrons. This
process repeated many times can lead to an exponen-
tial growth of the charge density. In this case the com-
ponent can no more fulfill its function and may even
be destroyed. Obviously, this multipaction process
can occur under some conditions on the cycles of the
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applied field (to accelarate the electrons) and on the
energy of the incident electrons (to induce the number
of particles to increase). The aim of the modelling is
to determine, for a given waveguide and an applied
field, a threshold voltage above which multipaction
can occur. This quantity depends first on the compo-
nent parameters (the wall material, the profile of the
component, etc.), and also on the experimental condi-
tions, essentially the single or multicarrier analysis: in
the first case, the multipaction occurs when the mag-
nitude of the voltage is and remains at a constant level
above the multipaction threshold. In the second case,
the multipaction occurs every time that the peak volt-
age, obtained by combining all the carriers in phase, is
above the multipaction threshold. Therefore simula-
tions of this phenomenon requirea priori a Maxwell-
Vlasov solver.

Figure 1: step waveguide.

3.1 From Vlasov-Maxwell to Vlasov-Poisson
By using first the linearity of the Maxwell equations,
one can decompose the electric fieldE into two parts,
E = Eext + Es, whereEext is the applied field which
is external, andEs denotes the self-consistent field,
created by the electrons displacement. Remark then
that the external field is solution to the time-dependent
Maxwell equations, without any coupling with the
Vlasov equation. For the self-consistent fieldEs, us-
ing that the velocity of the extracted electronsvele
is very small compared to the light velocity of the
electromagnetic waves, one introduces a small para-

meterε =
vele

c
. Following [21], reduced models of

Maxwell’s equations can be derived after a scaling and
an asymptotic expansion of the solution in power of
this parameterε. There, it is proved that the quasi-
static Vlasov-Poisson model is a first order approxi-
mation of the Vlasov-Maxwell equations. Hence, one
assume thatEs can be accurately computed by solving
the Poisson problem

−∆φ =
ρ(t)
ε0

with Es = −∇φ , (12)

coupled with the Vlasov equation, and supplemented
with suitable boundary and initial conditions. The
main advantage of this model is that Equation (12) is
not explicitely time dependent, the densityρ(t) being
given at each timestep of the Vlasov equation solu-
tion. This avoids to use a time stepping method for
the self-consistent field, that is generally expensive in
terms of computing time.

Based on the above remarks, the methodology for the
numerical study of the multipaction effect can be di-
vided into three steps.

1. Computation of the overvoltage coefficient:
the propagation of an ingoing plane wave of am-
plitude E0 is computed with a time dependent
Maxwell solver to obtain the amplitudeEc of the
wave in the gap (see Fig. 1). Then, the overvolt-
age coefficientη is determined with

η =
|Ec|
|E0|

. (12)

Since the coefficientη depends only on the
geometry of the waveguide and on the frequency
of the ingoing wave, the computations are carried
out only once for each applied frequency.

2. Solving Vlasov-Poisson in a reduced domain:
Consider a given exterior field of the form

E(t) = E
i=n∑
i=1

cos(2πfit) . (13)

As n = 1 (respn > 1), it is a single carrier
(resp. multicarrier) simulation. In the computa-
tional domain restricted to the gap area, solve the
Vlasov-Poisson equations augmented with sec-
ondary emission laws to model the behaviour of
the extracted electrons (cf. [1]). From these
results, one deduces the multipaction threshold
voltage.

3. Determination of the mutipaction threshold:
from the amplitudeE used in the step 2 and
the valuesη of the step 1, on can easily deduce
the amplitudeE0 at the input of the component
corresponding to the multipaction threshold. Its
power is given by

P0 =

√
ω2

c2
− π2

L2

HL

2µ0ω
E2

0 ,

whereH andL denote the height and the trans-
verse dimension of the waveguide.
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Remark 3.1 The secondary emission laws used here
are essentially from [23] and [10]. We refer the in-
terested reader to these references for details. Let us
briefly recall some principles. The data needed to fully
describe the emitted electrons are the yield as a func-
tion of the incident electron energy and angle with re-
spect to the normal, and the energy and angular dis-
tribution of the emitted electrons. The total yield is
conventionally divided into two groups of electrons
according to their emission energy. The reason for
separating the yield into two parts is that these quan-
tities depend in different ways on the incident electron
energy and angle. In all these secondary emission
laws, two particles (the reflected and the secondary)
are created for each incident one, with or without any
multipaction effect. When there is no multipaction,
the number of particles grows each of them carries a
smaller weight, so that the total charge decreases.

