Application of the Hotelling's and F statistical for the determination of defects in the dental enamel

Cortez José Italo, González Flores Marcos, Perea González Gloria Patricia, Vega Galina Victor Javier, Cortez Liliana, Cortez Ernest Italovich.

Abstract—The present work presents the experiment that was made to verify and to corroborate the physical changes in the dental enamel. The data were obtained in voltage terms in four stages: without treatment, dental paste, acid engraver and adhesive. The covariance matrices of the samples were then compared with each other to obtain an estimation of every pair of matrices. The inverse estimated matrix was obtained, and finally the Hottelling's statistical was calculated for the multivaried case. We show that the selected treatments have differences in their averages. This allows us to conclude that there are physical changes in the dental enamel.

Keywords—rugosity of the dental enamel, multivariate data analysis, covariance, Hottelling's and F statistical, inverse matrix, data matrix.

I. INTRODUCTION

N the "Development of prototypes for the detection of defects in materials", instrumentation for the diagnosis of physical defects in dental enamel is being developed [1], which consists of a system with the following devices: 1.- data acquisition card based on the 8032 microcontroller, 2.- a sending- receiving infrared spectrum tract, 3.- a mechanism for the positioning and scanning of the dental samples studied, 4.- computer for the storage and processing of the data acquired from the surface of the tooth enamel, 5.- design and implementation of software for the processing of the data acquired, [2,3].

Manuscript received February 5, 2007; Revised received April 8, 2007.

This work was supported by the DAGU

(Dirección de Atención y Gestión Universitaria)

J.I.C. Author is with the Faculty of Computing Science of the Autonomous University of Puebla, Mexico. (corresponding author to provide phone: 52-222-229-5500 ext.7205; e-mail: jitalo@siu.buap.mx).

C.L. S. B. Author is with Faculty of Sciences of the Electronics of the University Autonomous of Puebla, Mexico. (corresponding author to provide phone: 52-222-259-5500 ext.7405; e-mail: lcortez@ece.buap.mx).

F.G.M Author is with Faculty of Computing Science of the Autonomous University of Puebla, Mexico. (corresponding author to provide phone: 52-222-229-5500 ext.7405; e-mail: mgonzalez@cs.buap.mx).

P.G.G.P. Author is with Faculty of Odontology of the Autonomous University of Puebla, Mexico. (corresponding author to provide phone: 52-222-229-5500 ext.640005; e-mail:pattypere@hotmail.com).

V.G.J. Author is with Faculty of Odontology of the Autonomous University of Puebla, Mexico. (corresponding author to provide phone: 52-222-25500 ext.640005; e-mail:vega40@hotmail.com).

C.E.I. Faculty of Electronic Sciences of the Autonomous University of Puebles Megicy of mail it it hop in the mail and the

The data acquired are subjected to a multivariate statistical processing, which consists of proving the hypothesis that the mean vectors of the 2 samples are equal $H_o: \mu_1 = \mu_2$; that is, that there are no changes between one treatment and the other, contrary to that there are, that is to say $H_1: \mu_1 \neq \mu_2$ this will allow the determination if there are differences in the mean vectors of the samples coming from an orthodontic treatment, which will be used for the Hottelling's statistical test for the multivariate case.

The Hottelling's test T^2 is a generalization of the statistic t (1):

For the general case, p variables will be had, which are $x_1, x_2, x_3, \dots, x_p$ and 2 samples with sizes n_1 and n_2 . Therefore, there will be 2 vectors of sampling means x_1 and x_2 which are calculated using (2) and (3).

$$\bar{x}_{j} = \sum_{i=1}^{n} x_{ij} n$$
 (2)

$$\bar{x} = \begin{bmatrix} -x_1 \\ -x_2 \\ \vdots \\ -x_p \end{bmatrix}$$
(3)

Also, 2 covariance matrices will be used, C_1 and C_2 where each one will be calculated using the formulas (4), (5) and (6).

$$s_{j}^{2} = \sum_{i=1}^{n} \frac{\left(x_{ij} - \bar{x}_{j}\right)^{2}}{(n-1)}$$
(4)

$$c_{jk} = \sum \left(\bar{x_{ij} - x_j} \right) \left(\bar{x_{ik} - x_k} \right) / (n-1)$$
(5)

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{ip} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ c_{p1} & c_{p2} & \cdots & c_{pp} \end{bmatrix}$$
(6)

An estimation of the covariance matrix of the population is obtained by (7):

$$C = \{(n_1 - 1)C_1 + (n_2 - 1)C_2\}/(n_1 + n_2 - 2)$$
(7)

Therefore, the statistic defined by the Hottelling test T^2 is:

. 1

$$T^{2} = n_{1}n_{2}\left(\bar{x}_{1} - \bar{x}_{2}\right)'C^{-1}\left(\bar{x}_{1} - \bar{x}_{2}\right) / (n_{1} + n_{2})$$
(8)

A significantly large value for this statistic will be evidence that the mean vectors are different for the 2 sampling populations. The significance or lack of significance of T^2 is simply determined by transforming the statistic of the formula (8) into (9).

$$F = (n_1 + n_2 - p - 1)^2 T^2 / \{ (n_1 + n_2 - 2)p \},$$
(9)

which distribution F with has а p and $(n_1 + n_2 - p - 1)$ degrees of freedom.