3.2 Numerical illustration
Let us consider the two-dimensional domain depicted
in Fig. 1. The ingoing signal is a sum of three given
frequencies:f1 = 10.911 GHz, f2 = 11.075 GHz
andf3 = 11.158 GHz. The corresponding overvolt-
age coefficients we obtain areη1 = 9, η2 = 9.1 and
η3 = 9.2. The second step is a Vlasov-Poisson sim-
ulation in the gap area. The avalanche of electrons
occurs when the envelope of the applied voltage in
this gap area becomes greater than the multipaction
threshold. In such a multicarrier multipaction, the en-
velope of the applied voltage is obtained by combin-
ing all the carriers in phase. In this case, the multi-
paction effect is characterized by a periodic series of
charge density peaks corresponding to the voltage of
the envelope. In the numerical simulations, the charge
grows exponentially as a multipaction occurs during
an envelope peak, but decays again when the volt-
age falls below the threshold. In order to model the
presence of particles in the component, we have to in-
ject them with a well adapted numerical procedure. In
a multicarrier simulation, it is sufficient to seed the
component at regular time intervals. Examples are
shown on Fig. 2 and 3.

Remark 3.2 In a single carrier simulation, the
threshold is characterized by the exponentially grow-
ing charge density. In practice, one considers that the
threshold is reached as the particle density is about
102− 103 particles/m3. This corresponds to a thresh-
old voltage error of approximatively 1 V. Another dif-
ference with a multicarrier simulation is also on the
particle injection procedure. It is more efficient now
to seed the component at the initial time of the simu-
lation.

Figure 2:Ey component.

4 A highly relativistic reduced model

This second example is devoted to the case of high
energy short beams. The aim is to study the transport
of a bunch of highly relativistic charged particles in
the interior of a perfectly conducting tube. Follow-
ing [15], one can derive a reduced model which ex-
ploits the property that the particles of the beam re-
main close to an optical axis.

4.1 From Vlasov-Maxwell to a paraxial
model

Consider a beam of charged particles which moves in
the interior of a perfectly conducting hollow tube. We
choose the axis of the tube as thez−axis. Assum-
ing that the beam is a high energy short beam, Laval
et al. [15] have derived a reduced model in the fol-
lowing way. The high energy assumption means that
relativistic factorγ >> 1. Consequently, since the
particle velocityv is close toc for any particle in the
beam, one rewrites the Vlasov-Maxwell equations in
the beam frame, which moves along thez-axis with
the light velocityc. Hence, we set

ζ = ct− vz, vζ = c− vz .

According to [15], it is worthwhile to distinguish the
transverse quantities (denoted by⊥) from the longi-
tudinal ones. For the position and the velocity, we
introduce

x⊥ = (x, y), v⊥ = (vx, vy) .
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Figure 3: particle number.

For the differential operartors (ϕ is a scalar funtion)

grad⊥ϕ = (
∂ϕ

∂x
,
∂ϕ

∂y
), curl⊥ϕ = (

∂ϕ

∂y
,−∂ϕ

∂x
) ,

and for a transverse vector fieldA⊥ = (Ax, Ay),

div⊥A⊥ =
∂Ax

∂x
+

∂Ay

∂y
,

curl ⊥A =
∂Ay

∂x
− ∂Ax

∂y
,

divv⊥A =
∂Ax

∂vx
+

∂Ay

∂vy
.

With the above notations, Vlasov equation (2) in the
beam frame can be written

∂f

∂t
+ v⊥ · grad⊥f + vζ

∂f

∂ζ
+

+divv⊥ [
1

γm
((I− 1

c2
v ⊗ v) · F⊥ −

1
c
(1− vζ

c
)v⊥Fz)f ] +

∂

∂vζ
[

1
γmc

((1− vζ

c
)v⊥ · F⊥ + (2− vζ

c
)vζFz)f) = 0 ,

where

γ = (2vζ/c− 1/c2(v2
⊥ + v2

ζ ))
−1/2 .