Given that T^2 is a quadratic form can be rewritten as shown in (10).

$$T^{2} = \frac{n_{1}n_{2}}{n_{1} + n_{2}} \sum_{i=1}^{p} \sum_{k=1}^{p} \left(\bar{x}_{1i} - \bar{x}_{2i} \right) c^{ik} \left(\bar{x}_{1k} - \bar{x}_{2k} \right).$$
(10)

Where x_{il} is the mean of the variable x_i in the *l*-th sample and c^{ik} is the element in the *i*-th row and *k*-th column of the inverse matrix C^{-1} [4, 5].

The program was developed in pascal language, due to the facility with which the matrices can be handled; first the inverse of a covariance matrix is obtained which is calculated using matlab. This matrix is imported to the program that will use it to calculate the Hottelling statistic [6].

II. DESCRIPTION OF THE PROBLEM

During the orthodontic treatment, physical changes are produced in the structure of the tooth enamel, which continues to be subject of study since it may be the cause of possible afflictions in the dental organs.

The test of significance with multivariate data will allow comparison of the mean of 2 samples to know if there are differences in them, for which we will only analyze one zone of the tooth.

III. EXPERIMENT

The measurement of the rugosity is done carrying out a scanning of the surface of the tooth enamel with intervals of 50 micras to an entire tooth, which generated a data matrix of 75x40 (the decision was made to analyze a third of the dental organ, the region to research was limited to a square shape due to the irregular surface of the tooth) which represents the population of said tooth. Each column of the matrix is represented by a variable of said matrix. Four different measurements were carried out generating 4 files (data matrices) corresponding to each of the stages of the orthodontic treatment. In the first stage, the tooth is washed with running water. In the second stage, the tooth was cleaned using a low speed motor with a cup brush, using Oral-B prophylactic paste during 15 seconds in order to eliminate any residue adhered to the tooth surface. It was then washed with running water and the tooth surface was dried with a stream of air. The third stage consists of applying phosphoric acid at 37% during 60 seconds in order to create micro pores (demineralization) on the enamel surface, and in the fourth stage the adhesive was applied and it was photophlymerized during 20 seconds. The significance test was applied to each sample taking them in 2's.

IV. DEVELOPMENT

Once the data acquisition stage had been carried out, we proceeded to identify the zone of the tooth to analyze to carry out the significance tests. The criteria used are the same the orthodontist uses for the placement of braces, which consists of dividing the tooth in 3 parts: mesial third, middle third, and distal third [7]. To determine which variables represent each third, 75 was divided by 3, given that the population was of 75x40 for each stage, which leads to assigning 25 variables for each third. The development of the research was concrete to compare the middle third, since it is the position in which the brace is placed. The variables $x_1...x_{25}$ are those which

are used for said tests.

Next, the algorhythms to calculate the mean vector, variance vector, and covariance matrix are presented.

Input n,p,A(i,j)

```
for i=1 to p
     sum \leftarrow 0
      for j=1 to n do
         sum \leftarrow sum + A(i,j)
         x(i) \leftarrow sum/n
```

Output x(i)

Input A(i,j),n,p,x(i)

for i=1 to p do
sum
$$\leftarrow 0$$

for j=1 to n do
sum \leftarrow sum + $\sqrt{a(i, j) - x(i)}$

 $s \leftarrow sum / (n-1)$ output: s(i)

where n is the size of the sample, p number of variables and A(i,j) the data matrix.

Input: A(i,j),p,n,x(i)

for j=1 to p do for j=1 to p do sum $\leftarrow 0$ for i=to n do sum \leftarrow sum+(A(i,j)- x(i))*(A(i,k)-x(k)) Cov(j,k) \leftarrow sum/(n-1) Output: Cov(i,j)

The algorithms used to calculate the statistic T^2 and the statistic *F* are [4]:

```
Input : n_1, n_2, (x_i), p, (a_{ij}^{-1})

T_1 \leftarrow 0.0

for i = 1, 2, ..., p do

for k = 1, 2, ..., p do

T_1 \leftarrow T_1 + ((x_{1i} - x_{2i}) * a^{ik} * (x_{1k} - x_{2k}))

T \leftarrow (n_1 * n_2) / (n_1 + n_2) * T_1

Output : T (Statistic T)
```

```
Input: n_1, n_2, T, p

F \leftarrow ((n_1 + n_2 - p - 1)^2 * T)/((n_1 + n_2 - 2) * p)

Output: F (Statistic F).
```

where: n_1 y n_2 are the size of the sample	
x(i) the mean vectors	
p the number of variables	
a_i^{-1} the inverse matrix of the covariance	ce .

V. RESULTS

The experiment carried out allowed corroboration that the orthodontic treatment generates physical changes in the tooth enamel, so that the 4 different structures of data obtained by the orthodontic treatment are applied [8], which are: sample without treatment, samples with application of toothpaste, with application of etching acid and finally with application of an adhesive, which were compared in 2's; that is, the sample without treatment with application of tooth paste, sample without treatment with application of etching acid, sample without treatment with application of adhesive, sample of application of prophylactic paste with etching acid, sample of application of toothpaste with adhesive and finally application of etching acid with adhesive were compared. The first phase consisted of calculating the covariance matrices of each sample with its corresponding mean vectors using the software created for this test, results of which are seen in Table 1 and 2.

After carrying out the calculation of the covariance matrixes and mean vectors of the samples, we proceeded to calculate an estimation of the covariance matrix, for which the formula was used (7) and the inverse matrix was calculated using matlab [9] with the instruction "inv", generating a file which will save the calculation of said matrix. All this for the sample without treatment and application of toothpaste (graph 1), sample without treatment and application of etching acid (graph 2), sample without treatment and application of adhesive (graph 3), sample of toothpaste with application of etching acid (graph 4), sample of toothpaste with application of adhesive (graph 5) and sample of application of etching acid with adhesive (graph 6).

Finally, it is shown that the tests of hypothesis applied to the surface of the tooth enamel show the rejection that the mean vectors are equal, which is information that allows one to conclude that there are physical changes in the tooth enamel in each stage of the orthodontic treatment. In the next table I we show the estimated matrix of the sample without treatment with application of toothpaste.

Table I (a)
Estimated matrix (column 1 to 5)

Symbol	Quantity							
X_1	0.3587	0.0475	-0.0288	0.0079	0.0617			
\mathbf{X}_2	0.0475	0.1048	0.0059	0.0228	0.0035			
X ₃	-0.0288	0.0059	0.1089	-0.0023	-0.0042			
X_4	0.0079	0.0228	-0.0023	0.1644	0.0205			
X_5	0.0617	0.0035	-0.0042	0.0205	0.0860			
X_6	-0.0110	0.0005	-0.0022	-0.0084	0.0012			
X_7	-0.0024	-0.0058	-0.0061	0.0388	0.0145			
X_8	0.0031	-0.0095	0.0020	0.0031	-0.0121			
X ₉	0.0111	-0.0044	0.0067	0.0159	-0.0091			
X_{10}	0.0166	0.0002	-0.0093	0.0047	0.0135			
X_{11}	0.0447	0.0016	0.0100	0.0082	0.0052			
X_{12}	0.0185	0.0101	-0.0107	-0.0007	0.0050			
X ₁₃	0.0270	-0.0045	-0.0051	0.0166	-0.0063			
X_{14}	0.0599	0.0053	-0.0123	0.0207	0.0123			
X15	0.0100	-0.0076	-0.0057	0.0276	0.0197			
X ₁₆	0.0249	0.0085	0.0092	0.0324	0.0177			
X ₁₇	0.0004	-0.0034	-0.0054	0.0160	0.0047			
X_{18}	0.0268	0.0007	-0.0044	0.0367	0.0157			
X ₁₉	0.0270	-0.0026	0.0106	0.0161	0.0076			
X_{20}	0.0939	0.0036	0.0022	0.0063	0.0150			
X_{21}	0.0328	0.0036	0.0019	0.0492	0.0260			
X_{22}	0.0457	0.0070	0.0037	0.0203	0.0163			
X ₂₃	0.0550	0.0121	0.0122	0.0338	0.0372			
X ₂₄	0.0325	0.0020	0	0.0234	0.0146			
X ₂₅	0.0319	-0.0056	-0.0017	0.0268	0.0166			

Table I (b) Estimated matrix (column 6 to 10)

Symbol	Quantity						
X ₁	-0.0110	-0.0024	0.0031	0.0111	0.0166		
X ₂	0.0005	-0.0058	-0.0095	-0.0044	0.0002		

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

X₂₅

 X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} X₁₁ X₁₂ X₁₃

 X_{21} X₂₂ X₂₃ X₂₄ X₂₅

0.0176	0.0025	0.0440	0.0567	0.0317
0.0170	0.0023	0.0440	0.0307	0.0517

X ₃	-0.0022	-0.0061	0.0020	0.0067	-0.0093
X_4	-0.0084	0.0388	0.0031	0.0159	0.0047
X5	0.0012	0.0145	-0.0121	-0.0091	0.0135
X_6	0.0760	-0.0032	0.0028	0.0098	0.0039
X_7	-0.0032	0.0901	-0.0060	-0.0071	0.0090
X_8	0.0028	-0.0060	0.0755	0.0554	0.0011
X_9	0.0098	-0.0071	0.0554	0.0738	0.0071
\mathbf{X}_{10}	0.0039	0.0090	0.0011	0.0071	0.0839
X ₁₁	0.0033	0.0086	0.0060	0.0118	0.0176
X ₁₂	-0.0046	0.0048	0.0001	0.0044	0.0046
X ₁₃	0.0122	0.0146	0.0170	0.0225	0.0244
X_{14}	-0.0190	0.0314	-0.0041	0.0033	0.0289
X ₁₅	0.0061	0.0291	0.0074	0.0082	0.0109
X_{16}	0.0027	0.0285	-0.0005	0.0089	0.0163
X ₁₇	0.0019	0.0194	0.0060	0.0018	0.0023
X_{18}	0.0077	0.0304	0	0.0114	0.0105
X19	0.0056	0.0076	0.0094	0.0202	0.0101
X_{20}	0.0063	0.0115	0.0127	0.0209	0.0225
X_{21}	0.0032	0.0375	0.0090	0.0205	0.0354
X_{22}	0.0026	0.0209	-0.0020	0.0127	0.0158
X ₂₃	0.0139	0.0286	-0.0033	0.0180	0.0167
X_{24}	-0.0005	0.0282	0.0002	0.0095	0.0229
X ₂₅	0.0049	0.0260	0.0017	0.0081	0.0200