Next, Ampere and Poisson equations (8-10) give

1
c2

∂E⊥
∂t

− curl⊥Bz +
1
c

∂K⊥
∂ζ

= −µ0J⊥,(13)

1
c2

∂Ez

∂t
+

1
c
div⊥K⊥ = −µ0Jζ , (14)

div⊥E⊥ −
∂Ez

∂ζ
=

1
ε0

ρ, (15)

with K⊥ = (Kx = Ex − cBy,Ky = Ey + cBx), and
Jζ = ρc− Jz.

Similarly, equations (9-11) are equivalently written in
the beam frame as

∂B⊥
∂t

+ curl⊥Ez +
∂

∂ζ
(E⊥ × ez) = 0, (16)

∂Bz

∂t
+ curl ⊥K⊥ = 0, (17)

div⊥B⊥ −
∂Bz

∂ζ
= 0 , (18)

whereas the electromagnetic forceF becomes

F⊥ = q(K⊥ + v⊥ × ez)Bz + vζ(B⊥ × ez) ,

Fz = q(Ez + v⊥ · (B⊥ × ez) .

The treatment of the boundary conditions can be
handled in the same way. We refer the reader to [15]
for details.

Now, to derive a paraxial model, one then introduces a
scaling of the equations. The central assumptions are

• First exploiting the short beams assumption, i.e.
the dimensions of the beam are small compared
to the longitudinal length of the device.

• Moreover, one assumes that the longitudinal par-
ticle velocitiesvz are close to the light velocity
c.

• Finally, the transverse particle velocities are
small compared to c.

Hence one introduces the transverse characteristic ve-
locity of the particlesv, and define a small parameter
η, η = v

c � 1 .
Using that the particle velocities are close toc, we

conclude thatvζ is of the orderv2/c and one choose

w = η2c (19)

as a characteristic longitudinal velocity of the par-
ticles in the beam frame. Finally, the characteristic
time can be taken asT = l/v, wherel denotes the
characteristic dimension of the beam. Then, defining
dimensionless independent variables, one thus obtains
a Vlasov-Maxwell system of equations expressed in
dimensionless variables, where appear powers of the
small parameterη.

The next step consists in developing asymptotic ex-
pansions of all these quantitites (f, E ,B,F, etc.) in
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powers of the small parameterη, as

f = f0 + ηf1 + ...,

E = E0 + ηE1 + ...,

F = F0 + ηF1 + ...

It is proved in [15] that the resulting paraxial model,
obtained by retaining the first four terms in the
asymptotic expansion, is an approximation exact up
to the order 3 inη.

In this paper, we consider the axisymmetric coun-
terpart. Using the coordinates(r, θ, ζ) (with ob-
vious notations), the electric field is now denoted
(Er, Eθ, Ez), the magnetic one(Br, Bθ, Bz). One
thus obtains that the electromagnetic forceF is en-
tirely determined by the transverse fields, which are
zero order fields, the longitudinal ones, that are first
order fields, and the so-called pseudo-fieldsEr =
Er − cBθ and Eθ = Eθ + cBr, which are second
order corrections. Hence, the paraxial model of ultra-
relativistic Maxwell equations is written:
For the zero order fields:

Er = cBθ =
1

ε0 r

∫ r

0
ρs ds

Eθ = Br = 0

(20)

For the first order fields:
∂Ez

∂r
=

∂Bθ

∂t

Ez(r = R) = 0

and


∂Bz

∂r
= µ0Jθ

∫ R
0 Bzrdr = 0

(21)
For the second order pseudo-fieldsKr andKθ:

Kr =
1
r

∫ r

0
(µ0cJζ −

1
c

∂Ez

∂t
)s ds

Kθ = −1
r

∫ r

0

∂Bz

∂t
s ds,

(22)

whereJζ is defined byJζ = ρc− Jz = q
∫

vζfdv.

We approximate these equations with specific numer-
ical schemes based on a finite-difference approach.
The order of the computations is induced by the
asymptotic expansion. Hence, the zero order fields
Er, Bθ have to be first computed, and are necessary
to obtain the first order quantitiesEz. Similarly, the
computation of the second order pseudo-fieldsKr and
Kθ requires the first order approximate fieldsEz and
Bz. Note that the longitudinal magnetic component
Bz only depends on the azimuthal current density

Jθ. In particular,Bz is identically zero as soon asJθ

vanishes.