Table I (c) Estimated matrix (column 11 to 15)

Symbol	Quantity								
X ₁	0.0447	0.0185	0.0270	0.0599	0.0100				
X_2	0.0016	0.0101	-0.0045	0.0053	-0.0076				
X ₃	0.0100	-0.0107	-0.0051	-0.0123	-0.0057				
X_4	0.0082	-0.0007	0.0166	0.0207	0.0276				
X5	0.0052	0.0050	-0.0063	0.0123	0.0197				
X_6	0.0033	-0.0046	0.0122	-0.0190	0.0061				
X ₇	0.0086	0.0048	0.0146	0.0314	0.0291				
X_8	0.0060	0.0001	0.0170	-0.0041	0.0074				
X_9	0.0118	0.0044	0.0225	0.0033	0.0082				
X_{10}	0.0176	0.0046	0.0244	0.0289	0.0109				
X ₁₁	0.0726	0.0025	0.0240	0.0233	0.0167				
X ₁₂	0.0025	0.0359	0.0076	0.0083	0.0061				
X ₁₃	0.0240	0.0076	0.1066	0.0378	0.0272				
X ₁₄	0.0233	0.0083	0.0378	0.1179	0.0258				
X ₁₅	0.0167	0.0061	0.0272	0.0258	0.0514				
X ₁₆	0.0240	-0.0045	0.0266	0.0492	0.0266				
X ₁₇	0.0030	0.0039	0.0184	0.0277	0.0207				
X ₁₈	0.0169	0.0060	0.0268	0.0323	0.0284				
X19	0.0267	0.0057	0.0268	0.0274	0.0187				
X_{20}	0.0441	0.0093	0.0492	0.0512	0.0383				
X ₂₁	0.0345	0.0151	0.0486	0.0591	0.0511				
X ₂₂	0.0230	0.0046	0.0192	0.0341	0.0202				
X ₂₃	0.0223	0.0047	0.0149	0.0419	0.0316				
X ₂₄	0.0264	0.0017	0.0321	0.0445	0.0281				

	Table I (d)								
	Esti	Estimated matrix (column 16 to 20)							
Symbol	Quantity								
X_1	0.0249	0.0004	0.0268	0.0270	0.0939				
\mathbf{X}_2	0.0085	-0.0034	0.0007	-0.0026	0.0036				
X_3	0.0092	-0.0054	-0.0044	0.0106	0.0022				
X_4	0.0324	0.0160	0.0367	0.0161	0.0063				
X5	0.0177	0.0047	0.0157	0.0076	0.0150				
X ₆	0.0027	0.0019	0.0077	0.0056	0.0063				
X ₇	0.0285	0.0194	0.0304	0.0076	0.0115				
X ₈	-0.0005	0.0060	0	0.0094	0.0127				
X ₉	0.0089	0.0018	0.0114	0.0202	0.0209				
X_{10}	0.0163	0.0023	0.0105	0.0101	0.0225				
X ₁₁	0.0240	0.0030	0.0169	0.0267	0.0441				
X ₁₂	-0.0045	0.0039	0.0060	0.0057	0.0093				
X ₁₃	0.0266	0.0184	0.0268	0.0268	0.0492				
X_{14}	0.0492	0.0277	0.0323	0.0274	0.0512				
X15	0.0266	0.0207	0.0284	0.0187	0.0383				
X16	0.0740	0.0064	0.0342	0.0244	0.0304				
X17	0.0064	0.0426	0.0180	0.0072	0.0231				
X ₁₈	0.0342	0.0180	0.0664	0.0216	0.0287				
X19	0.0244	0.0072	0.0216	0.0365	0.0383				
X_{20}	0.0304	0.0231	0.0287	0.0383	0.1008				
X ₂₁	0.0468	0.0345	0.0577	0.0365	0.0689				
X ₂₂	0.0305	0.0050	0.0241	0.0239	0.0412				
X ₂₃	0.0570	0.0125	0.0457	0.0279	0.0517				
X ₂₄	0.0420	0.0141	0.0357	0.0230	0.0419				
X ₂₅	0.0386	0.0214	0.0341	0.0245	0.0457				

Table I (e) Estimated matrix (column 21 to 25)

	Lou	matea n	nutin (conumn	21 to 25)				
Symbol	Quantity								
X_1	0.0328	0.0457	0.0550	0.0325	0.0319				
X_2	0.0036	0.0070	0.0121	0.0020	-0.0056				
X ₃	0.0019	0.0037	0.0122	0	-0.0017				
X_4	0.0492	0.0203	0.0338	0.0234	0.0268				
X5	0.0260	0.0163	0.0372	0.0146	0.0166				
X_6	0.0032	0.0026	0.0139	-0.0005	0.0049				
X_7	0.0375	0.0209	0.0286	0.0282	0.0260				
X_8	0.0090	-0.0020	-0.0033	0.0002	0.0017				
X_9	0.0205	0.0127	0.0180	0.0095	0.0081				
X_{10}	0.0354	0.0158	0.0167	0.0229	0.0200				
X_{11}	0.0345	0.0230	0.0223	0.0264	0.0176				
X ₁₂	0.0151	0.0046	0.0047	0.0017	0.0025				
X ₁₃	0.0486	0.0192	0.0149	0.0321	0.0440				
X_{14}	0.0591	0.0341	0.0419	0.0445	0.0567				
X ₁₅	0.0511	0.0202	0.0316	0.0281	0.0317				

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

 $egin{array}{c} X_3 & X_4 & X_5 & X_6 & X_7 & X_8 & X_9 & X_{10} & X_{11} & X_{12} & X_{13} & X_{14} & X_{14}$

X₁₅

 $egin{array}{c} X_{16} \ X_{17} \ X_{18} \end{array}$

X19

 $\begin{array}{c} X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ X_{25} \end{array}$

X_{16}	0.0468	0.0305	0.0570	0.0420	0.0386
X ₁₇	0.0345	0.0050	0.0125	0.0141	0.0214
X ₁₈	0.0577	0.0241	0.0457	0.0357	0.0341
X19	0.0365	0.0239	0.0279	0.0230	0.0245
X_{20}	0.0689	0.0412	0.0517	0.0419	0.0457
X ₂₁	0.1227	0.0417	0.0619	0.0546	0.0482
X ₂₂	0.0417	0.0390	0.0433	0.0312	0.0275
X ₂₃	0.0619	0.0433	0.1006	0.0500	0.0463
X ₂₄	0.0546	0.0312	0.0500	0.0529	0.0368
X ₂₅	0.0482	0.0275	0.0463	0.0368	0.0628

The inverse matrix (table I) was then calculated using matlab and the next matrix was obtained (table II):

Table II (a) Inverse matrix (column 1 to 5)

Symbol	Quantity								
X ₁	6.3329	-1.7606	1.4440	-0.5754	-4.7338				
X_2	-1.7606	12.8041	-1.7302	-2.9728	1.5115				
X ₃	1.4440	-1.7302	12.0384	1.1403	-0.0222				
X_4	-0.5754	-2.9728	1.1403	9.6909	-0.3162				
X ₅	-4.7338	1.5115	-0.0222	-0.3162	20.0244				
X_6	0.6989	-1.8595	2.4868	2.7431	0.5063				
X_7	0.3427	2.0841	-0.5700	-2.2019	0.6428				
X_8	-1.6118	-0.0649	0.3839	2.0341	-0.0189				
X_9	0.5914	1.9836	-0.3588	-3.6262	4.6339				
X ₁₀	0.6803	-0.1327	1.2720	0.6373	-2.9058				
X_{11}	-0.9718	0.4082	-1.5629	-0.5265	0.6460				
X ₁₂	-1.0855	-5.2268	4.2650	3.7304	0.1012				
X ₁₃	-0.6719	-0.3293	-0.0662	-0.1907	1.9761				
X_{14}	-2.2309	-0.9588	2.8155	2.4228	2.5231				
X15	3.9908	2.1778	3.2309	-2.3509	-8.1031				
X ₁₆	0.3919	-3.0691	-0.9166	-0.4938	1.0480				
X ₁₇	2.1012	-0.9979	-0.1300	-1.7257	-1.2252				
X_{18}	-3.3913	0.7230	2.3043	-0.3953	3.2427				
X ₁₉	2.6870	4.8782	-6.5323	-3.2691	-3.8731				
X_{20}	-8.3767	-0.2747	0.0554	5.8227	8.2898				
X_{21}	3.6855	0.0373	-2.0960	-3.7562	-3.4075				
X_{22}	-2.1331	-2.9195	0.8359	-1.2484	-1.2757				
X ₂₃	0.0616	-1.0138	-3.4103	-0.1859	-7.7510				
X ₂₄	0.6672	-0.0845	2.9404	2.6693	3.7331				
X ₂₅	2.1035	4.1970	-1.3297	-3.8078	-2.1622				

Table II (b) Inverse matrix (column 6 to 10)						
Symbol	Quantity					
X ₁	0.6989 0.3427 -1.6118 0.5914 0.6803	_				
X_2	-1.8595 2.0841 -0.0649 1.9836 -0.1327					

2.4868	-0.5700	0.3839	-0.3588	1.2720
2.7431	-2.2019	2.0341	-3.6262	0.6373
0.5063	0.6428	-0.0189	4.6339	-2.9058
18.1568	-0.0998	2.2806	-2.3928	-1.7872
-0.0998	19.4798	-3.5185	5.9952	-0.0724
2.2806	-3.5185	39.4906	-33.6955	0.6542
-2.3928	5.9952	-33.6955	48.0669	-2.0136
-1.7872	-0.0724	0.6542	-2.0136	16.5660
-1.1297	-0.9601	-0.2527	1.0830	-1.9900
4.6982	-3.5114	3.4518	-3.6549	-0.2964
-3.1086	-0.5477	1.8062	-4.9974	-1.0838
6.0747	-1.0516	3.2216	-1.7340	-2.1833
-1.7896	-6.2669	-3.9585	1.7652	3.1705
-0.0256	-1.4924	-4.5816	5.4166	1.2218
-3.3343	-5.6317	-3.6789	2.3515	4.8012
-1.6399	-3.0218	4.0433	-3.0156	3.3652
-4.2693	5.9217	1.8519	-11.2018	3.8088
1.2894	5.9034	-3.6709	4.9466	0.4247
0.6946	2.0337	-2.4446	1.6881	-5.7932
-0.4602	-13.6672	15.8727	-15.8217	-0.4281
-5.9442	0.4265	7.1110	-12.0547	2.5388
7.2922	-3.3786	-0.9470	3.7284	-5.4216
-2.0436	0.9199	-3.8739	7.8782	-3.0618