As we are working in the beam frame, the particles
drift slowly in the directionζ > 0. As a consequence,
the computational domain is defined as a simple
rectangular domain in variables(r, ζ), 0 ≤ r ≤ R,
0 ≤ ζ ≤ Z. The value ofR is given by the radius
of the cylindrical tube, andZ is chosen in such a
way that the particles remain in a fixed geometrical
domain Ω×]0, Z[ (in the beam frame), during the
time interval[0, T ] of the simulation.

As an example, we give here the numerical scheme
for Er (or equivalentlyBθ). For a given or computed
charge density, equation (20) can be solved by sim-
ple numerical integration methods. For instance, con-
sider a classical 2-point Newton-Cotes formula, which
is exact for the first-order degree polynoms. We thus
obtain forEn+1

r (the same forBn+1
θ )

En+1
r,i,j =

1
riε0

∆r

2
[ρn+1

1,j r1 + 2ρn+1
2,j r2 + ... + ρn+1

i,j ri]

(23)
Similar numerical schemes can be derived for the
other components. More details can be found in [4].

4.2 A numerical example
As we are working in the beam frame, the computa-
tional domain is the rectangle]0, R[×]0, Z[ in vari-
ables(r, ζ). The mesh sizes∆r, ∆ζ are chosen such
that R/∆r = Z/∆ζ = 0.01. The time step∆t is
taken in order to comply with the CFL stability con-
dition. As a numerical example, consider a bunch of
particles emitted with velocities such that the paraxial
assumptions are verified. According to stability con-
dition [5], more than 10 particles are placed in each
cell, with the same weight and a charge following

w =
J∆t

Ne
,

whereJ is the total current to be emitted, andN the
particle number. Fig. 4 and 5 show respectively the
self-consistent electric radial and longitudinal field
Er, Ez obtained after 50 time steps of simulation with
the resulting PIC paraxial code. The corresponding
charge densityρ, computed with the Vlasov part of
the code, is depicted on Fig. 6.

From a physical point of view this problem can be
compared with the following ”analytical” problem.
Consider the same problem where the charge and cur-
rent densities(ρ,J) are known functions which verify

rρ(r, ζ, t) = qwK(r, ζ − υt) ,
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Figure 4:Er component (50∆t).

Figure 5:Ez component (50∆t).

and

rJθ(ζ, t) = −qw/υK(r, ζ − υt) ,

rJζ(ζ, t) = qwυK(r, ζ − υt) .

AboveK(r, ζ) is a given piecewise linear continuous
function, constant forζ ∈ [b1, b2], and equal to zero
outside[a1, a2] (with 0 < a1 < b1 < b2 < a2 < Z.
This case is of interest, because an analytic expression
of the solutions can be easily calculated. Moreover,υ
is a given drift velocity along theζ-axis, chosen to
design a hypothetical Vlasov solver. This problem ex-
hibits a behavior close to the real Vlasov solver. As
an example, result for theEr component is shown on
Fig. 7. One can observe a good agreement between
the real and the hypothetical Vlasov solver. The dif-
ference observed is a direct consequence of coupling
between finite-difference methods and particle-in-cell
ones. Interaction between particles causes the shape
to be more complicated than a simple flat ”hat” as in
the hypothetical Vlasov example.

5 Conclusion
In this paper, we are concerned with the development
of numerical methods required for solving particle

Figure 6: charge densityρ (50∆t).

Figure 7:Er component, hypothetical Vlasov solver.

beams and plasma physics problems. Exploiting the
particularities of the physical problem, we proposed
to develop reduced models. We hope this approach
to be very powerfull in its ability to get accurate, but
fast and easy to implement algorithms. As a first ex-
ample we proposed a numerical methodology to study
the multipaction effect, that significantly improved the
computational time of the simulations. In the second
example, a PIC method for solving a paraxial model
of highly relativistic beam has been developed. Nu-
merical results were presented to illustrate the possi-
bilities these models.
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and J. Segŕe, On a finite element method for
solving the three dimensional Maxwell equa-
tions, J. Comput. Physics, 109(2), 1993, 222-
237.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 2, 2008 55



[3] F. Assous, P. Degond, and J. Segré, A particle-
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