Table II (c) Inverse matrix (column 11 to 15)

Symbol	Quantity			
X_1	-0.9718 -1.0855 -0.6719 -2.2309 3.9908			
X_2	0.4082 -5.2268 -0.3293 -0.9588 2.1778			
X_3	-1.5629 4.2650 -0.0662 2.8155 3.2309			
X_4	-0.5265 3.7304 -0.1907 2.4228 -2.3509			
X ₅	0.6460 0.1012 1.9761 2.5231 -8.1031			
X_6	-1.1297 4.6982 -3.1086 6.0747 -1.7896			
X_7	-0.9601 -3.5114 -0.5477 -1.0516 -6.2669			
X_8	-0.2527 3.4518 1.8062 3.2216 -3.9585			
X9	1.0830 -3.6549 -4.9974 -1.7340 1.7652			
X_{10}	-1.9900 -0.2964 -1.0838 -2.1833 3.1705			
X ₁₁	23.5711 -0.2662 1.4028 1.2162 0.6883			
X ₁₂	-0.2662 39.1840 -3.8201 -2.3068 -5.1451			
X ₁₃	1.4028 -3.8201 20.7308 3.8194 1.9774			
X_{14}	1.2162 -2.3068 3.8194 26.2102 6.8196			
X15	0.6883 -5.1451 1.9774 6.8196 52.3030			
X16	-3.8319 10.6719 -5.2362 -11.0243 -8.4346			
X ₁₇	2.6788 2.0805 0.1156 -10.4037 -4.1814			
X ₁₈	-0.6574 0.4706 -0.2986 3.4171 -1.5946			
X19	-9.7141 -10.4048 -1.8269 -4.6116 1.0042			
X_{20}	-8.0469 5.0181 -5.9216 0.9508 -15.5601			
X_{21}	0.2864 -6.9346 -2.3836 -3.8352 -7.3721			
X_{22}	0.5744 3.4401 4.4683 -5.4470 1.7347			
X ₂₃	5.4275 -7.1996 13.1077 7.3988 7.0967			
X_{24}	-7.1250 8.9436 -8.6381 -3.7160 -4.9122			
X ₂₅	3.6517 2.7794 -14.2992 -18.1909 -9.9771			

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

X₁₇

		X ₁₇
		X ₁₈ X ₁₉
	I able II (d) Inverse matrix (column 16 to 20)	X_{20}
		X ₂₁
Symbol	Quantity	\mathbf{X}_{22} \mathbf{v}
X1	0 3019 2 1012 -3 3013 2 6870 -8 3767	Λ ₂₃ Χ ₂₄
X_2	-3 0691 -0 9979 0 7230 4 8782 -0 2747	X ₂₄ X ₂₅
X_3	-0.9166 -0.1300 2.3043 -6.5323 0.0554	25
X_4	-0.4938 -1.7257 -0.3953 -3.2691 5.8227	
X5	1.0480 -1.2252 3.2427 -3.8731 8.2898	
X_6	-0.0256 -3.3343 -1.6399 -4.2693 1.2894	
X_7	-1.4924 -5.6317 -3.0218 5.9217 5.9034	
X_8	-4.5816 -3.6789 4.0433 1.8519 -3.6709	to
X_9	5.4166 2.3515 -3.0156 -11.2018 4.9466	
X_{10}	1.2218 4.8012 3.3652 3.8088 0.4247	
X_{11}	-3.8319 2.6788 -0.6574 -9.7141 -8.0469	
X_{12}	10.6719 2.0805 0.4706 -10.4048 5.0181	
X ₁₃	-5.2362 0.1156 -0.2986 -1.8269 -5.9216	trac
X_{14}	-11.0243 -10.4037 3.4171 -4.6116 0.9508	too
X ₁₅	-8.4346 -4.1814 -1.5946 1.0042 -15.5601	100
X ₁₆	42.6864 10.5649 0.1435 -8.7232 11.3597	
X ₁₇	10.5649 47.4090 -2.5939 3.0675 -9.6601	
X ₁₈	0.1435 -2.5939 37.1708 -8.1972 11.7323	2
X ₁₉	-8.7232 3.0675 -8.1972 79.7846 -14.6535	trea
\mathbf{X}_{20}	11.3597 -9.6601 11.7323 -14.6535 51.1988	of
X ₂₁	-1.3369 -9.0284 -13.2050 1.0170 -11.4387	
Λ ₂₂ V	0.7620 19.1948 4.7815 -21.2973 -18.1461	
м ₂₃ Х.,	-17.7546 -1.1563 -5.9340 9.3478 -11.4516	
X ₂₄	-7.3140 -1.3124 -7.8948 0.8653 1.0128	tra
2 25	0.9106 -3.9132 -7.8429 -3.0998 -7.4895	ute of

Table II (e)
Inverse matrix (column 21 to 25)
Quantity

Symbol	Quantity		
X1	3.6855 -2.1331 0.0616 0.6672 2.1035		
X_2	0.0373 -2.9195 -1.0138 -0.0845 4.1970		
X_3	-2.0960 0.8359 -3.4103 2.9404 -1.3297		
X_4	-3.7562 -1.2484 -0.1859 2.6693 -3.8078		
X_5	-3.4075 -1.2757 -7.7510 3.7331 -2.1622		
X_6	0.6946 -0.4602 -5.9442 7.2922 -2.0436		
X_7	2.0337 -13.6672 0.4265 -3.3786 0.9199		
X_8	-2.4446 15.8727 7.1110 -0.9470 -3.8739		
X_9	1.6881 -15.8217 -12.0547 3.7284 7.8782		
X_{10}	-5.7932 -0.4281 2.5388 -5.4216 -3.0618		
X ₁₁	0.2864 0.5744 5.4275 -7.1250 3.6517		
X ₁₂	-6.9346 3.4401 -7.1996 8.9436 2.7794		
X ₁₃	-2.3836 4.4683 13.1077 -8.6381 -14.2992		
X_{14}	-3.8352 -5.4470 7.3988 -3.7160 -18.1909		
X ₁₅	-7.3721 1.7347 7.0967 -4.9122 -9.9771		
X ₁₆	-1.3369 0.7620 -17.7546 -7.3140 0.9106		

-9.0284	19.1948	-1.1563	-1.3124	-3.9132
-13.2050	4.7815	-5.9340	-7.8948	-7.8429
1.0170	-21.2973	9.3478	0.8653	-3.0998
-11.4387	-18.1461	-11.4516	1.0128	-7.4895
33.7203	-7.1854	-1.0196	-6.1420	11.0374
-7.1854	102.8730	-12.0145	-13.2248	-1.2464
-1.0196	-12.0145	46.6472	-18.8422	-16.0161
-6.1420	-13.2248	-18.8422	75.0974	1.7818
11.0374	-1.2464	-16.0161	1.7818	62.1072

Table III <i>Results</i>				
Stages corresponding to an orthodontic process.	Hottelling's statistic T ²	Statistic F		
Sample without treatment and application tooth paste.	345.8153	9.5764		
Sample without treatment and application of etching acid.	473.7985	13.1206		
Sample without treatment with application of ionomer cement.	1170.2313	32.4064		
Sample with application of toothpaste and etching acid	789.5596	21.8647		
Sample with application of toothpaste and ionomer cement	1263.6704	34.9939		
Sample with application of etching acid with ionomer cement.	1368.1251	37.886 5		

The values obtained in each comparison show significantly large values which supply an indication of difference in the mean vectors in each one of the stages compared (Table III, column T^2), then one can see in the last column of Table III that the values obtained by the statistic F (obtained by formula 9) have a value greater than 1, which according to [2] is indicative that there is significance, that is, the mean vectors show differences. This can be corroborated if we create graphs of the mean vectors of each stage of the orthodontic process (Graphs 1, 2, 3, 4, 5, and 6) as is shown in Graph 7. Table IV shows the mean vectors of the samples in each stage of the orthodontic treatment.

	Table IV		
Mean	vectors of the	sample	

	mean vectors of the samples			
Mean		Mean	Mean	Mean
	vector	vector	vector	vector
	Sample	Sample	Sample	Sample
	without	with	with	with
	treatment	applicatio	applicatio	applicatio
		n of	n of	n of
		toothpaste	etching acid	adhesive
	1.8174	2.1079	2.1406	2.7324
	1.9565	2.6738	2.2251	2.457
	2.1259	2.2182	2.3227	2.625
	1.9668	2.0986	2.4731	2.6494
	2.0781	2.3471	2.6508	2.7895
	2.1718	2.3794	2.582	2.7046
	2.1426	2.3125	2.5361	2.6074
	2.205	2.4311	2.52	2.8012
	2.205	2.4458	2.3711	2.7822
	2.1933	2.4526	2.4882	2.3281
	2.2885	2.3842	2.6562	2.4174
	2.3794	2.4819	2.4301	2.4111
	2.209	2.5669	2.7314	2.5117
	2.2939	2.4682	2.6855	2.5424
	2.4204	2.5883	2.8173	2.5639
	2.4531	2.459	2.8515	2.7578
	2.5029	2.5771	2.7431	2.8066
	2.4863	2.5088	2.8134	2.5688
	2.6128	2.5713	2.9272	2.7763
	2.5171	2.4677	2.9565	2.8349
	2.4721	2.5146	2.9091	2.7241
	2.7182	2.6811	2.8925	2.7436
	2.5634	2.5395	2.9433	2.7924
	2.6362	2.7876	2.9155	2.8071
	2.5464	2.7246	3.0214	2.8686

Graph 1: Mean vectors of the samples without treatment and application of toothpaste.

Graph 2: Mean vectors of the samples without treatment and with application of etching acid.

Graph 3: Mean vectors of the samples without treatment and application of adhesive.

Sample with application of toothpaste
 Sample with application of etching acid

Graph 4: Mean vectors of the samples with application of toothpaste and etching acid

Graph 5: Mean vectors of the samples with application of toothpaste and adhesive.

□ Application of etching acid □ Application of adhesive

Graph 6: Mean vectors of the samples with application of etching acid and adhesive

Graph 7 shows a comparison of the 4 stages of an orthodontic treatment, where we can see the differences caused upon applying said process, graph 7, said difference shows that there is a loss of enamel in each stage.

Graph 7: Mean vector of the 4 stages of an orthodontic process.

VI. CONCLUSION

Comparing the data obtained in the middle third of the samples without treatment and application of toothpaste, without treatment and application of etching acid, without treatment and application of adhesive, with toothpaste and etching acid, with toothpaste and adhesive and finally that of application of etching acid with adhesive, in order to prove the hypothesis that the mean vectors are equal or not; that it, to show if there are physical changes in the application of each stage of orthodontic treatment, situation that would be proven if the hypothesis that the mean vectors are equal were rejected. The results shown The results shown in Table 1 allowed the hypothesis that the mean vectors are equal to be rejected, this makes it more evident as the stages for an orthodontic treatment are applied, all this together considering the 25 variables belonging to the mentioned third. This was proved upon applying the significance test of T^2 together with the F for multivariate data. The result of this work has the purpose of giving information to the orthodontist, given that it indicates that upon carrying out said treatment, physical changes are occurring in the surface of the tooth enamel using the technology developed in the laboratory.

Up to this moment, only the loss of enamel in the treatment has been qualified and the quantification of the loss of enamel will continue to be worked on using the described technology. The results obtained are satisfactory and this technique will continue to be worked on for future analysis in different zones of the tooth.

ACKNOWLEDGMENT

The authors thank the financial support of DAGU-BUAP. In particular the Damian Hernandez and to the Carmen Santiago Diaz for all the attention.

References

- J.I.Cortez, Methods and devices for the optical infrared defectoscopia in materials dielectric. Ph.D. Dissertation. Russia, 2001, pp. 35-70.
- [2] J. Italo, M. Bustillo, C. Pérez, V. De León," Analysis of the influence of the rugosity of surfaces using the method of" in *Proc. SOMI XVII National Conf. of Instrumentation*, Mexico, 2002, pp.82-88.
- [3] D.V.Kiesewetter, V.I. Maliugin, J. Italo Cortez, "Researches of the enamel of dent in coherent light" in *Proc. Laser for measurement and information transfer 2005.* SPIE, v.6251, Russia, july2006.
- [4] Bryan F. J. Manly, *Multivariate Statical Methods*, Ed. Chapman and Hall, University of Otago, New Zeland, 1986, pp.60-145
- [5] Alvin C. Rencher, Multivariate Statistical Inference and Applications, Ed. John Wiley & Son, Brigham Young University, 1998, pp.34-87.
- [6] William H, Numerical Recipes in Pascal, The art of scientific computing, Ed. Springer-Verlag, Cambridge, 1992, pp.45-67.
- [7] Murray, J.J., The Prevention of Dental Disease. Oxford University Press, Oxford, 1989, pp.23-39.
- [8] Dietrich P, Enamel alterations from bracket bonding and debonding: a study with the scanning microscope. AJO.May 1981
- [9] John H. Mathews, Kurtis D. Fink, Numerical Method with MATLAB, Ed. Prentice Hall, USA, 1999, pp.67-85.

Cortez Jose Italo, he made studies of Electrical Engineering and Masters of Sciences in power stations in the Polytechnical Institute of Kiev, Ukraine and Ph.D in Technical Sciences in the Severe Zapadni State Technical University of Saint Petersburg, Russia. At the moment it works as titular professor in the Faculty of Computing Science of the Autonomous University of Puebla, Mexico.

Gonzalez Flores Marcos made studies of Computing Science in the Autonomous University of Puebla, Mexico; and the Master in Computing Science in the Technological of Pachuca, Mexico. He's a titular professor in the Faculty of Computing Science of the Autonomous University of Puebla, Mexico.

Cortez Liliana made studies of Electrical Engineering and Masters of Sciences in power stations Polytechnical Institute of Kiev, Ukraine and Ph.D in Technical Sciences in the Polytechnical State University of Saint Petersburg, Russia. At the moment it works as titular professor in the Faculty of Sciences of the Electronics of the University Autonomous of Puebla, Mexico.

Perea González Gloria Patricia studied a Degree in the Faculty of Odontolgy of the Autonomous University of Puebla, Mexico. She made studies of Masters and Ph.D in Education Sciences. At themoment she is titular professor of the Faculty of Odontology of the Autonomous University of Puebla, Mexico.

Vega Galina Victor Javier studied a Degree in the Faculty of Chemical Sciences and the Masters in the Institute of Physiology, both in the Autonomous University of Puebla, Mexico. At the present he is a titular professor of the Faculty of Odontology of the Autonomous University of Puebla, Mexico.

Cortez Ernest Italovich is student of the Faculty of Electronic Sciences of the Autonomous University of Puebla, Mexico.